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Abstract

For every uniformly convex Banach space X with dim.X > 2 there
is a residual set ¢/ in the Hausdor(l metric space B(X') of bounded and
closed sets in X such that a metric projection generated by a set from
U is two-valued and upper semicontinuous on a dense and everywhere
continual subset of X.

I'or any two closed and separated subsets My and My of X the
points on the equidistant hypersurface which have best approximations
both in M; and M, form a dense G5 set in the induced topology.

1. Introduction

Let (X,|| - ||) be a Banach space. A non-empty set M C X generates a
distance function d(z, M) = inf{||x = z|| : 2 € M} and a set-valued mapping

Pz, M)={ye M : |z -y| = d(x,M)}

called metric projection or nearest point mapping.

In [St] Stechkin began the study of generic properties of metric projec-
tions, i.e. properties satisfied for the points of residual sets. Among the other
results he proved that in a uniformly convex Banach space X any metric
projection generated by a closed and non-empty subset is single-valued and
upper semicontinuous (u.s.c.) at the points of a dense and G5 subset of X
Later a lot of papers investigating generic properties of metric projections,
such as existence of a best approximation, uniqueness and well-posedness
appeared [La], [Ko], [Bo], [FZ], [BP], [BF]. It has to be mentioned a charac-
terization result due to Lau and Konyagin: A Banach space X is reflexive
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and satisfies the Kadec-Klee property if and only if arbitrary metric projec-
tion generated by a closed subset of X has non-empty images on a dense G
subset of X.

In [Za] Zamfirescu showed that a gencrically single-valued metric pro-
jection might be densely multivalued, as well, and that this is typical for
compacta in the n-dimensional Euclidean space R™ whenever n > 2: In the
Hausdor{f metric space of compacta X(R"™) most compacta (in sense of Baire
category) generate metric projections which are multivalued on everywhere
continual sets. A set is called everywhere continual in X if its intersection
with any non-empty open subset of X contains continuum many elements.

The result of Zamfirescu initiated another line of research. For separable
strictly convex Banach space X De Blasi and Myjak proved several analogous
theorems: In the Hausdorfl space B(.X') of bounded and closed sets most
sets generate densely non-well-posed metric projections [BM1], in the spaces
K(X), C(X), and S§(X) of compacta, continua and starshaped continua
respectively most projections are densely multivalued [BM2], [BKM] (with
Kenderov).

A subsequent extension of a result of this type concerning K(X) for
arbitrary strictly convex Banach space X is obtained in [Zh].

In this paper we consider generic properties of metric projections gen-
erated by closed subsets of uniformly convex Banach spaces and prove the
following results:

Theorem 4.1 Let M; and M; be two closed and separated sets in the
uniformly convex Banach space X. Then there is a dense G subset I' of
the equidistant hypersurface such that the metric projections P(-, M;) for
1 = 1,2 are single-valued and u.s.c. in X' at all points of I'.

Theorem 5.1 l'or every uniformly convex Banach space X there is a
residual set I in B(.X') such that a metric projection generated by M € U is
two-valued and upper semicontinuous on a dense and everywhere continual
subset of X. '

The latter result gives a partial extension of De Blasi-Myjak’s theorem
from [BM1] in two directions: First, it shows that the separability assump-
tion can be relaxed and second, the most metric projections associated with
sets from B(X) densely have non-empty multivalued images. In corollary
5.2 we make Zamlfirescu’s theorem more precise by showing that the im-
ages of the metric projections generated by the most compacta in a finite-
dimensional strictly convex spaces contain exactly two different elements.

The paper consists of five sections including the present one. In the
next section some preliminaries are given. Section 3 contains all auxiliary
results. Section 4 deals with equidistant approximations and the final section
contains the main result.



