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1 Introduction.

Let (X,|.||) be a real Banach space and B(].||) be the closed unit ball of
X. By a drop D(z, B(||.]|)) determined by a point z € X\B(]|.||), we shall
mean the convex hull of the set {z} U B(]|.||). If a non-void closed set S of
a Banach space (X, ||.||) with a positive distance from the unit ball B(||.||)
is given, then there exists a point a € S, such that D(a, B(||.||)) N S = {a},
which is so called Danes Drop Theorem [4] and it is equivalent to the Ekeland
variational principle (see for example [12],[6]).

We say that the space has the drop property if the above statement is
valid for all closed sets S, disjoint with the unit ball (see [14]).

Montesinos [11] has shown that up to equivalent norm, the drop property
characterizes reflexivity. More precisely, a given norm ||.|| has the drop prop-
erty if and only if the space is reflexive and the norm ||.|| has the Kadec-Klee
property. (see also [8]).

It is clear that a drop D(z, B(]|.]|)) is never smooth. In the present paper
we shall consider a "smooth version” of the drop property, i.e. we shall
work with closed convex sets, containing the unit ball which Minkowski’s
functional is smooth.

In [10] it is shown a smooth drop theorem of Danes type for spaces with
smooth norm where the proof is based on the smooth variational principle
of Borwein and Preiss [3].

In the proof in [11] Montesinos has constructed a decreasing sequence
of drops D(z,, B(||.||)), z. € S, where for each n he either applies the
Danes drop theorem and this ends the proof or chooses the next z,,, €
D(z,, B(||.|)) NS with ||z,|| — 1. .

In the present paper we prove a similar result : every reflexive space
admits an equivalent norm with the smooth drop property.

There are some difficulties to follow Montesinos’ construction, the prin-
cipal among them is when applying the smooth drop theorem, or a result of
Lau. More precisely, if the point z given by the construction of the smooth
drop theorem is on the boundary of the previous smooth drop D, it is not
clear how to construct the next smooth drop to be contained in D. The main
part of our proof is to assure that z may be chosen in the interior of D.

Definition 1.1 A bounded subset D of (X, ||.||) is called a smooth set if there
exists ¢ : X — R continuous, convezx, positive and Fréchet-differentiable
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function such that D = {z € X : () < a} and there erists zo with p(zy) <
a.

The following proposirion justifies the notation smooth set.

Proposition 1.2 Let D = {z € X : p(z) < a} be a smooth set. Then the
Minkowski function pp, of Do := D — zo is Fréchet-differentiable on X\ {0}.

Proof. Put po(z) = @(x + 20). Then Dy = {z : po(z) < a}. Since ¢ is
continuous convex and inf ¢ < a, observe that

(1) 0Dy = {z € X : po(z) = a} = {z € X : pp,(z) = 1}.

From the convexity of ¢ it follows that og(z)(z) > wo(z) — po(0) =
a — o(0) > 0, when = € dD,. For every 0 # z € X, we have pp,(z) € 9Ds.

Let 0 # Tg € X be fixed and ¥5 = pp,(T0), zo = =,y0 = 1. put F(z,y) =

Yo

Yo (%) , for z € X,y > 0. We shall prove that pp, is Fréchet-differentiable at
To, therfore at Zg, using the implicit function for the equation F(z,y) = a,

which is fulfilled for y(z) = pp,(z). Since pp, (?_j) =1, we have by (1) that

Yo
wo(zo) = a. Also, we have

Fy(z0,50) = g <@> (Q) =< ¢p(20), =0 >< 90(0) — wo(z0) < 0.

Yo Yo
By the implicit function theorem for the equation F(z,y) = «, (see p. 166
of [1]), it fllows that the function pp, is continuosly differentiable on a neigh-
borhood of g, which is equivalent (for convex function) to Fréchet differen-
tiability. The proposition is proved.

We shall say that the Banach space X is a space of differentiability if
the set of all equivalent Fréchet-differentiable norm is dense in the set of all
equivalent norm on X endowed with the metric of uniform convergence on
the unit ball of X.

For example if there exists one equivalent L.U.R. dual norm in X™, then
X is a space of differentiability (see e.g. [5]). But it is not known if the space
X is a space of differentiability whenever there exists a Fréchet-smooth norm
on it.

