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Abstract

In the space of whole linear semi-infinite optimization problems
we consider the mappings putting into correspondance to each prob-
lem the set of efficient and weakly efficient points, respectively. We
endow the image space wit Kuratowski convergence and by means of
the lower and upper continuity of these mappings we prove generic
well-posedness of the vector optimization problems. The connection
between the continuity and some properties of the efficient sets is also
discussed.
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1 Introduction

Many authors like Tanino [1], Bednarczuk [2] and s.o. have treated the
question about the upper and lower semi-continuity of the efficient maps in
the vector optimization. In two previous papers we have investigated the
continuity properties of the efficient sets in the linear vector semi-infinite
optimization. Comparing the results in these articles we can see that there
exists something like duality between the continuity properties of the weakly
efficient and efficient sets. This duality with respect to the upper and lower
semi-continuity helps us to create interesting and internal characterizations
of both sets. For example some topological properties like closedness of the
set of efficient points, coincidness of the sets of weakly efficient and efficient
points and well-posedness in the vector optimization.

Now let us describe what does it mean linear vector semi-infinite opti-
mization problem and since we shall write about continuity we have to define
the parameter space of such kind of problems.

Let T be a compact Hausdorff space and RY be the usual N-dimensional
Eucledean space. Let B: T — RY and b : T — R be continuous mappings
and (py,pa, ..., ) be elements in RY.

We define P: RV — R' by setting: For every z € RV

Plx)= (< o2 5,2 oo D S oz >)
For each triplet
o=(B,bP)e {(C(T))Y xC(T)x R"*'} =0
as in [3] we consider the closed set Z(o) C RN described by side-conditions:
Z(o)={z € RV : for every t € T}

and the following linear vector optimization problems.
LV M(o) : Determine an efficient poin subject to the side- conditions.
LVW(a) : Determine a weakly efficient poin subject to the side-conditions.

Here we have used the following:

First, In the finite dimensional space R' we consider the partial ordering
generated by the cone R|,. This means that for any 2!, 2* € R/, 2! € 2?
iff this inequality holds for the coresponding coordinates of z! and z*. And
second the usual definitions:



Definition 1.1 A point zo € Z(0) is called efficient iff for each z € Z(o)
such that P(z) < P(z,) holds P(z) = P(zo).

Definition 1.2 A point zo € Z(0) is called weakly efficient iff for each z €
Z(o) such that P(x) < P(zo) holds that there ezists j € 1,1 for which
< Pj,T >=< pj,Tg >.

Obviously each efficient point is a weakly efficient point but the converse
statement is not true in general.
In the space © we consider the norm:

lzllry = maxicicw |2il, |Pllayx = maxicic || Pllrw,
bllec = maxeer |0(t)], ||Bllec = maxeer || B(t)l|r~
and for every ¢ = (B,b,P) € ©
lloll = | Bllee + llbllcc + [| P} povx:.

This norm turns © into a Banach space and generates in © the nature carte-
sian product topology.
For each o € © we put:

F(o)={z € Z(o) : x is an efficient point}

FW(o)={z € Z(o) : x is a weakly efficient point}

The multivalued mapping F : © — R™ puts into correspondance to every
o € O the set of efficient points and FW : © — R the set of weakly
efficient points respectilely.

Before to go further we shall set the definitions of the continuity of the
set-valued maps.

Definition 1.3 We shall say that the multivalued map F : X — Y between
the topological spaces X and Y is upper (lower) semi-continuous at the point
zo € X iff for every open nghb W D F(zo) (W N F(zo) # 0) there exists an
open nghb V 3 z4 such that for eachz € V holds F(z) C W (WNF(z) # 0).

There are several definitions of well-posedness in the vector optimization due
to Penno and Bednarczuk (4], Tanino and Sawaragi (5], Luccetti [6] and s.o.
In this article we shall consider this given by Tanino and Sawaragi because
it is more suitable for our purposes.



Definition 1.4 The problem LVM (o) (LVW(a))is well-posed iff the map-
ping F (FW) is continuous at the point o € O, i.e. F (FW) is lower and
upper semi-continuous at o € ©.