2. Preliminaries

Let X be a uniformly convex Banach space of dimension dim X' > 2, i.c.
there exists a continuous non-decreasing function (modulus of convexity)
6 :[0,2] — [0,1] for the closed unit ball B of X such that 0 = §(0) <
4(¢) whenever ¢ > 0 and 2"(:1: + y)+ z € B whenever 2,y € B and
IIz]l < é(]]z — y||). We note that this definition of modulus of convexity
differs from the original (see [LT]), but it is more suitable for our purposes.
For reasons of purely technical nature a modulus of convexity é(-) will be
referred as a reduced convexity modulus if there is a modulus of convexity
8" :[0,2] — [0,1] such that §(2¢) = é’(¢). A convexity modulus § satisfies
the trivial inequality é(¢) < /2, and if é is a reduced convexity modulus
then 8(¢) < e/4.

For z € X and € > 0, the open (respectively closed) ball with center z
and radius ¢ is denoted by B(z,¢) (resp. Bz,¢]) and S[z,¢] is the sphere
with same center and radius. The closed ball B[f, 7] centered at the origin is
denoted for convenience by »13 or B[r] and the sphere S[@,7] by 75 or S[r].
Also, the symbol B(M,¢€), where M is a set, stands for Uyear B(2,€). The
Hausdorfl metric we denote by II and the balls in B(X) are denoted by the
letter O instead of B. For arbitrary 2,y € X and M, N C X the incquality
holds

|d(z, M) = d(y, N)| < ||« = yl| + (M, N). (1)

A line segment with end-points 2,y € X is denoted by [z,y] and (2, y)
means [z, y]\{z,y}. For a subset M of X we denote by intM, bdM, coM,
diamM and cardM its interior, boundary, convex hull, diameter and car-
dinality respectively. If M;, i = 1,2, are sets and X is a real number then
My + AMj substitutes the set {2+ Ay :a € My, y € M,}.

Given a non-empty set M C X. A set N C M is a e-net for M if
(1) Ve e M\N Jye N |x-y|<e,

(u) VyeN VzeN y#z2=|ly—z| > .

It is a consequence of Zorn’s lemma that for every nonvoid set M and
every € > 0 there exists a e-net N of M. To verify it consider the family
2 of all subsets of M, ordered by inclusion and satislying condition (n). A
maximal element N in Z satisfies (1) too, and N is a e-net.

3. Lemmas
Throughout this section X' is supposed to be uniformly convex with
dim X > 2 and 6 stands for a modulus of convexity.

Lemma 1. For every € € (0,2) and = € X\B it follows
diam Bz, d(a, B) + §(¢)]N B < .



Proof: Assume the contrary: There are y,, 2, € Blz,d(z,B)+6(¢e)|ND
such that (|lyn — za||) is an increasing sequence and lim ||y, — za|| > €.
Obviously, B[(yn + 21)/2,8(||lyn — 24]])] C B, whence

(yn + 20)/2 = z|| > d(x, B) + 6(||yn = 2a|)-

On the other hand, the uniform convexity of Blz,d(z,B) + é(¢)] entails
existence of a non-decreasing convergent sequence (a,) such that

”(yn oE zn)/2 s 1” < ‘l(x, B) + 5(6) + ap.

Now, having in mind continuity of § [Gu] we conclude é(¢) < é(¢) — a
where a = lim a,,, but the last inequality contradicts a > 0.

Lemma 2. Suppose Blxy,r] and B[xq,7,] are two balls (in a strictly
convex space) such that max{ry,r,} < ||lvy — a2|| < 1 + r2. Suppose 7 is
a two-dimensional plane through z; and z; and denote

n=ritrz= |z =2, {y,y2} = 7N S[xr, )N Sz, 1),

Then ||ly1 — y2|| > .

Proof: Denote
{2} = [21,22]0[y1, v2)s {wa} = [21, 22N S[22, 72), {u2} =[xy, 22)NS 2y, 7).