In [10] the following statement was proved. Here we present another proof
applying directly the smooth variational principle of Borwein-Preiss [3].
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Theorem 1.3 (smooth drop theorem). Let (X, ||.||) be a space of differentia-
bility. Let S be a closed non-void subset of X SU(‘IL that d := dist(S, B(||.||)) >

0 and let xy € S, ||zy|| > d+ 1. Then there cxists a smooth drop D such that
D NS is a singleton and D C B0, ||z4]]).

Using the proof of Borwein-Preiss variational principle in Phelps [13], we
derive the following version.

Theorem 1.4 (Borwein-Preiss smooth variational principle). Let (X,||.||)
be a Banach space and S a closed non-void subset of X. Let [ : X —
RU {400} be a ls.c., bounded below from S and D(f) # 0. Lete > 0, A > 0.

Then for @y € S there exists {xn}n>2 C S and {/ln}uzl C R, such that

I)i/l'n:l

n=1
2) f(:vn) S f(xl)a Vn € N
3) , — a in the norm topology
4) fa) + —Z;tnlla zal* < f(z Z/‘nﬂl ||, Vo € S,z # a
n>1 n>1

5) f((l) + :\7 Z/l"““ - :"‘11”2 < f("'l)~

n>1

Proof. (of the smooth drop theorem) Taking into account that X is a
space of differentiability and ||z]| > 1 + d, we can assume without loss of
generality, that the norm ||.|| is Fréchet-differentiable. Let € = 1 and A > 0
such that (1 + [la1]])/A < dist(S, B(]| - ||))-

We put f(z) = dist*(z, B(||-||)) and then apply Borwein-Preiss variational
principle to S. There exists a € S such that

() @455 S malle=all? > J@) 455 Y palla—zall®, Vo€ S, 2 £ a,

n>1 n>1

where {z,} C S, 2, — a, Z fn =1, gy > 0 and

n>1

(a) + —L/t””u — x| < S(xy)

n>1



after that, consider the set

D={a:€X +—Z/tnllw zu|* < f(a Z,“n”a 1nll}

n>1 n>1

Then (%) implies DN S = {a}.
Let z € B(]|.]]), then

1 1 . .
J@)+ 13 Z;ﬂnnf zall® < F(1L+ llell)® < dist?(S, B(I-[))
by the definition of A we deduce that

1 '
() + 55 3 il = wall® < disti(a, BLI)),

n>1

then B(]|.||) C D.
Let € D, then

f(z) = dist*(z, B(|.) € f(a) +——Zun||a sll? < f(a)

n>1

= dist*(xy, B(||.|]))
then ||z|| < ||a1]] and D C B (0, ||z,]|) .=

Proposition 1.5 Let (X,||.||) be a Banach space. We assume that there ez-
ists a smooth drop D in X. Then there exists an equivalent Fréchet-differentiable
norm in X.

Proof. Let D = {z € X : [(z) < a} be a smooth drop. We consider
the set C = {z € X : f(z) + f(—2) < 2a}, then C is symmetric, con-
vex, bounded and B(]|.]|) € C. Therefore C is a unit ball of an equivalent
norm ||.||; on X. Moreover, the function g(z) = f(a) + f(—=a) is Fréchet-
differentiable, convex and ¢(0) < 2a, then by Proposition 1.2, we deduce
that ||.|]y is Fréchet-differentiable on X'\ {0}. =
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Proposition 1.6 Let X be a Banach space. We assume that the set of all
equivalent norms ||.|| on X which satisfies : (*) for all closed subset S of X
at positive distance of B(||.||), there exists a smooth drop DD such that D NS
is a singlelon, is dense in the set of all equivalent norms. Then X s a space

of differentiability.

Proof. Let .|| be one norm in X which satisfies (*) and let ¢ > 0. We
consider the set S = {z € X : ||z|| = 1 + €}. Then S is closed at positive
distance of B(]|.||). Then by hypothesis there exists a smooth drop D such
that D NS is a singleton. Put D = {z € X : f(2) € a} and concider
C={zeX: f(z)+ f(—z) £ 2a}. Thus B(||.]]) € C and C C S. Therefore
C is a unit ball of new Fréchet-differentiable norm ||.||; (c.f. Proposition 1.5)
satistying L[| < [ < (1+¢)l.l

2 The smooth drop property.

Lemma 2.1 Let (X, |.||) be a Banach space and assume that the norm ||.||
is Fréchet-differentiable on X \ {0}. Let C = {x € X : f(x) < f(x0)} be
a smoolh convex set. Then for all € > 0 there exists a smooth convexr set D
such that:

i) DcCC

i) DN{z € X : f(z)= f(zo)} = {0}

i) diamD < e.