As it is seen from the definition the well-posedness depends strongly on the
topologies chosen in the parameter and image spaces. To avoid this obstacle
it would be nice to search into two different directions.

First, which was a metter of the previous papers [7,8], is to look for good
properties giving an information about the continuity without having in mind
the topologies in both spaces. We shall mention here so called "domination
properties” [2] and this one given in [7]:

Definition 1.5 We shall say that the point o € © is "nice” if the sets of
efficient and weakly efficient points coincide.

It turns out that the "nice” property is closely related to the well-posedness
of the problem, nevertheless there are not topological notions in it. This
property guarantees also the closedness of the set F(o) which is not true
in general and it could be interpreted as the uniqueness in the definition of
well-posedness in the scalar optimization.

Second direction, which is the main aim of the paper is to find suitable
topologies, especialy in the image space, giving us the possibility to prove
easily well-posedness not only of the restricted maps. On the base of linear
vector semi-infinite optimization we shall show an example how to apply
the new ideas of the topologies in the space of closed subsets of a Banach
space. It is obvious that we can not prove generic well-posedness if we use
the well known Hausdorff topology, so we must apply other ones like Mosco,
or bounded Hasdorff topology [9] and s.o. In the last part of the article we
prove the Kuratowski convergence, which is a base of these new concepts, of
the efficient sets in the parametric linear vector semi-infinite optimization.

In the next section we shall present a short review of the known results in
the area and in the second part making use of them we shall state the proofs
of the basic aasertions in our article.

2 Properties of the efficient sets

In this section we shall present some continuity results and by means of them
we show that the above defined "nice” property is essential, i.e. it is fulfilled
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in a dense subset of the set of solvable problems.
We need several definitions and statements

Lz={c€®© : Z(o) #0}
Ly = {0 €© : LVM(0o) has a solution }
Lw = {c € © : LVW(0o) has a solution }

Let A be a subset of a topological space X. intA denotes the set of all interior
points of A.

Let us remind that the sets Ly and L do not coincide and also a theorem
given in [10].

Theorem 2.1 Let compact T contain at least N points. Then
0 #intly C Ly C Lw CintLy,.

Definition 2.2 We shall say that the Slater condition is fulfilled for o € ©
iff there erists a point € RV such that < B(t),z >< b(t) for every
teT.

Remark: It is easy to see that o € intLz iff the Slater condition is fulfilled.
For every i = 1,2,... we define

B; - closed ball in RV with a radius i
FW;:0 — B;, where
FW(o) = {F(o)N Bi}

AW, = {c € intLz : FW(o) # 0}.

In 7], using a direct aproach, we have proved for the restricted maps FW,
the following: :

Theorem 2.3 For everyi = 1,2,... the multivalued mapping FW, is upper
semi-continuous at each point o € AW,.

According to the famous theorem of Fort [11]

Theorem 2.4 Let X be topological space and Y a metric space. Let F :
X — 2Y be and upper (lower) semi-continuous and compact valued map-
ping. Then the set of points z € X where F is not lower (upper) semi-
continuous is of the first Baire category in X.
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we get a theorem which gives us well-posedness but only of the restricted
over the bals problems LVW(0):

Theorem 2.5 For every i = 1,2,... there ezists a dense and G5 subset
MW; of AW, sush that the multivalued mapping FW; is upper and lower
semi-continuous at each point 0 € MW;.

In order to present the symmetric statement for the map F we have to put
some restrictions.

1. Let from now on I > N.

2. We shall consider only the set
OL = {0 €©O: rankP = N and o € intLz and rank[B(t), t € T) = N}.
In [12] we have proved that: A
Theorem 2.6 The set OL is an open and dense subset of the space ©.

For every i = 1,2,... we define

F,:©OL — B;,  where
Fi(o)={z€ Z(o)NB; : x is an efficient point}
Zi(o)={z€ B : for every t € T'}.

In (8], this time by means of a sufficient condition given in [1] we have got

Theorem 2.7 For everyi = 1,2,... and o € OL such that intZ,(c) # 0
the mapping F; is lower semi- continuous at the point o.

