ИНСТИТУТ ПО МАТЕМАТИКА С ИЗЧИСЛИТЕЛЕН ЦЕНТЪР
INSTITUTE OF MATHEMATICS WITH COMPUTER CENTER

Densely Two-Valued Metric Projections in Uniformly Convex Banach Spaces

N. V. Zhivkov

Preprint
May 1994
No 1

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES

Department of Operations Research

Densely Two-Valued Metric Projections in Uniformly Convex Banach Spaces

N.V. Zhivkov

Abstract

For every uniformly convex Banach space X with dim $X \ge 2$ there is a residual set \mathcal{U} in the Hausdorff metric space $\mathcal{B}(X)$ of bounded and closed sets in X such that a metric projection generated by a set from \mathcal{U} is two-valued and upper semicontinuous on a dense and everywhere continual subset of X.

For any two closed and separated subsets M_1 and M_2 of X the points on the equidistant hypersurface which have best approximations both in M_1 and M_2 form a dense G_{δ} set in the induced topology.

1. Introduction

Let $(X, \|\cdot\|)$ be a Banach space. A non-empty set $M \subset X$ generates a distance function $d(x, M) = \inf\{\|x - z\| : z \in M\}$ and a set-valued mapping

$$P(x, M) = \{ y \in M : ||x - y|| = d(x, M) \}$$

called metric projection or nearest point mapping.

In [St] Stechkin began the study of generic properties of metric projections, i.e. properties satisfied for the points of residual sets. Among the other results he proved that in a uniformly convex Banach space X any metric projection generated by a closed and non-empty subset is single-valued and upper semicontinuous (u.s.c.) at the points of a dense and G_{δ} subset of X. Later a lot of papers investigating generic properties of metric projections, such as existence of a best approximation, uniqueness and well-posedness appeared [La], [Ko], [Bo], [FZ], [BP], [BF]. It has to be mentioned a characterization result due to Lau and Konyagin: A Banach space X is reflexive

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A65, 54E52. Secondary 46B20. Key words and phrases: metric projection, dense G_{δ} set, uniformly convex, Hausdorff space of sets.

Research partially supported by the National Foundation for Scientific Research at the Bulgarian Ministry of Science and Education.

and satisfies the Kadec-Klee property if and only if arbitrary metric projection generated by a closed subset of X has non-empty images on a dense G_{δ} subset of X.

In [Za] Zamfirescu showed that a generically single-valued metric projection might be densely multivalued, as well, and that this is typical for compacta in the n-dimensional Euclidean space \mathbb{R}^n whenever $n \geq 2$: In the Hausdorff metric space of compacta $\mathcal{K}(\mathbb{R}^n)$ most compacta (in sense of Baire category) generate metric projections which are multivalued on everywhere continual sets. A set is called everywhere continual in X if its intersection with any non-empty open subset of X contains continuum many elements.

The result of Zamfirescu initiated another line of research. For separable strictly convex Banach space X De Blasi and Myjak proved several analogous theorems: In the Hausdorff space $\mathcal{B}(X)$ of bounded and closed sets most sets generate densely non-well-posed metric projections [BM1], in the spaces $\mathcal{K}(X)$, $\mathcal{C}(X)$, and $\mathcal{S}(X)$ of compacta, continua and starshaped continua respectively most projections are densely multivalued [BM2], [BKM] (with Kenderov).

A subsequent extension of a result of this type concerning $\mathcal{K}(X)$ for arbitrary strictly convex Banach space X is obtained in [Zh].

In this paper we consider generic properties of metric projections generated by closed subsets of uniformly convex Banach spaces and prove the following results:

Theorem 4.1 Let M_1 and M_2 be two closed and separated sets in the uniformly convex Banach space X. Then there is a dense G_{δ} subset Γ of the equidistant hypersurface such that the metric projections $P(\cdot, M_i)$ for i = 1, 2 are single-valued and u.s.c. in X at all points of Γ .

Theorem 5.1 For every uniformly convex Banach space X there is a residual set \mathcal{U} in $\mathcal{B}(X)$ such that a metric projection generated by $M \in \mathcal{U}$ is two-valued and upper semicontinuous on a dense and everywhere continual subset of X.

The latter result gives a partial extension of De Blasi-Myjak's theorem from [BM1] in two directions: First, it shows that the separability assumption can be relaxed and second, the most metric projections associated with sets from $\mathcal{B}(X)$ densely have non-empty multivalued images. In corollary 5.2 we make Zamfirescu's theorem more precise by showing that the images of the metric projections generated by the most compacta in a finite-dimensional strictly convex spaces contain exactly two different elements.

The paper consists of five sections including the present one. In the next section some preliminaries are given. Section 3 contains all auxiliary results. Section 4 deals with equidistant approximations and the final section contains the main result.

2. Preliminaries

Let X be a uniformly convex Banach space of dimension $\dim X \geq 2$, i.e. there exists a continuous non-decreasing function (modulus of convexity) $\delta: [0,2] \longrightarrow [0,1]$ for the closed unit ball B of X such that $0 = \delta(0) < \delta(\varepsilon)$ whenever $\varepsilon > 0$ and $2^{-1}(x+y) + z \in B$ whenever $x,y \in B$ and $\|z\| \leq \delta(\|x-y\|)$. We note that this definition of modulus of convexity differs from the original (see [LT]), but it is more suitable for our purposes. For reasons of purely technical nature a modulus of convexity $\delta(\cdot)$ will be referred as a reduced convexity modulus if there is a modulus of convexity $\delta': [0,2] \longrightarrow [0,1]$ such that $\delta(2\varepsilon) = \delta'(\varepsilon)$. A convexity modulus δ satisfies the trivial inequality $\delta(\varepsilon) \leq \varepsilon/2$, and if δ is a reduced convexity modulus then $\delta(\varepsilon) \leq \varepsilon/4$.