It is seen that ||uy —uz|| = nand z € [uy, up). Suppose ||uy—z|| > ||uy—z||
(the other case is treated analogously). Then |[u; — 2|| > /2. Let | be the
line passing through x5 which is parallel to [y, y2]. Denote by wy and wy its
intersection points with S[xq,r2] such that with respect to the line through
zy and z, the point w; is in a halfplane with y;, and w; is in a halfplane
with y2. Denote also

{n1} = [ug, W] Ny, 2]y {v2} = [, w2 Nz, 92).

It follows from the similarity of the triangles u;zv; and wy2,w; that
|1 = z|| = [lua = 2|| = n/2. Then |ly; — z|| > /2. Analogously, ||z — y2|| >
|z = va]| > n/2. Therefore ||y; — y2| > 9.

The next lemma summarizes the previous two and its proof is omitted.

Lemma 3. Suppose ¢ > 0,7 > 0 and 2 € X are given and ||z|| > e.
Then for 5 = €6(7/¢) there are points yy, yo € S[x,d(x,eB)+n]NeS such that

z,y1,y2 and the origin 6 belong to a two-dimensional plane, 7 < ||ly1 — y2||
and diamB[a,d(x,eB) +9]NeB < 1.



Lemma 4. Let ¢ € (0,2) and z,y € S be such that ||z — y|]| > €. Then
for any t € (27'6(¢/2),1] the balls B[tz,1—t] and B[y, 6*(¢/2)] have empty
intersection.

Proof: Assume the contrary, i.e. for some t € (2716(¢/2),1) the balls
have non-empty intersection. Denote zg = tz, {z} = [2o,y] N S[xo,1 — 1]
and r = ||y — 2||. It follows from the strict convexity of X that » > 0, and
by the assumption r < 6%(¢/2). Besides € < ||z — y|| < ||z — z|]| + r and
||z = || > € — r. Therefore

Iz = 20)/(1= 1) = all = llz = 2l /(1 = 1) > (e = 1)/(1 = 1).
Since 8(¢) < ¢ for each € > 0 then r < €2/4 < ¢/2 whence (¢ = r)/(1 =) >
€/2. The uniform convexity of B implies

27Y|(z = 2o)/(L = ) + 2| S 1= 8((e = 1)/(1 = 1)) < 1= b(e/2).

Consider two cases:

(I) t<1/2. Estimate |[|z]|/t =
llzo/t+(z=z0)/1l| < ||lzo/t+(2=20)/(1-)||+]|(z—20)/t—(z—20) /(1 -1)|| =

|z + (2 = z0)/(L = O] + (1/t = 1/(1 = t))][z = 0| <
21 =6(c/2))+ (1= )/t —1=1=26(c/2) + (1 - t)/t,

whence ||z|| < 1 - 26(e/2)t.
Now, since ||y = z|| > [lyll = ||z]| = 26(/2)t, we get a contradiction in
the following way: §%(¢/2) < 26(c/2)t < ||y — 2|| = r < 8%(¢/2).

(1) 1/2<t< 1. Estimate |z||//(1-1t) =
llzo/(1=1)+ (2= 20)/(1 =Dl < llzo/(1 =) = zo/t[ + ||z + (2 = 20) /(1 = 1)|| <

(l/(l —-1) - l/l)”;vu“ +2(1 =d(e/2))=1- 25(6/2) -+ t/(l - 1),
whence ||z]] < 1 - 268(g/2)(1 = t).
Fort < 1-48(¢/2)/2 acontradiction is obtained in a similar way as in case
(I), while for 1 =t < 8(¢/2)/2 we have € < ||o = y|| < ||z = zo|| + ||zo = y|| =
2(1 —t)+ r < 6(c/2) + 6%(¢/2) < €, a contradiction again.

Lemma 5. If 8(+) is a reduced convexity modulus then for every £ > 0,
every two elements 2 and y in 5, la =yl > €, every t € (0,6(¢)] and s € [t,1)
it follows B[sz,1 - s]N Bly, t?] = 0.