Proof. Let o > 0 such that 2[f(z0)/a]'/? < € and we consider the set D
such that D = {z € X : f(2) + a|lx — x0]|* € [(20)}.m

Definition 2.2 Let D be a subset of Banach space (X,||.||), such that D =
conv(B(]|.]])) U C) where C' is a smoolh conver sel and we assume that the
norm ||.|| ts Iréchet-differentiable. Then D is called a quasi-smooth drop.

Remark 2.3 In general a quasi-smooth drop D is not a smooth drop, [7].
But it is easy to see that if the space s reflexive then the quasi-smooth drop
is a smooth drop (see also [1]).



Lemma 2.4 Let (X,||.]|) be a Banach space. Let xy € X \ B(||.]]), 2 in the
set {txy : 0 <t < 1}, |lz2f| > 1 and p in the set {t € R : 1 <t < ||z}

|21 — a2 i
1l e = ;
ten for e llz1]|  diamD(xy, B(||.||))

(D (z2, BI1N) +eB L \eB(lI-I1) € intD (21, B[-II))-

Proof. Let @ € D(zo, B(||.|)))\dB(]|.||)- Then & = Az, + (1 — A)b, for some
b€ B(||.||) and A € [0,1]. But we have p < ||z = b|| = A||z2 — b|| < AM,
where M := diamD(zxy, B(]|.||)). Hence A > p/M. Choose € € (0,e2p/M),

where €2 = ||z) — @3||/||z1|| and let y € = + eB(||.]]), v2 = %— —b. We

A
e Me .
have ¢ > ||y —z|| = A||z2 —y2||, whence ||zg — yo|| < i < —— < g,. Therefore
Yo € Ty + eaint B(||.||). Since xy = (1 — &9)z4, we have

we have

zg + E2ntB(||l.]) = (1 — €2)xy + e2int B(||.]]) C intD(xy, B(|.|]).
So we proved y; € intD(zy, B(]|.]|)), then
y=Xy2+ (L=N)b € intD(xy, B(|.]|). =

Theorem 2.5 Let (X,]|.]|) be a space of differentiability and we assume that
I.I| is Fréchet-smooth. Let S be a closed non-void subset of X at possitive
distance d of B(||.||). Let C be a quasi-smooth drop such that S N intC # .
Then there exists a quasi-smooth drop D such that DN S is a singleton and

D ccC.

Proof. Put S; = SNintC.
Case 1: Tthere exists z; € Sy such that:

(2) B, ||lz,]) ndC N Sy =@

By the smooth drop theorem to Sy and B(]].]|), there exists a smooth drop
Dy such that Dy NSy = {x¢} and Dy C B(0, ||z4]).

Now (1) implies that 2o € S;\0C and with the Lemma 2.2, we finish this
casc.

Case 2: 'The case 1 is not fulfilled.
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By hypothesis dist(Sy, B(||.]|)) > 0. Choose z, € S NintC' and o >
0 such that z; := (1 + a)z; € C. Then we apply Lemma 2.4with p =
1 4+ % and obtain that (D(z, B(||.]])) +eB(||.I)) NS = 0. If we put B :=
conv {{z2}, {—z2}, B(||.||)} and By = By + eB(||.||), then By and B, are
unit balls of equivalent norms. Since X is a space of differentiability, there
exist a unit ball By of equivalent Iréchet-differentiable norm ||.|[3 such that
By C B3y C B;. The norm |.||3 has the property of the first case, which
finishes the proof. w '

Definition 2.6 We say that the Banach space X has a smooth drop property
(in short SDP) if for all non-void and closed subset S of X disjoint of the
unit ball, there exists a smoolh drop D such that DN S is a singleton.

Theorem 2.7 Let (X,|.||) be a reflexive Banach space. We assume that the
norm ||.|| is Fréchet-differentiable on X\ {0} and has the Kadec-Klee property.
Then (X, ||.||) has the smooth drop property.

Proof. Case I: There exists a point z € S such that
dist (D (z, B(|l.IN) S, B(.])) > 0 and (intD (2, B(||.||))) NS # 0.

Then we apply Theorem 2.6, there exists a quasi-smooth drop D such that
D N S is a singleton. Moreover the space is reflexive, by the Remark 2.4, D
is a smooth drop, and the proof is completed.