For $x \in X$ and $\varepsilon > 0$, the open (respectively closed) ball with center x and radius ε is denoted by $B(x,\varepsilon)$ (resp. $B[x,\varepsilon]$) and $S[x,\varepsilon]$ is the sphere with same center and radius. The closed ball $B[\theta,r]$ centered at the origin is denoted for convenience by rB or B[r] and the sphere $S[\theta,r]$ by rS or S[r]. Also, the symbol $B(M,\varepsilon)$, where M is a set, stands for $\bigcup_{x\in M} B(x,\varepsilon)$. The Hausdorff metric we denote by H and the balls in B(X) are denoted by the letter $\mathcal O$ instead of B. For arbitrary $x,y\in X$ and $M,N\subset X$ the inequality holds

$$|d(x, M) - d(y, N)| \le ||x - y|| + H(M, N). \tag{1}$$

A line segment with end-points $x, y \in X$ is denoted by [x, y] and (x, y) means $[x, y] \setminus \{x, y\}$. For a subset M of X we denote by int M, bd M, co M, diam M and card M its interior, boundary, convex hull, diameter and cardinality respectively. If M_i , i = 1, 2, are sets and λ is a real number then $M_1 + \lambda M_2$ substitutes the set $\{x + \lambda y : x \in M_1, y \in M_2\}$.

Given a non-empty set $M \subset X$. A set $N \subset M$ is a ε -net for M if

 $(1) \qquad \forall x \in M \backslash N \ \exists y \in N \ \|x - y\| < \varepsilon,$

(ii)
$$\forall y \in N \ \forall z \in N \ y \neq z \Longrightarrow ||y - z|| \ge \varepsilon.$$

It is a consequence of Zorn's lemma that for every nonvoid set M and every $\varepsilon > 0$ there exists a ε -net N of M. To verify it consider the family $\mathcal Z$ of all subsets of M, ordered by inclusion and satisfying condition (11). A maximal element N in $\mathcal Z$ satisfies (1) too, and N is a ε -net.

3. Lemmas

Throughout this section X is supposed to be uniformly convex with $\dim X \geq 2$ and δ stands for a modulus of convexity.

Lemma 1. For every $\varepsilon \in (0,2)$ and $x \in X \setminus B$ it follows

$$\operatorname{diam} B[x,d(x,B)+\delta(\varepsilon)]\cap B<\varepsilon.$$

Proof: Assume the contrary: There are $y_n, z_n \in B[x, d(x, B) + \delta(\varepsilon)] \cap B$ such that $(\|y_n - z_n\|)$ is an increasing sequence and $\lim \|y_n - z_n\| \ge \varepsilon$. Obviously, $B[(y_n + z_n)/2, \delta(\|y_n - z_n\|)] \subset B$, whence

$$||(y_n + z_n)/2 - x|| \ge d(x, B) + \delta(||y_n - z_n||).$$

On the other hand, the uniform convexity of $B[x, d(x, B) + \delta(\varepsilon)]$ entails existence of a non-decreasing convergent sequence (α_n) such that

$$||(y_n + z_n)/2 - x|| \le d(x, B) + \delta(\varepsilon) + \alpha_n.$$

Now, having in mind continuity of δ [Gu] we conclude $\delta(\varepsilon) \leq \delta(\varepsilon) - \alpha$ where $\alpha = \lim_{n \to \infty} \alpha_n$, but the last inequality contradicts $\alpha > 0$.

Lemma 2. Suppose $B[x_1, r_1]$ and $B[x_2, r_2]$ are two balls (in a strictly convex space) such that $\max\{r_1, r_2\} \leq ||x_1 - x_2|| < r_1 + r_2$. Suppose π is a two-dimensional plane through x_1 and x_2 and denote

$$\eta = r_1 + r_2 - ||x_1 - x_2||, \quad \{y_1, y_2\} = \pi \cap S[x_1, r_1] \cap S[x_2, r_2].$$

Then $||y_1 - y_2|| > \eta$.

Proof: Denote

$$\{z\} = [x_1, x_2] \cap [y_1, y_2], \ \{u_1\} = [x_1, x_2] \cap S[x_2, r_2], \ \{u_2\} = [x_1, x_2] \cap S[x_1, r_1].$$

It is seen that $||u_1-u_2|| = \eta$ and $z \in [u_1, u_2]$. Suppose $||u_1-z|| \ge ||u_2-z||$ (the other case is treated analogously). Then $||u_1-z|| \ge \eta/2$. Let l be the line passing through x_2 which is parallel to $[y_1, y_2]$. Denote by w_1 and w_2 its intersection points with $S[x_2, r_2]$ such that with respect to the line through x_1 and x_2 the point w_1 is in a halfplane with y_1 , and w_2 is in a halfplane with y_2 . Denote also

$$\{v_1\} = [u_1, w_1] \cap [y_1, z], \{v_2\} = [u_1, w_2] \cap [z, y_2].$$

It follows from the similarity of the triangles u_1zv_1 and $u_1x_2w_1$ that $||v_1-z||=||u_1-z||\geq \eta/2$. Then $||y_1-z||>\eta/2$. Analogously, $||z-y_2||>||z-v_2||\geq \eta/2$. Therefore $||y_1-y_2||>\eta$.

The next lemma summarizes the previous two and its proof is omitted.

Lemma 3. Suppose $\varepsilon > 0$, $\tau > 0$ and $x \in X$ are given and $||x|| > \varepsilon$. Then for $\eta = \varepsilon \delta(\tau/\varepsilon)$ there are points $y_1, y_2 \in S[x, d(x, \varepsilon B) + \eta] \cap \varepsilon S$ such that x, y_1, y_2 and the origin θ belong to a two-dimensional plane, $||\eta| - ||y_1||$ and diam $B[x, d(x, \varepsilon B) + \eta] \cap \varepsilon B < \tau$.

Lemma 4. Let $\varepsilon \in (0,2)$ and $x,y \in S$ be such that $||x-y|| \ge \varepsilon$. Then for any $t \in (2^{-1}\delta(\varepsilon/2), 1]$ the balls B[tx, 1-t] and $B[y, \delta^2(\varepsilon/2)]$ have empty intersection.