Theorems 2.3 and 2.7 clarify what we mean with the duality. When we speak
about weak efficiency we have upper semi-continuity and with efficiency lower
semi-continuity, respectively. We should mention here that these results are
valid only for the rstricted maps and the duality can not be understood in
the terms of theorem 2.5. The reason that we are not able to obtain a similar
statement to this one in theorem 2.5, for the map F is that in the theorem
of Fort one needs of the compact images. Unfortunately, the set F(o) is
not closed in general. Because of that we shall present a sufficient condition
E"hiCh guarantees the closedness. This property is introdused by Wegmann
13).



Definition 2.8 The set Z has a property (P*) iff for every z,z € Z there
exists € > 0 such that for each v € O (z) N Z there ezists a > 0 such that

v+alz—12)€ Z.

Remark: The intersection of finitely many (P*)-sets is also (P*)-set. With
the norm introduced at the beginning the unit ball in R¥*! has a property
(P°).

Lemma 2.9 If the feasible set Z(o) has the property (P*) then the set of
efficient points F(o) is closed for each P € RN,

Proof: We shall write F(P) and Z insted of F(o) and Z(o) because we vary
only P.

If F(P) = 0 there is nothing to prove. Let F(P) # 0 and let us assume
that F(P) is not closed, i.e. there exists a sequence x..;‘ﬂ; > g such that
z, € F(P), n=12,...and zo € F(P). This means that we can find
y € Z and j € 1,! such that

P(y) < P(z0) and < pj ¥y ><< Pj; o > .

The feasible set Z is a (P*)-set therefore there exists ¢ > 0 such that for
every v € O,(zo)NZ there exists a > 0 with v+ a(y—1x0) € Z. z..;’;l_-‘-q; > zo
whereby we can find m cuch that for each n > m holds z,, € O, (z¢) N Z We
fix such n and take a, > 0 such that z, + a.(y — z0) € Z.

Now we have

P[.t. + an(y - 30)] = P(za) + an P(y — 20) < P(z0), and

< PjyZIn + Qn(y — To) >=< Pjy Tn > +Qn < P, Y — To D<K Py T > .

But this is a contradiction with the fact that z, € F(P).
The proof is completedo

The (P*)-propery is not too strong restriction, f.e. the convex sets in R?,
the polychedrons in R", etc. are (P*)-sets. For the wide class compacta T,
the problems with (P*)-feasible set form a dense subset of the set Lz. The
folowing theorem from [8] is true.

Theorem 2.10 Let T be a homeomorphic space to the unit cube in some
R™, or finite union of such kind of spaces. Then set of problems o € Lz

such that the feasible set Z(o) is a polychedron is a dense subset of the set
Lz.



We should say that the spaces homeomorphic to the unit cube in R™ are
a rather large class. Each convex compact in a Eucledean space belongs to
this class. One can find many haracterizations of such homeomorphizms with
different m in the topological literature.

Now according to the fact that when the feasible set has (P*)-property
the set of efficient point is closed, we are ready to present the assertion similar
to a theorem 2.5, but only with fixed (P*)-feasible set and P variable.

Let us define the sets:

A={PeR" : F(P)#0), and
Ai={PeR"™ : F(P)nintB; #0}, i=12,....

Obviously A=A
=1

Using the same sheme with the theorem of Fort in [8] the following theorem
has been proved

Theorem 2.11 For everyi = 1,2,... such that A; # @ there exists a dense
and Gs subset M, of A; such that at each P € M; the mapping F; is both
upper and lower semi-continuous.

From this very alike to a well-posedness statement, also in [8] we get

Theorem 2.12 Let the Jeasible set Z be fized and have the property (P*)
then the set of problems which are not "nice” is of the first Baire category.

We have the "nice” property as a cosequence of the upper semi-continuity of
the maps F;, i = 1,2,..., but we must remind that to obtain upper, first we
need of the lower semi-continuity. So we see that the "nice” property is very
closely related to the well-posedness.

Now we shall prove the density of the "nice” property when we vary the
whole parameter o = (B, b, P).