Proof: It is suflicient to observe that for every A € (0,1] the function
A6'(+), where 8'(¢) = 6(2¢), is a convexity modulus and to apply lemma 4
for t = \é'(¢).
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Lemma 6. Suppose 6(+) is a reduced convexity modulus and 3,92 € X
are two elements such that ||y|| > d > 0,1 =12, ||[yy — y2|| 2 ¢ > 0. Then
for every y € [tyy, y1], where t € (0,68(c/2d)], it follows
(i) ly = mll +dt* < |ly — a2l provided ||y1]| = d,

(i)  |ly=wll +dt?/2 < |ly—y2|| provided ||| < d(1 + t?/2).

Proof: Denote € = dt?/2. Since t < 1/2 and 2¢ < dtb(e/2d) then
€ < min{d/3,¢c/9} and there is a number o such that 3¢ < o < ¢/3. Consider
two cases:

M ly2ll < d + o
Let ij; be the radial projection of y, on the sphere pS,i.e. 2 = pya/||v2ll,
where p = ||y1]|. Having in mind that p < d 4 ¢ we estimate

p~Hlyy = 2l 2 (¢ — a)/(d +¢) > e/2d.
Then by lemma 5
Bltyy, p(1 = )] N Blij2, pt?] = @.

If now ||y2| > llvall then ||y2]| > ||72]| and from the fact that the origin
6 belongs to the ball B[ty;,p(1 — t)], this ball being a convex set does not
intersect Blya,pt?]. Tor arbitrary y € [tyy,y1] we have Bly,|ly = wi|l] C
B(tyy, p(1 = t)], whence Bly,|ly — ni|]) N Bly2, dt*]) = ©.

If |ly2ll < |llmall  (part (ii) of the lemma), then ||y — #2|| < € and for
'€ [t 3] we have Bl [ = i ] 0Ll 4] o & T

lly = wll + dt*/2 < |ly = y2|| whenever y € [tyr, ;).

() lyll > d +o.

Since y; € B[d + €] and y2 ¢ B[d + o] then for y € [ty;,y] it follows
lv = vall = lly = il > @ — € > 2. Asis scen

ly = nll + dt* < |ly = v2ll whenever |lyy|| =d and y € (tyr, ).

Lemma 7. Let 6(-) be a reduced convexity modulus, 7,¢,7 € R and
z,9,y2 € X be given such that 0 < n < e < r/2, ||z|| = », wy1,42 €
S[z,d(z,eB)+ n]NeS and a,y;,y2 and 8 belong to a two-dimensional plane.
Let for 0, 0 < 0 < 47 (r = €)6%(n/r) and for i =1,2 the sets M; satisfy
@ # M; C B(yi,o). Then for every p € [e,r — Vdar] there is a point
x, € pSN co{y1,x,y2} such that d(x,, My) = d(z,, M3).

Proof: Denote d = r—¢+1. It follows from lemma 2 that ||y; — y2|| > 7
and then by lemma 5

Bls(y; — x)/d,(1 = s)] 0 B[(yx — z)/d, 1} = 0

)



whenever t € (0,0(n/d)], s € [t,1) and j,k € {1,2}, 7 # k. Therefore
Blsy; + (1 = s)x,d(1 = 8)] N By, dt*] = .

Let to = \/4a/r and s > ty. Denote z;(s) = sy; + (1 — 8)z for i =1,2. Since
to < 8(n/d) and d > r/2 then the previous formula implies

B[II,J(S),(I([ ey 3)] n U[yka 2U] =,

whence d(z;(s), M;) < d(xj(s), My) for s > ty and j,k =1,2. The estima-
tions ||zi(to) — || = tod < Vdor for i =1,2 imply [Jas(to)]| > » = Viar
and then for p € [e,r — Vdar] we have d(z;(p), M;) < d(zx(p), M), where
zi(p) = [z,w] N pS. Now, the intermediate value theorem guarantees exis-
tence of a point , on the arc of pS via 2,(p) and 25(p) such that d(z,, M) =

d(z,, M,).