Proof: Assume the contrary, i.e. for some $t \in (2^{-1}\delta(\varepsilon/2), 1)$ the balls have non-empty intersection. Denote $x_0 = tx$, $\{z\} = [x_0, y] \cap S[x_0, 1 - t]$ and r = ||y - z||. It follows from the strict convexity of X that r > 0, and by the assumption $r \leq \delta^2(\varepsilon/2)$. Besides $\varepsilon \leq ||x - y|| \leq ||x - z|| + r$ and $||z - x|| \geq \varepsilon - r$. Therefore

$$||(z-x_0)/(1-t)-x|| = ||z-x||/(1-t) \ge (\varepsilon-r)/(1-t).$$

Since $\delta(\varepsilon) < \varepsilon$ for each $\varepsilon > 0$ then $r < \varepsilon^2/4 < \varepsilon/2$ whence $(\varepsilon - r)/(1 - t) > \varepsilon/2$. The uniform convexity of B implies

$$2^{-1}||(z-x_0)/(1-t)+x|| \le 1-\delta((\varepsilon-r)/(1-t)) \le 1-\delta(\varepsilon/2).$$

Consider two cases:

(I) $t \le 1/2$. Estimate ||z||/t =

$$||x_0/t + (z - x_0)/t|| \le ||x_0/t + (z - x_0)/(1 - t)|| + ||(z - x_0)/t - (z - x_0)/(1 - t)|| =$$

$$||x + (z - x_0)/(1 - t)|| + (1/t - 1/(1 - t))||z - x_0|| \le$$

$$2(1 - \delta(\varepsilon/2)) + (1 - t)/t - 1 = 1 - 2\delta(\varepsilon/2) + (1 - t)/t,$$

whence $||z|| \leq 1 - 2\delta(\varepsilon/2)t$.

Now, since $||y-z|| \ge ||y|| - ||z|| = 2\delta(\varepsilon/2)t$, we get a contradiction in the following way: $\delta^2(\varepsilon/2) < 2\delta(\varepsilon/2)t \le ||y-z|| = r \le \delta^2(\varepsilon/2)$.

(II)
$$1/2 < t < 1$$
. Estimate $||z||/(1-t) =$

$$||x_0/(1-t)+(z-x_0)/(1-t)|| \le ||x_0/(1-t)-x_0/t|| + ||x+(z-x_0)/(1-t)|| \le ||x_0/(1-t)-x_0/t|| + ||x+(z-x_0)/(1-t)-x_0/t|| + ||x+(z-x_0)/(1-t)-x_0/t| + ||x+(z-x_0)/(1-t)-x_0/t|| + ||x+(z-x_0)/(1-t)-x_0/t| + ||x+(z-x_0)/(1-t)-x_0/t|| + ||x+(z$$

$$(1/(1-t)-1/t)||x_0||+2(1-\delta(\varepsilon/2))=1-2\delta(\varepsilon/2)+t/(1-t),$$

whence $||z|| \le 1 - 2\delta(\varepsilon/2)(1 - t)$.

For $t < 1 - \delta(\varepsilon/2)/2$ a contradiction is obtained in a similar way as in case (I), while for $1 - t \le \delta(\varepsilon/2)/2$ we have $\varepsilon \le ||x - y|| \le ||x - x_0|| + ||x_0 - y|| = 2(1 - t) + r \le \delta(\varepsilon/2) + \delta^2(\varepsilon/2) < \varepsilon$, a contradiction again.

Lemma 5. If $\delta(\cdot)$ is a reduced convexity modulus then for every $\varepsilon > 0$, every two elements x and y in S, $||x-y|| \ge \varepsilon$, every $t \in (0, \delta(\varepsilon)]$ and $s \in [t, 1)$ it follows $B[sx, 1-s] \cap B[y, t^2] = \emptyset$.

Proof: It is sufficient to observe that for every $\lambda \in (0,1]$ the function $\lambda \delta'(\cdot)$, where $\delta'(\varepsilon) = \delta(2\varepsilon)$, is a convexity modulus and to apply lemma 4 for $t = \lambda \delta'(\varepsilon)$.

Lemma 6. Suppose $\delta(\cdot)$ is a reduced convexity modulus and $y_1, y_2 \in X$ are two elements such that $||y_i|| \ge d > 0, i = 1, 2, ||y_1 - y_2|| \ge c > 0$. Then for every $y \in [ty_1, y_1]$, where $t \in (0, \delta(c/2d)]$, it follows

- (i) $||y y_1|| + dt^2 < ||y y_2||$ provided $||y_1|| = d$,
- (ii) $||y y_1|| + dt^2/2 < ||y y_2||$ provided $||y_1|| < d(1 + t^2/2)$.

Proof: Denote $\varepsilon = dt^2/2$. Since $t \le 1/2$ and $2\varepsilon \le dt\delta(c/2d)$ then $\varepsilon < \min\{d/3, c/9\}$ and there is a number σ such that $3\varepsilon < \sigma < c/3$. Consider two cases:

 $(I) ||y_2|| \le d + \sigma.$

Let \bar{y}_2 be the radial projection of y_2 on the sphere ρS , i.e. $\bar{y}_2 = \rho y_2 / ||y_2||$, where $\rho = ||y_1||$. Having in mind that $\rho < d + \varepsilon$ we estimate

$$\rho^{-1}||y_1 - \bar{y}_2|| \ge (c - \sigma)/(d + \varepsilon) > c/2d.$$

Then by lemma 5

$$B[ty_1, \rho(1-t)] \cap B[\bar{y}_2, \rho t^2] = \emptyset.$$

If now $||y_2|| \ge ||y_1||$ then $||y_2|| \ge ||\bar{y}_2||$ and from the fact that the origin θ belongs to the ball $B[ty_1, \rho(1-t)]$, this ball being a convex set does not intersect $B[y_2, \rho t^2]$. For arbitrary $y \in [ty_1, y_1]$ we have $B[y, ||y - y_1||] \subset B[ty_1, \rho(1-t)]$, whence $B[y, ||y - y_1||] \cap B[y_2, dt^2] = \emptyset$.

If $||y_2|| < ||y_1||$ (part (ii) of the lemma), then $||y_2 - \bar{y}_2|| < \varepsilon$ and for $y \in [ty_1, y_1]$ we have $B[y, ||y - y_1||] \cap B[y_2, \varepsilon] = \emptyset$. Thus

$$||y - y_1|| + dt^2/2 < ||y - y_2||$$
 whenever $y \in [ty_1, y_1]$.