Case 2: If the case 1 is not fulfilled. Then by Theorem 2.6

inf {dist (z, B(]|.]])): 2 € conv((CUDB(.IN)NS)} =0

for all smooth convex C, suth that C'N.S # (.
Now it is easy to see that we can inductively define a sequence {z,},>,
in S with z; € S arbitrary, such that

() (L pagn)Tagr € D((1 4 pn) 2y BN O (L + ) B s

where jt,, > 0,1, — 0. Morcover the sequence {x,},>, is bounded in re-
flexive Banach space. Then without loss of generality we can assume that
z, — x, by (3) we have ||z,|| — 1, then |Jx]] € 1. By (3) we show that
{(1 4+ )2 }ust is a stream (i.e. (14 pupr@agr € Dy, B(|[I)\NB]), for
all n) and by ‘a Lemma of Montesinos [10]; stating that conv{(l + jn)z, :
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n € N} N B(.]) = 0, then ||z|]| > 1. And we deduce that |[z|| = 1. By
II-11

hypothesis the norm ||.|| has the Kadec-Klee property then z, — z in §
which is closed. Then @ € SN B(||.]]), a contradiction. Therefore the case 2
is impossible and the proof is finished. =

3 Smooth drop property in strictly convex
reflexive Banach space.

If in the conditions of Theorems 2.6 and 2.8 we impose an additional assump-
tion that the norm is also strictly convex; then we can give a more precise
form for the drop, i.e. it will be a convex hull of two balls with respect to
the given norm.

Recall that each reflexive space has an equivalent norm which is Kadec-
Klee, strictly convex and Iréchet-smooth, (for more see [5]).

Proposition 3.1 Let (X, ||.]]) be a Banach space. Let € be positive, consider
the set D such that D := conv{B(||.||) U {z + eB(||.]|)}} and D, is the set
defined by Dy = {(A+ (1 = XN)e)b+ (1 = XN)ay; A e [0,1], be BN}, Then
D = D.

Proof. Let y € Dy. Then y = (A + (1 = A)e)b+ (1 = Xz for some A € [0,1]
and b € B(||.|])- But y = Ab+ (1 — A)(z + €b), which implies that y is in D.
Therefore D, C D.

Conversely,lety € D. Theny = Z Aib; + Z pjcs, for some Ay, g € [0, 1];

1=1 =1
m

Z/\,- + Z/Lj =1; b; € B(||.||) and ¢; € x + eB(||.]|)- But y = XNb+ p'c,

1=1 =1
m

n Al ) » n
where b = Z y”" in B(||.|); ¢ = Z %Cj ina+eB(].|); N = Z Ai and
1=1 1=1 i=1

m

[l.l = Z /L]
i=1
!

If we denote by 0" = a +¢eb, ¢ = (' —a) and z = —l-—l———, then v/ = (1 —
& — €

9



€)z + €b and there exists d' := [/, | N [z,y] and for d := %((l' — z), we have

z=d'=z—z—¢ed=z2—-(l —¢)z—ed=¢€(z—d) and V —d' = e(b— d).
Therelore y € (d,d'), i.e. there exists A € (0, 1) such that

y=AM+(1=-AN)d' =M+ (1 =A)(z+ed)=(A+(1 = Ne)d+ (1 — Nz,
which is in D;. Therefore D C D, and the proof is finished. w

Proposition 3.2 Let (X,||.]|) be a Banach space. Then the set defined by
D :=conv (B (||.])U {z+eB(|.I)}) is closed.

Proof. Let {yn}n>1 is a sequence in D, such that y, — yo. By Proposi-
tion 3.1, we have

(4) yrl:(/\11+(1 ”/\11)5)1)11+(1 '—/\,,)fl,‘,
where A, € [0,1] and b, € B(||.||), for all n € N. The sequence {\,},> is

bounded in R, then without loss of generality we assume that A, — g,

| - An
Yn —
/\71+(1—An)5‘/ /\n+(l_/\n)5
l I — Xo
— Yo —
/\0+(1 —/\())5 /\U+(l —)\())E
Since B(||.||) is closed and {b,}n>1 is in B(]|.||), then by is in B(]|.|]).
Therefore yo = (Ao + (1 — Ao)e)bo + (1 — Ao)z, and by Proposition 3.1, y,
isin D. w

and by (4), if we put b, = x, we have

b, T = by.