Theorem 2.13 Let the compact T be homeomorphic to the unit cube in a

Eucledean space. Then {0 € Lw : o is "nice”} is a dense subset of the set
A



Proof: Let us take o = (By, by, P;) € Lw and fix ¢ > 0. Having in mind
theorems 2.1 and 2.10, we find a point oy = (B, b, P)) € Ly such that
Z(o,) is a (P*)-set and ||oy — oo|| < €/2. According to a theorem 2.12 we
choose a point o, = (B,, b,, P.) € Ly such that the problem o, is "nice” and
loy — o]l < €/2. Then

loo—cl S lldo—afl +llor — ol <e/2+¢/2 =€
The theorem is provedo

3 Kuratowski continuity of the efficient maps

In the space 27", according to [14], we make the following notations and
definitions. Let us take a sequence {A.}a>1 C 27":

Li‘_.,g.-l. = {:: 3 {I.‘},’zg; €A, t= e SESGRET Ti —Fioo 1’}
LS.‘_..,,.'L‘ = {I: Bkl S T Ty € .‘h., 1=1,2,... and Tk, —¥jwe00 J:}
The sets Lip oo A, and Ls,—oo A, are closed and also Lig—ooAn C Lsgeso An.

Definition 3.1 We say that the set A is a Kuratowski limit of the sequence
{AI}RZl iﬂ" = LineooAn = L3gacoAn.

Another equivalent definition reads as follows

Definition 3.2 We say that the set A is a Kuratowski limit of the sequence
{An}nal '.”
1.Vze A3 {zi}in, zi € Ai, i =1,2,... such thal z; — . =.
2Vh <k <..,zy € A, t = 1,2,... and 24y —*io T holds
z € A

The next theotem from [3] givess the connection between the lower semi-
continuity of the multivalued mappings and the lower Kuratowski limits.

Theorem 3.3 The multivalued mapping F : X — Y is lower semi-
continuous at the point = € X iff for every sequence {zi}i»1 such that
T{ =t T holds

F(I) - Ll.—«F(I:)
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Now we shall show generic well-posedness not only of the restricted maps.
First we are going to do this for the mapping F. Let us endow the space
2R with the Kuratowski convergence. Since the set of efficient points is
not always closed we need of a fixed (P*)-feasible set and of the defined in
the previous part sets A, A;, and M;, i=1,2,....

We shall construct new dense and G subsets N; of A;, i = 1,2,.... From
[8] we have that A; are open sets and A; C Aiy, i=1,2,....

N1=Mh
N; = {2 [M; U (A \ AN M5}, i=2.3,... .

Proposition 3.4 Foralli =1,2,... the set N; is a dense and Gy subset of
the set A,.

Proof: It is enough to prove only that for some i M;U(A\ A;) is a dense and
Gs subset of A.

The density is obvious. Sinse M; is a dense and G subset of A, we can
present it as M; = N, M;, where M} are open and dense subsets of A;,
1=12,.... Then

M;U(A\ A) = (N2 M)HU(A\ A) =N MU (A 4)).

Evidently for every j = 1,2,... the set M; U (A\ A;) is an open and dense
subset of A.
This completes the proofo

With each P € A we associate the number ip = min{i: P € A,;}.

Lemma 3.5 Let P € N;. Then for every j > ip holds P € M;.

Proof: By P& N; wegeti > ipand P € M, whenever j > i.

Let ip < j <i. Then P € A; and P € (A;\ A;). If we suppose that
P & M; then P & M; U(A;\ A,), whereby P g N..
The lemma is provedo

We are ready to prove one of the main theorems in the paper

Theorem 3.6 There erists a dense and Gy subset M of the set A such that
for every P € M holds that the mapping F is Kuratowski continuous at P.
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Proof: Let us take an arbitrary point P € N; for some i and a sequence
{Pa}n>1 such that P = limp_s Pn.. We are going to prove that F(P) =
lim,— F(P,) in Kuratowski sense.

1. Let z € F(P).

We can find j such that = € intB;. Then there exists a nghb W such that
z € W C B;. By lemma 3.5 we have that P € M;. Following theorem 2.11
we get that the restricted mapping Fj is lower semi- continuous at the point
P. From the theorem 3.3 and definitions 3.1 and 3.2 we a derive a sequence
{Zn}n>1 such that for enough large m z,, € Fj(Pn) and z = limp—. Z,. By
the last convergence from a fixed number mo on we have z,, € W C B,;.
According to a lemma 1.9 in [§] we obtain z, € F(Ppn).