(II) $||y_2|| > d + \sigma$.

Since $y_1 \in B[d+\varepsilon]$ and $y_2 \notin B[d+\sigma]$ then for $y \in [ty_1,y_1]$ it follows $||y-y_2||-||y-y_1|| > \sigma - \varepsilon > 2\varepsilon$. As is seen

$$||y - y_1|| + dt^2 < ||y - y_2||$$
 whenever $||y_1|| = d$ and $y \in [ty_1, y_1]$.

Lemma 7. Let $\delta(\cdot)$ be a reduced convexity modulus, $\eta, \varepsilon, r \in \mathbb{R}$ and $x, y_1, y_2 \in X$ be given such that $0 < \eta < \varepsilon < r/2$, ||x|| = r, $y_1, y_2 \in S[x, d(x, \varepsilon B) + \eta] \cap \varepsilon S$ and x, y_1, y_2 and θ belong to a two-dimensional plane. Let for σ , $0 < \sigma < 4^{-1}(r - \varepsilon)\delta^2(\eta/r)$ and for i = 1, 2 the sets M_i satisfy $0 \neq M_i \subset B(y_i, \sigma)$. Then for every $\rho \in [\varepsilon, r - \sqrt{4\sigma r}]$ there is a point $x_\rho \in \rho S \cap \operatorname{co}\{y_1, x, y_2\}$ such that $d(x_\rho, M_1) = d(x_\rho, M_2)$.

Proof: Denote $d = r - \varepsilon + \eta$. It follows from lemma 2 that $||y_1 - y_2|| > \eta$ and then by lemma 5

$$B[s(y_j - x)/d, (1 - s)] \cap B[(y_k - x)/d, t^2] = \emptyset$$

whenever $t \in (0, \delta(\eta/d)], s \in [t, 1)$ and $j, k \in \{1, 2\}, j \neq k$. Therefore

$$B[sy_j + (1-s)x, d(1-s)] \cap B[y_k, dt^2] = \emptyset.$$

Let $t_0 = \sqrt{4\sigma/r}$ and $s \ge t_0$. Denote $x_i(s) = sy_i + (1-s)x$ for i = 1,2. Since $t_0 < \delta(\eta/d)$ and d > r/2 then the previous formula implies

$$B[x_j(s), d(1-s)] \cap B[y_k, 2\sigma] = \emptyset,$$

whence $d(x_j(s), M_j) < d(x_j(s), M_k)$ for $s \ge t_0$ and j, k = 1, 2. The estimations $||x_i(t_0) - x|| = t_0 d < \sqrt{4\sigma r}$ for i = 1, 2 imply $||x_i(t_0)|| > r - \sqrt{4\sigma r}$ and then for $\rho \in [\varepsilon, r - \sqrt{4\sigma r}]$ we have $d(x_j(\rho), M_j) < d(x_k(\rho), M_k)$, where $x_i(\rho) = [x, y_i] \cap \rho S$. Now, the intermediate value theorem guarantees existence of a point x_ρ on the arc of ρS via $x_1(\rho)$ and $x_2(\rho)$ such that $d(x_\rho, M_1) = d(x_\rho, M_2)$.

Lemma 8. Suppose $\delta(\cdot)$ is a reduced convexity modulus and $\varepsilon > 0$, $\tau > 0$, $x' \in X$, $||x'|| > 2\varepsilon$ and $y_1, y_2 \in X$, $y_1 \neq y_2$ are given such that $y_1, y_2 \in S[x', d(x', \varepsilon B) + \eta] \cap \varepsilon S$ for $\eta = \varepsilon \delta(\delta(\tau/4\varepsilon))$. Suppose also $0 < \sigma \le \eta/4$ and M_i are two non-empty sets, $M_i \subset B(y_i, \sigma)$, i = 1, 2. Denote $r_1 = ||x'|| - (\varepsilon + \sigma)(1 - \delta(\tau/2(\varepsilon + \sigma))) - \eta/2$ and $r_2 = r_1 + \eta/2$. Then for every x from the relative interior of $co\{y_1, x', y_2\}$ such that $d(x, M_1) = d(x, M_2)$ it follows

(i) The equilibrium
$$B[x, d(x, M_1)] \subset B[x', r_1],$$

(ii)
$$\operatorname{diam}(\varepsilon + \sigma)B \cap B[x', r_2] < \tau/2$$

(iii)
$$B(y_i, \sigma) \subset (\varepsilon + \sigma)B \cap B[x', r_1]$$
 for $i=1,2$.

Proof: Lemma 1 implies diam $B[x', d(x', \varepsilon B) + \eta] \cap \varepsilon B < \varepsilon \delta(\tau/4\varepsilon)$. Suppose $x \in \text{reintco}\{y_1, x', y_2\}$ and $d(x, M_1) = d(x, M_2)$. The ray $\{x' + t(x - x') : t > 1\}$ meets (y_1, y_2) at a point z. Let $||z - y_1|| = \min\{||z - y_i|| : i = 1, 2\}$ $\leq 2^{-1}\varepsilon\delta(\tau/4\varepsilon)$. Then

$$||x - y_1|| \le ||x - z|| + ||z - y_1|| \le ||x' - z|| - ||x' - x|| + 2^{-1} \varepsilon \delta(\tau/4\varepsilon) < d(x', \varepsilon B) + \eta + 2^{-1} \varepsilon \delta(\tau/4\varepsilon) - ||x' - x||.$$

Since $d(x, M_1) \leq ||x - y_1|| + \sigma$ and obviously $\sigma < \varepsilon$ then

$$d(x', M_1) \le d(x, M_1) + ||x' - x|| < d(x', \varepsilon B) + \eta + 2^{-1} \varepsilon \delta(\tau/4\varepsilon) + \sigma =$$

$$d(x', (\varepsilon + \sigma)B) + \eta + 2\sigma + 2^{-1} \varepsilon \delta(\tau/4\varepsilon) \le$$

$$d(x', (\varepsilon + \sigma)B) + 2\eta + 2^{-1} \varepsilon \delta(\tau/4\varepsilon) - \eta/2 \le$$

$$d(x', (\varepsilon + \sigma)B) + \varepsilon \delta(\tau/4\varepsilon) - \eta/2 <$$

$$d(x, (\varepsilon + \sigma)B) + (\varepsilon + \sigma)\delta(\tau/2(\varepsilon + \sigma)) - \eta/2 = r_1,$$

which implies the inclusion (i).