We say that the norm ||.|| has the Kadec-Klee property; in short KKP;
if for all sequence {x,}n>1 C X such that z, 5 z and ||z, — lz|| then
u,

It is easy to see that the following proposition is valid.

Tn

Proposition 3.3 Let (X,|.||) be a Banach space. If B(||.|[) has the KKP,
then the set D = conv {B (||.|) U {z +eB(||.||)}} has also the KKP.

Theorem 3.4 Let (X, ||.||) be a reflexive Banach space. We assume that the
norm ||.|| is strictly convex with KKP. Let S be a closed non-empty subsel of
X at positive distance of B(||.||). Let v > 1 and z € S.

Then there exists xo and € > 0 such that o+ eoB (||.]]) € D (vz, B(].]]))
and conv {(zo + 0B (||.])) U B(|l.Ih} NS = {20} and llzo0 — zo|| = €o.
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Proof. Let 6y > 0 be such that 368" C e B3(|].||), where

B i= conv {(1+€) B(LIU {1 +eB (LD U (=21 + B (LD
l1—-v d ,
€= — GamD(vz, 60) and d = dist (S, B(||.]|)) -

There exists z; € [0,2] such that S, := dist(S, D(z1, B(||.]]))) < o and
SN D(xy, B(||.]])) = 0. Now by Lemma 2.5 we have

() (D (@, BD) + 2e0B (I1ID)\ (1 + d/2) B(|I-) € intD (vz, BL.])) -

Choose a € (0,¢) sufficiently small, such that, SN D(zy, (14 a)B(||.]])) = 0.
Morcover o < € implies

(6) D (@, (1+e)B([I1N) € D (zv, BALI) + B (1) -
Let x5 € (0,21) = {txy: t € (0,1)}, and put Sz := ||ay — 22| < §o — &, and
€q = M(l + d). Then,

62

dist (S, conv {B (||.|) U {z2 + 2B (||.])}}) < do
and

SN conv{B(|l.I) U{z2 + 2B (||IN}} =0
denote by

By :=conv{(1+a)B(||.|) U {£z:+e2B(].||)}}.

Then Bj is convex, symmetric and closed (by Proposition 3.2). So B, is
the unit ball of a new equivalent norm ||.||; with KKP this by Proposition
3.3. Now we can apply a Theorem of Lau [9] (see also Theorem 5.11 of [2])
staiting that there exists a dense G subset I' of X'\ S such that every z € I’
has a nearest point to S with respect to the norm |.||;. So we can choose a
point ay in 8o B(]|.]|), such that a; has a nearest point zo to S with respect to
the norm ||.||;. Since a; + (14 2680) By D (1 +60)B1 D Bi+ 6 B(]|.]]), we have

Q (ar + (14266 BYNS > (B + 8B (L) NS #0.
Therefor dy := disty, (a1, 5) < 14 28. Since 3681 C 360 B" C e B(||.||), we

have also

(8) ar+ (14 268) By C By +eB(|.]I) € D (£ay, (L+a)BII))+eB (Il

11



Then by (5),(6),(7) and (8) 'we obtain
(a1 + (1+260) B1) N S C [D (a1, (1 + @) BN +eB(LININS €

C [D (@, B(IID) + 2eB([.IN NS € D (vz, B(||-))-

Hence (a4 + d1B,) NS € D(vz, B(||.||))-

Let 2| := (21 + a1)dy, @) := (z2 + a1)d; and &) = €2d;.

If || z0 — @ || = €5, we take zg € (20, 2%) and €9 = ||zo — 20|, which finishies
the proof.

If |20 — 25| > €, then zp = Az} + (1 — A)bo for some A € [0,1] and
bo € ay + (1 + a)B(]|.||). We take zj := Az} + (1 — A)ay, zo € (20,2;) and

€0 = ||zo — 20]|, which finishes the proof. w

Theorem 3.5 Let (X, ||.||) be a reflexive Banach space with a strictly convex
norm ||.| and having the KKP. Let S be a closed non-void subset of X such
that SN B (||.||) = 0. Then there exists a point zy and €9 > 0 such that conv
{B(|-DY {zo+eoB(||-N}} NS = {20} and ||z0 — xo|]| = €0. Moreover, if
the norm is Fréchet-differentiable, then conv {B(||.||) U {zo + o B(||.||)}} is

a smooth drop.
Proof. Using the same proof as those of Theorem 2.8. =
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