Lemma 8. Suppose é(+) is a reduced convexity modulus and ¢ > 0,7 >
0,2’ € X, ||2']]| > 2¢ and yy,y2 € X, ¥ # y2 are given such that y,,y, €
Sla’yd(a’,eB) + n)Nes for n=cb(é(r/4¢)). Suppose also 0 < o < /4 and
M; are two non-empty sets, M; C B(y;,0), 1 =1,2. Denote r; = ||2'|| - (¢ +
o)(1-6(t/2(e+ o)) —n/2 and r, = r; + 5/2. Then for every 2 from the
relative interior of co{y;, ', yo} such that d(z, M) = d(a, M3) it follows

(i) Blz,d(x,My)] C Bla',ry],
(ii) diam(e + o) BN Bla', 7o) < 7/2
(iii) B(yi,o) C (e + a)B N Bla',ry] for i=1,2.

Proof: Lemma 1 implies diamB[a',d(2',eB) + n] N eB < e6(r/4¢).
Suppose x € reintco{y;,a’,y2} and d(z, M) = d(x, M;). The ray {'+1(z -
a’) 1t > 1} meets (y1,y2) at a point z. Let ||z—y;|| = min{||z—y;|| : i =1,2}
< 27'e§(7/4¢). Then

e = gall < Il = =+ Uz =l < o” = 2l = 1’ = all + 27 eb(r/a¢) <

d(z',eB) +n+ 27 eb(r/4e) - ||’ — 2||.

Since d(x, My) < ||2 = y1|| + o and obviously & < € then

d(z', My) < d(z, M) + ||a’ = || < d(2',eB) + n+ 27 eb(T/4e) + o =

d(z', (e + a)B) + n+ 20 + 27 'ed(7/4e) <

d(a',(c+ 0)B)+ 2+ 27 'e8(r/1e) = /2 <
d(2', (e 4+ a)B)+eb(t/1e) = /2 <
d(z,(e +0)B)+ (¢ + 0)d(1/2(c + ) = /2 =11,

=]



which implies the inclusion (i).

It follows from lemma 1 that (ii) is true. In order to prove (iii) take
a point @ € reintco{y;,a’,y2} such that ||x — yi|| = ||z = y2|| and for any
y € B(y1,0) assign My = {y} and let My be an arbitrary non-empty closed
subset of S[x, ||z — y||] N B(ya,0). The preceding arguments show that y €
B[z, 1] and more generally B(y,,a) C Bla',r] N (e + o)B. Similarly, it is
shown that B(y,0) C Bla',r| N (¢ + o) B.

At the end of the section a lemma from [St] is recalled.

Lemma 9 [St]. Let yo € P(ao, M), where 20,5 € X and @ # M C X.
Then for every @ € (2o, y0] the metric projection P(:, M) is single-valued
and u.s.c. at z.

4. Equidistant Approximations

The problem of generic equidistant approximation in a uniformly convex
Banach space X is considered in this section. Suppose two non-empty closed
subsets My and Mj are given and they are separated:

inf{{lyr = w2l : 1 € Myyy2 € My} >0
The equidistant hypersurface is denoted by
S(My, My) = {r € X td(x, My) = d(x, My)).

Obviously, X(My, M) is a closed set and might be viewed as a complete
metric space with respect to the induced from X topology. It will be seen
meanwhile, by the proof of the next result, that £(A,, AM,) has empty inte-
rior. What we are concerned is the existence of points on L( My, M,) which
have best approximations both in My and M,. It follows from Stechkin’s
theorem that there is a dense G's set in X of points with best approximations
in My and My, but it is not apparent that this set intersects L(My, M,).
The next result gives an affirmative answer.

Theorem 4.1 Let M, and M; be two closed and separated sets in the
uniformly convex Banach space X. Then there is a dense G subset 1" of
Y(My, M3) such that the metric projections P(-, M;) for i = 1,2 are single-
valued and upper semicontinuous in X" at all points of I'.