It follows from lemma 1 that (ii) is true. In order to prove (iii) take a point $x \in \text{reintco}\{y_1, x', y_2\}$ such that $||x - y_1|| = ||x - y_2||$ and for any $y \in B(y_1, \sigma)$ assign $M_1 = \{y\}$ and let M_2 be an arbitrary non-empty closed subset of $S[x, ||x - y||] \cap B(y_2, \sigma)$. The preceding arguments show that $y \in B[x', r_1]$ and more generally $B(y_1, \sigma) \subset B[x', r_1] \cap (\varepsilon + \sigma)B$. Similarly, it is shown that $B(y_2, \sigma) \subset B[x', r_1] \cap (\varepsilon + \sigma)B$.

At the end of the section a lemma from [St] is recalled.

Lemma 9 [St]. Let $y_0 \in P(x_0, M)$, where $x_0, y_0 \in X$ and $\emptyset \neq M \subset X$. Then for every $x \in (x_0, y_0]$ the metric projection $P(\cdot, M)$ is single-valued and u.s.c. at x.

4. Equidistant Approximations

The problem of generic equidistant approximation in a uniformly convex Banach space X is considered in this section. Suppose two non-empty closed subsets M_1 and M_2 are given and they are separated:

$$\inf\{||y_1 - y_2|| : y_1 \in M_1, y_2 \in M_2\} > 0$$

The equidistant hypersurface is denoted by

$$\Sigma(M_1, M_2) = \{x \in X : d(x, M_1) = d(x, M_2)\}.$$

Obviously, $\Sigma(M_1, M_2)$ is a closed set and might be viewed as a complete metric space with respect to the induced from X topology. It will be seen meanwhile, by the proof of the next result, that $\Sigma(M_1, M_2)$ has empty interior. What we are concerned is the existence of points on $\Sigma(M_1, M_2)$ which have best approximations both in M_1 and M_2 . It follows from Stechkin's theorem that there is a dense G_δ set in X of points with best approximations in M_1 and M_2 , but it is not apparent that this set intersects $\Sigma(M_1, M_2)$. The next result gives an affirmative answer.

Theorem 4.1 Let M_1 and M_2 be two closed and separated sets in the uniformly convex Banach space X. Then there is a dense G_{δ} subset Γ of $\Sigma(M_1, M_2)$ such that the metric projections $P(\cdot, M_i)$ for i = 1, 2 are single-valued and upper semicontinuous in X at all points of Γ .

Proof: Denote by Γ_i the sets of continuity of $P(\cdot, M_i)$, i.e. where $P(\cdot, M_i)$ are single-valued and u.s.c., i = 1, 2. It is known that Γ_i are G_δ sets. Hence $\Gamma_i \cap \Sigma(M_1, M_2)$ are G_δ sets since $\Sigma(M_1, M_2)$ is a G_δ set being closed. What remains to be proved is that for each i = 1, 2 the set Γ_i intersects the hypersurface $\Sigma(M_1, M_2)$ in a proper dense subset. Then the Baire

category theorem would imply that $\Gamma = \Gamma_1 \cap \Gamma_2 \cap \Sigma(M_1, M_2)$ is a dense and G_δ set in the induced space.

Suppose x_0 is an arbitrary point from $\Sigma(M_1, M_2)$ and σ is an arbitrary positive number. It has to be shown that Γ_1 intersects $\Sigma(M_1, M_2)$ at a point which is at less than σ distance from x_0 . For the sake of convenience we might assume that x_0 coincides with the origin θ . Denote

$$c = \inf\{||y_1 - y_2|| : y_1 \in M_1, y_2 \in M_2\} > 0,$$
$$d(\theta, M_1) = d = d(\theta, M_2).$$

Obviously $c \leq 2d$. Assume additionally $\sigma < c/2$, whence $\sigma < d$. Let $\delta(\cdot)$ be a reduced convexity modulus. Choose a positive number t such that

$$t \le \delta\left(\frac{c}{2d}\right)$$
 and $d(t^2/4 + 2t) < \sigma$.

Put

$$\varepsilon = dt^2/3, \quad r = d + \varepsilon, \quad T_1 = rB \cap M_1,$$

$$U = \bigcup_{y \in T_1} \operatorname{co}(B(\varepsilon/2) \cup \{y\}), \quad D = U \cap B(\sigma).$$

Since t < 1 then obviously $\varepsilon < d$ and $\sigma > rt + \varepsilon/2$. The next aim is to prove

$$\Sigma(M_1, M_2) \cap (U \setminus D) = \emptyset. \tag{2}$$

Apply lemma 6 (ii) for every $y_1 \in T_1$, and $y_2 \in M_2$:

$$||y-y_1|| + dt^2/2 < ||y-y_2||$$
, whenever $y \in [ty_1, y_1]$,

whence

$$d(y, M_1) + \varepsilon \le d(y, M_2) \text{ for } y \in [ty_1, y_1] \text{ where } y_1 \in T_1.$$
 (3)

Suppose $z \in U \setminus D$. There are $y_1 \in T_1$ and $y \in [\theta, y_1]$ such that $y \in B(z, \varepsilon/2)$. In fact $y \in [ty_1, y_1]$ since $B(z, \varepsilon/2) \cap B(rt) = \emptyset$. Therefore

$$d(z, M_1) + \varepsilon/2 \le d(z, M_2)$$
 whenever $z \in U \setminus D$,

and (2) is satisfied.