2. Let us take a sequense {zj}k>1 such that z; € F(Pp,), where m; <
me < ...and z = limp’ o Zk.

We assume that z ¢ F(P). Since F(P) is a closed set we could determine
two open sets V and W such that W is bounded, x € W, F(P) C V and
W NV =0. Pe N; therefore there exists j > ip such that 2 € W C intB;.
By lemma 3.5 P € M; and from theorem 2.11 we get that the restricted
mapping F; is upper semi-continuous at the point P. This means that there
exists a number k; such that for all & > k; holds F;(P,,) C V. Also there
is a number k, such that z; € W, whenever k > ky. Let £ > max{k, k,},
again taking into account lemma 1.9 from (8] we get that z; € F;(P,,) C V,
which is a contradiction, i.e. ¢ € F(P).

Having in mind the facts 1. and 2. also a definition 3.2 and this that
the sequence {P,},>1 was chosen arbitrary we obtain that the mapping F is
Kuratowski continuous at the point P.

Up to now we have that if P € N; for some i then F is Kuratowski contin-
uous at this point. So the points where we have not eventually Kuratowski
continuity belong to the set

Uz (4i \ M),

which is of the first Baire category.
The theorem is provedo

Now we shall deal with the same question of Kuratowski contonuity but
for the weakly efficient mapping FW. Because of that we do not need anymore
of the restriction [ > N but only | T |> N. We shall state several definitions.
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Let us consider the following metric on the set intLz:

r(z,y) = ||z —y||+ | 1/f(z) — 1/ f(y) |, where
f(z) = inf{||lz — y|l, y € © \ intLz}

This is a metric which turns int Lz into a complete metric space and generate
in it the same topology as the original norm in ©. We shall restrict our
considerations over the set intLz with the metric r(z,y).

We define the set AW = {0 € intLz: FW(c) # 0} . Obviously
AW = UR, AW

In (7] we have proved that AW; are closed subsets of intLz and AW; C
AWit, 1 =1,2,.... Also in [10], we have got that the set intAW # 0 is
dense in Lyy. We would like to remind that if the set A is a closed subset of
a topological space X, then the set A\ intA is nowhere dense in X.

Proposition 3.7 The set U2 intAW; is a nonempty and dense subset of
the set int AW,

Proof: If for each i = 1,2,... int AW; = 0 having in mind that AW; are closed
we shall obtain that the set AW is of the first Baire category. But int AW # ()
so there exists a number 7y such that for all ¢ > iy holds int AW; # 0.

Let us assume that there exists a nghb V with the property
V C intAW \ U2 intAW;

and take any point o € V. If 0 € AW, for some i, by the assumption we get
that o € AW, \ int AW;, whereby V C U2, AW; \ intAW;, or the nghb V is
a subset of a first Baire category set, which is a contradiction, i.e. the set
U2, int AW; is a dense subset of the set intAW.
The proof is completedo

Now taking into account that for each o € © the set F'(o) is closed, mak-
ing the same construction of new G subsets with o insted of P and repeating
the whole proofs of lemma 3.5 and theorem 3.6 with the sets U2,intAW;,
intAW; and MW;, ¢ = 1,2,... insted of A, A; and M;, i = 1,2,... in the
same way we get directly the next basic theorem in our paper.

Theorem 3.8 There exists a dense and Gs subset MW of the set Ly such
that for every o € MW holds that the mapping FW is Kuratowski continuous
at the point o.



In this case we have not any restrictions on the vector optimization prob-
lems, which is due to the closedness of the set of weakly efficient points.
According to theorem 2.13 in a dense subset of the set Ljs the sets of ef-
ficient points are closed and the question of Kuratowski continuity in these
problems is still open. Looking at the statements in this paragraph we found
that the Kuratowski convergence in the image space was the tool which gave
us the possibility to prove generic well-posedness of the problems LV M(o)
and LVW (o).
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