Proof: Denote by I'; the sets of continuity of P(:, M;), i.e. where
P(-, M;) are single-valued and u.s.c., i = 1,2, It is known that 1'; are G
sets. Ilence I'; N S( My, M) are (s sets since S(AMy, My) is a G set being
closed. What remains to be proved is that for cach i = 1,2 the set 1Y inter-
sects the hypersurface L( My, My) in a proper dense subset. Then the Baire



category theorem would imply that I' = I'y N ', N (M,, M) is a dense and
Gis set in the induced space.

Suppose g is an arbitrary point from L(AMy, My) and o is an arbitrary
positive number. It has to be shown that I'y intersects ¥(M;, M3) at a point
which is at less than o distance from zo. For the sake of convenience we
might assume that 2o coincides with the origin §. Denote

c=inf{|lys = v2|l : 1 € My,y2 € M2} > 0,

d(6, My) = d = d(6, M>).

Obviously ¢ < 2d. Assume additionally o < ¢/2, whence o < d. Let é(-)
be a reduced convexity modulus. Choose a positive number ¢ such that

e 3 i
t<é (—2—(2) and d(1°/4+2t) < 0.

Put
e=dt*/3, r=d+e, Ty=rBnM,,

U= |J co(B(e/2)U{y}), D=UnB(a).
yeTy

Since t < 1 then obviously ¢ < d and a > vt +¢/2. The next aim is to prove
LMy M) (U\D) = 0. (2)
Apply lemma 6 (ii) for every y; € 14, and y, € Mj:
ly = will + d2/2 < [ly = wall, whenever y € [ty1, w1,
whence
d(y, My) + ¢ < d(y, M) Tor y € [tyy, y1] where yy € T). (3)

Suppose z € U\D. There are y; € Ty and y € [0, y,] such that y € B(z,¢/2).
In fact y € Ly, y1] since B(z,¢/2) 0 B(rt) = . Therefore

d(z,My) +¢/2 < d(z, My) whenever z € U\D,

and (2) is satisfied.

It should be mentioned that (3) implies intS(AMy, Mz) = @. Indeed, we
showed B(wxg,a) ¢ S(My, My) since a > vt, but g is an arbitrary point
and o might be arbitrarily small. Thus no open ball is contained in the
equidistant hypersurface. Since, in the reasonings, the places of My and
Mj can be changed we conclude that any neighborhood of @y € Y(My, My)



contains points which are closer to M, and points which are closer to M.
This argument will be employed.

There is a point x, € B(e/2) such that @y € 1I'y and d(xy, My) <
d(zy, My). Let {y,} = P(xy,M;). According to lemma 9 the entire segment
(z1,y1) is contained in I'y. On the other hand (24, ;) intersects S( My, M)
at some point x. It is casily checked, by means of the triangle inequality,
that y, € 1. Therefore 2 € [y, 3] C U and (2) implies 2 € B(0).

It is proved that I'y N $( My, M,) is dense in the hypersurface, what is
required. Q.E.D.

Corollary 4.2 Let M; ¢ X, ¢ =1,2 be as in theorem 4.1. Then every
open set U which has non-empty intersection with the equidistant hyper-
surface X(My, M;) contains at least continuum many points at which the
metric projection P(-, My U M,) is two-valued and u.s.c.

Proof: According to a classical theorem of Alexandroff and Uryson
every non-empty compact set without isolated points has a power greater
or equal to the continuum [AU]. Their argument works quite analogously in
this case too, since by theorem 4.1 the set of points at which P(+, My U My)
is two-valued and u.s.c. does not have isolated points.

5. Main Result
Theorem 5.1 Ior every uniformly convex Banach space X', dim X > 2,
a residual subset ¢ of the Hausdorll metric space B(.X') exists such that

for every M € U the metric projection P(+, M) is two-valued and upper
semicontinuous on a dense and everywhere continual subset of X.