It should be mentioned that (3) implies int $\Sigma(M_1, M_2) = \emptyset$. Indeed, we showed $B(x_0, \sigma) \not\subset \Sigma(M_1, M_2)$ since $\sigma > rt$, but x_0 is an arbitrary point and σ might be arbitrarily small. Thus no open ball is contained in the equidistant hypersurface. Since, in the reasonings, the places of M_1 and M_2 can be changed we conclude that any neighborhood of $x_0 \in \Sigma(M_1, M_2)$

contains points which are closer to M_1 and points which are closer to M_2 . This argument will be employed.

There is a point $x_1 \in B(\varepsilon/2)$ such that $x_1 \in \Gamma_1$ and $d(x_1, M_2) < d(x_1, M_1)$. Let $\{y_1\} = P(x_1, M_1)$. According to lemma 9 the entire segment (x_1, y_1) is contained in Γ_1 . On the other hand (x_1, y_1) intersects $\Sigma(M_1, M_2)$ at some point x. It is easily checked, by means of the triangle inequality, that $y_1 \in T_1$. Therefore $x \in [x_1, y_1] \subset U$ and (2) implies $x \in B(\sigma)$.

It is proved that $\Gamma_1 \cap \Sigma(M_1, M_2)$ is dense in the hypersurface, what is required. Q.E.D.

Corollary 4.2 Let $M_i \subset X$, i = 1,2 be as in theorem 4.1. Then every open set U which has non-empty intersection with the equidistant hypersurface $\Sigma(M_1, M_2)$ contains at least continuum many points at which the metric projection $P(\cdot, M_1 \cup M_2)$ is two-valued and u.s.c.

Proof: According to a classical theorem of Alexandroff and Uryson every non-empty compact set without isolated points has a power greater or equal to the continuum [AU]. Their argument works quite analogously in this case too, since by theorem 4.1 the set of points at which $P(\cdot, M_1 \cup M_2)$ is two-valued and u.s.c. does not have isolated points.

5. Main Result

Theorem 5.1 For every uniformly convex Banach space X, dim $X \ge 2$, a residual subset \mathcal{U} of the Hausdorff metric space $\mathcal{B}(X)$ exists such that for every $M \in \mathcal{U}$ the metric projection $P(\cdot, M)$ is two-valued and upper semicontinuous on a dense and everywhere continual subset of X.

Proof: Define for any $M \in \mathcal{B}(X)$ and $n \geq 2$

$$T_M = \{x \in X : P(x, M) \text{ is two-valued and u.s.c. at } x\},$$

$$\mathcal{U}_n = \{M \in \mathcal{B}(X) : \forall x \in X \mid B(x, n^{-1}) \subset B(M, n) \Longrightarrow$$

$$\operatorname{card} T_M \cap B(x, n^{-1}) \ge \mathbf{c}\}$$

and

$$\mathcal{U} = \bigcap_{n=2}^{\infty} \mathcal{U}_n$$
.

It will be established that all \mathcal{U}_n contain open and dense in $\mathcal{B}(X)$ sets, which will imply that \mathcal{U} contains a dense G_{δ} subset of $\mathcal{B}(X)$. Obviously, for any $M \in \mathcal{U}$ the set T_M is everywhere continual in X.

Fix a reduced convexity modulus $\delta : [0,2] \longrightarrow [0,2^{-1}]$, then $\delta(s) \leq s/4$ whenever $s \geq 0$. Let $M_0 \in \mathcal{B}(X)$, $n \geq 2$ be an integer and $\varepsilon \in (0,n^{-1})$ be given. We have to show that there exist $N \in \mathcal{B}(X)$ and $\sigma > 0$ such that

$$\mathcal{O}(N,\sigma)\subset\mathcal{O}(M_0,\varepsilon)\cap\mathcal{U}_n$$
.

Assign

$$\tau = \frac{1}{2n} \left(\frac{\varepsilon}{16} \right)^2 \delta^2 \left(\frac{\varepsilon}{4n} \right), \quad \eta = \frac{\varepsilon}{16} \delta \left(\delta \left(\frac{4\tau}{\varepsilon} \right) \right), \quad \sigma = \frac{n-1}{4} \delta^2 \left(\frac{\eta}{n} \right)$$

The following comparative inequalities are a simple consequence of the property of δ : $\tau \leq 2^{-17} n^{-3} \varepsilon^4$, $\eta \leq 2^{-6} \tau$, $\sigma \leq 2^{-6} n^{-1} \eta^2$.

Let N_0 be a $\varepsilon/2$ -net for M_0 and N_1 be a τ -net for the sphere $\varepsilon'S$, where $\varepsilon' = \varepsilon/16$. Define the maps $f_1, f_2 : N_1 \longrightarrow \varepsilon'S$ such that for $e \in N_1$ the images $f_j(e)$ are chosen from $S[ne/\varepsilon', n-\varepsilon'+\eta] \cap \varepsilon'S$ according to lemma 3 and the points $\theta, f_1(e), ne/\varepsilon'$ and $f_2(e)$ belong to a two-dimensional plane and

$$\eta < ||f_1(e) - f_2(e)||, \operatorname{diam} B[ne/\varepsilon', n - \varepsilon' + \eta] \cap \varepsilon' B < \varepsilon' \delta(\tau/4\varepsilon').$$
 (4)

Let

$$N = \{z + f_i(e) : z \in N_0, e \in N_1, j = 1, 2\}.$$

For every $M \in \mathcal{O}(N,\sigma)$ and all $v \in N$ the sets $M(v) = M \cap B(v,\sigma)$ are closed and non-empty. The claim is proved by showing that the balls $B(v,\sigma)$ are uniformly separated one from another. Suppose $w_i \in B(v_i,\sigma)$, where $v_i = z_i + f_{j_i}(e_i)$, $z_i \in N_0$, $e_i \in N_1$, $j_i \in \{1,2\}$ for i=1,2 and distinguish between the following cases:

(I)
$$z_1 \neq z_2$$
. Since $||w_i - v_i|| < \sigma$ and $||v_i - z_i|| = \varepsilon/16$ then

$$||z_1 - z_2|| \le \varepsilon/8 + 2\sigma + ||w_1 - w_2||,$$

whence $||w_1 - w_2|| > 3\varepsilon/8 - 2\sigma$.

(II) $z_1 = z_2$ and $e_1 \neq e_2$. Having in mind (4) we estimate

$$\tau \le \|e_1 - e_2\| < 2\varepsilon' \delta(\tau/4\varepsilon') + \|f_{j_1}(e_1) - f_{j_2}(e_2)\| \le \tau/8 + \|v_1 - v_2\|.$$

Then

$$7\tau/8 < ||v_1 - v_2|| \le 2\sigma + ||w_1 - w_2||,$$

whence $||w_1 - w_2|| > 7\tau/8 - 2\sigma$.

(III) $z_1 = z_2$ and $e_1 = e_2$. Since

$$\eta < ||f_1(e_1) - f_2(e_1)|| = ||v_1 - v_2|| \le 2\sigma + ||w_1 - w_2||$$

then $||w_1 - w_2|| > \eta - 2\sigma$.

It is a routine calculation to verify that $\eta = \min\{\eta, 7\tau/8, 3\varepsilon/8\}$ and $\eta - 2\sigma > 0$. Hence M(v) are closed and non-empty sets for all $v \in N$.

Suppose $M \in \mathcal{O}(N, \sigma)$ is a fixed set and x_0 satisfies $B(x_0, n^{-1}) \subset B(M, n)$. We are going to find consecutively points x_1, x_2, x_3 , as indicated in the sketch below, all in the ball $B(x_0, n^{-1})$ such that the metric projection $P(\cdot, M)$ is two-valued and u.s.c. at continuum many points from a neighborhood of the last point x_3 .

If $d(x_0, N_0) \leq 3\varepsilon'$, then there is x_1 such that $||x_0 - x_1|| < 1/4n$ and $d(x_1, N_0) > 3\varepsilon'$. Indeed, let $\{z_1\} = P(x_0, N_0)$ and take arbitrary x_1 from the set

$$\{z_1 + s(x_0 - z_1) : s > 1\} \cap B(z_1, 4\varepsilon') \setminus B[z_1, 3\varepsilon'].$$

In the other case: $d(x_0, N_0) > 3\varepsilon'$, we make use of Stechkin's theorem to ensure existence of a point x_1 such that for some $z_1 \in N_0$

$$P(x_1, N_0) = \{z_1\}, \quad d(x_1, N_0 + \varepsilon' B) > 2\varepsilon',$$

$$||x_0 - x_1|| < 1/4n. \tag{5}$$

It is not difficult to observe that

$$3\varepsilon' < ||x_1 - z_1|| < n. \tag{6}$$

To prove the right-hand side inequality make use of (1)

$$||x_1 - z_1|| = d(x_1, N_0) \le d(x_0, M) + ||x_0 - x_1|| + H(M, N_0) < n - 3/4n + \varepsilon' + \sigma < n,$$

since $d(x_0, M) \le n - n^{-1}$.

Find now a point $x_2 \in [x_1, z_1]$ such that $x_2 = (1 - t)x_1 + tz_1$ where $t = \delta(\varepsilon/4n)$ and for arbitrary $z \in N_0 \setminus \{z_1\}$ make use of lemma 6 (i) with respect to $z_1 - x_1$, $z - x_1$ and $d = ||x_1 - z_1||$. Then $||x_2 - z_1|| + dt^2 < ||x_2 - z||$, whence

$$||x_2 - z_1|| + 3\varepsilon' t^2 < ||x_2 - z|| \text{ whenever } z \in N_0 \setminus \{z_1\}.$$
 (7)

and

$$||x_1 - x_2|| = t||x_1 - z_1|| < n\delta(\varepsilon/4n) \le \varepsilon' < 1/16n.$$
 (8)

Let $[x_2, z_1] \cap S[z_1, \varepsilon'] = \{u\}$. Since N_1 is a τ -net in $\varepsilon'S$ there is $e_1 \in N_1$ such that $||z_1 + e_1 - u|| < \tau$. Denote

$$y_i = z_1 + f_i(c_1), M_i = M \cap B(y_i, \sigma), i = 1, 2$$

and $x_3' = z_1 + ne_1/\varepsilon'$. It is possible to apply lemma 7 for x_3' and the sets M_i , because $\sigma < 4^{-1}(n - \varepsilon')\delta^2(\eta/n)$. Then for arbitrary $\rho \in [\varepsilon', n - \sqrt{4\sigma n}]$

there exists $x_{\rho} \in S[z_1, \rho] \cap \operatorname{co}\{y_1, x_3', y_2\}$ such that $d(x_{\rho}, M_1) = d(x_{\rho}, M_2)$. However, (6) and (8) imply

$$2\varepsilon' < ||x_2 - z_1|| = (1 - t)||x_1 - z_1|| < n - n\delta(\varepsilon/4n).$$

On the other hand $\sqrt{4\sigma n} < n\delta(\varepsilon/4n)$, since obviously $\eta < \varepsilon/4$ and $\delta(\eta/n) \le \delta(\varepsilon/4n)$. Thus $||x_2 - z_1|| \in [\varepsilon', n - \sqrt{4\sigma n}]$ and then there is a point which we denote by x_3 such that $x_3 \in A = S[z_1, ||x_2 - z_1||] \cap \operatorname{co}\{y_1, x_3', y_2\}$ and $d(x_3, M_1) = d(x_3, M_2)$; see the sketch.

Figure

In order to estimate $||x_2 - x_3||$ we observe that the arc A is mapped by a retracting homothety with center θ in a subset of $B[x_3', n - \varepsilon' + \eta] \cap \varepsilon' B$ and has a diameter less than $\varepsilon' \delta(\tau/4\varepsilon')$ as is seen by (4). Hence

$$||x_2 - x_3|| < n\tau/\varepsilon' + \varepsilon'\delta(\tau/4\varepsilon') \tag{9}$$

and by (7) and (9)

$$d(x_3, z_1 + \varepsilon' B) < d(x_3, z + \varepsilon' B) - 3\varepsilon' t^2 + 2n\tau/\varepsilon' + 2\varepsilon' \delta(\tau/4\varepsilon'), \tag{10}$$

where $t = \delta(\varepsilon/4n)$.

Our next aim is to prove that $d(x_3, M_i) = d(x_3, M)$ and more precisely:

$$d(x_3, M_i) + \varepsilon' t^2 \le d(x_3, M \setminus \bigcup_{i=1,2} M_i). \tag{11}$$

Take arbitrary $w \in M \setminus \bigcup_{i=1,2} B(y_i, \sigma)$. There are $z \in N_0, e \in N_1$ and $y \in N$ such that $w \in B(y, \sigma)$ and $y = z + f_j(e)$ for $j \in \{1, 2\}$. Consider two cases: (I) $z = z_1$. Denote $x' = z_1 + ne/\varepsilon'$. According to lemma 8 (ii) for $r_1 = n - (\varepsilon' + \sigma)(1 - \delta(\tau/2(\varepsilon' + \sigma))) - \eta/2$ and $r_2 = r_1 + \eta/2$ the sets $C = B[x', r_2] \cap (z_1 + (\varepsilon' + \sigma)B)$ and $C_1 = B[x'_3, r_2] \cap (z_1 + (\varepsilon' + \sigma)B)$ have diameters less than $\tau/2$. Hence, their intersection is empty since the former set contains $z_1 + e$ and the latter set contains $z_1 + e_1$ but $||e - e_1|| > \tau$. Thus $w \in C$ by lemma 8 (iii) and $w \notin B[x'_3, r_2]$ but $B[x_3, d(x_3, M_1)] \subset B[x'_3, r_1]$ by lemma 8 (i). This means $d(x_3, M_1) + r_2 - r_1 \leq ||x_3 - w||$ and (11) holds because $r_2 - r_1 = \eta/2 < \tau < \varepsilon' \delta^2(\varepsilon/4n)$.

(II) $z \neq z_1$. Denote $\{v\} = [x_3, z_1] \cap S[z_1, \varepsilon']$. It follows by (10) and the inequality $d(x_3, z + \varepsilon'B) \leq ||x_3 - w|| + \sigma$ that

$$d(x_3, M_i) \le ||x_3 - v|| + d(v, M_i) \le d(x_3, z_1 + \varepsilon' B) + \varepsilon' \delta(\tau/4\varepsilon') + \sigma <$$

$$d(x_3, z + \varepsilon' B) - 3\varepsilon' t^2 + 2n\tau/\varepsilon' + 3\varepsilon' \delta(\tau/4\varepsilon') + \sigma \le$$

$$||x_3 - w|| - 3\varepsilon' t^2 + 2n\tau/\varepsilon' + 3\varepsilon' \delta(\tau/4\varepsilon') + 2\sigma.$$

Since $2n\tau/\varepsilon' = \varepsilon't^2$ and obviously $3\tau/16 + 2\sigma < \tau < \varepsilon't^2$ then the inequality (11) holds in this case too.

At the finish we estimate $||x_0 - x_3||$ having in mind (5), (8) and (9):

$$||x_0 - x_3|| < 1/4n + 1/16n + \varepsilon' t^2/2 + \tau/16 < 1/2n.$$

Since $\varepsilon't^2 < n^{-1}$ then for $\gamma \in (0, \varepsilon't^2/2)$ the ball $B(x_3, \gamma)$ is contained in $B(x_0, n^{-1})$ and by (11) $d(x, M) = d(x, M_1 \cup M_2)$ whenever $x \in B(x_3, \gamma)$. It remains to apply the corollary from the preceding section to conclude that there are continuum many points from $B(x_0, n^{-1}) \cap \Sigma(M_1, M_2)$ at which the metric projection $P(\cdot, M)$ is two-valued and upper semicontinuous. Q.E.D.

The following precised version of Zamfirescu's theorem is an immediate consequence of theorem 5.1:

Corollary 5.2 Let X be strictly convex and finite-dimensional with $\dim X \geq 2$. Then there exists a dense G_{δ} subset \mathcal{U} of $\mathcal{K}(X)$ such that every compact from \mathcal{U} generates two-valued on an everywhere continual subset of X metric projection.

References

- [AU] P.S. Alexandroff, P.S. Urysohn, Memoir on Compact Topological Spaces. "Nauka" 1971, Moscow (in russian).
- [Bo] J.M. Borwein, Weak local supportability and applications to approximation. Pacific J. Math. 82 (1979), 323-338.
- [BF] J.M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces. Canad. J. Math. 41 (1989), 702-720.
- [BP] J.M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions.

 Trans. Amer. Math. Soc. 303 (1987), 517-527.
- [BKM] F.S. De Blasi, P.S. Kenderov and J. Myjak, Ambiguous loci of the metric projection onto compact starshaped sets in a Banach space, to appear in Monatsh, Math.
- [BM1] F.S. De Blasi and J. Myjak, Ambiguous loci of the nearest point mapping in Banach spaces. to appear in Arch. Math.
- [BM2] F.S. De Blasi and J. Myjak, On compact connected sets in Banach spaces. to appear in Proc. Amer. Math. Soc.
- [FZ] M. Fabian and N.V. Zhivkov, A characterization of Asplund spaces with the help of local ε-supports of Ekeland and Lebourg. C. R. Acad. Bulg. Sci. 38 (1985), 671-674.
- [Gu] V.I. Gurarii, Differential properties of the moduli of convexity of Banach spaces. Mat. Issled. 2 (1967), 141-148 (in russian).
- [Ko] S.V. Konyagin, On approximation of closed sets in Banach spaces and the characterization of strongly convex spaces. Soviet Math. Dokl. 21 (1980), 418-422.
- [La] Ka-Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces. Indiana Univ. Math. J. 27 (1978), 791-795.
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Springer-Verlag 1979.
- [St] S.B. Stechkin, Approximative properties of subsets of Banach spaces. Rev. Roum. Pures Appl. 8 (1963), 5-8.
- [Za] T. Zamfirescu, The nearest point mapping is single-valued nearly everywhere. Arch. Math. 54 (1990), 563-566.
- [Zh] N.V. Zhivkov, Compacta with dense ambiguous loci of metric projections and antiprojections, prep. Inst. Math., Bulg. Acad. Sci. No 3, 1993 (submitted).

Institute of Mathematics, Bulgarian Academy of Sciences Sofia 1113, Bulgaria e-mail address: nickor@bgearn.bitnet