Proof: Define for any M € B(X) and n > 2
Tar = {x € X P(a, M) is two-valued and w.s.c. at a},

U

{MeB(X):Y2eX B(z,n"')C B(M,n) =
card Ty N B(x,n~ 1) > ¢}

and
oo
W=\
n=2

It will be established that all 4, contain open and dense in B(.X) sets,
which will imply that ¢/ contains a dense Gs subset of B(.X'). Obviously, for
any M € U the-set T is everywhere continual in X.
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Fix a reduced convexity modulus 6 : [0,2] — [0,27"], then 6(s) < s/4
whenever s > 0. Let My € B(X), n > 2 be an integer and € € (0,n7!) be
given. We have to show that there exist N € B(.X') and ¢ > 0 such that

O(N,0) C O(My,e)NU,.

Assign

HOTLOPEE NI 428 € ar = lg 1]
= (%) 2 (&) =50 (6(F))r o= (3)
The following comparative inequalities are a simple consequence of the prop-
erty.of & 7. 27 V=364 1y g 27914 1. < 23 %12,

Let Ny be a ¢/2-net for My and Ny be a 7-net for the sphere 'S, where
¢/ = ¢/16. Define the maps f,, fo : Ny — ¢'S such that for e € Ny the
images f;(e) are chosen from S[ne/e’,n — ¢’ 4yl Ne'S according to lemma
3 and the points 8, fi(e),ne/e" and fo(e) belong to a two-dimensional plane
and

n < ||fi(e) = fale)|l, diamB[ne/e',n - +y|Ne'B < e'é(r/4e’).  (4)
Let
N ={z+ fj(c):z € Ny,e€ Ny,j=1,2}.

For every M € O(N,o) and all v € N the sets M(v) = M N B(v,0)
are closed and non-empty. The claim is proved by showing that the balls
B(v,e) are uniformly separated one from another. Suppose w; € B(v;,0),
where v; = z; + f; (€i), zi € No, €; € Ny, j;i € {1,2} for i=1,2 and distinguish
between the following cases:

(I) 21 # z2. Since ||Jw; = v;]| < o and ||v; — z]|| = €/16 then
£/2 < |21 = 2| < €/8+ 20 + ||wy — wy|,

whence ||w; — wy|| > 3¢/8 - 20.

(IT) 2y = zp and ¢y # ¢y, Having in mind (1) we estimate
T S ”('1 _— (.'2” < 251(5(T/'|El) + ”le(l'l) -— fJ2((2)|I S T/R + ”"l -— ’l)-)”.

Then
7T/8 < ||vy = va|| € 20 + ||y — wel|,

whence ||wy — wy|| > 77/8 - 2a.

(1II) 2 = z9 and ey = ¢y.  Since

n < filer) = falen)ll = lloy = vl € 20+ [Jwy = wel
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then ||wy — wy|| > n - 20.

It is a routine calculation to verify that n = min{»,77/8,3¢/8} and
n—20 > 0. llence M(v) are closed and non-empty sets for all v € N.

Suppose M € O(N,o) is a fixed set and zq satisfies B(zo,n"") C
B(M,n). We are going to find consecutively points zy, 22,23, as indicated
in the sketch below, all in the ball B(axp,n~") such that the metric pro-
jection P(-, M) is two-valued and u.s.c. at continuum many points from a
neighborhood of the last point 3.

If d(z9, Ny) < 3¢, then there is z; such that ||zg — 2] < 1/4n and
d(zy, No) > 3¢'. Indeed, let {z;} = P(xg, Ny) and take arbitrary z; from
the set
{214+ 8(xo = 21) 18 > 1} 0 Bz, 4")\ Bz, 3¢).

In the other case: d(xg, Ny) > 3¢’, we make use of Stechkin'’s theorem
to ensure existence of a point x, such that for some 2z, € Ny

1’(3?[,N()) = {Z]}, (l(.l‘],/\;() + 5'”) > 25’,

|20 — @4|| < 1/4n. (5)
It is not diflicult to observe that
3e' < ”’L] — Z]“ <n. (G)

To prove the right-hand side inequality make use of (1)
||-"71 = 31” =d(xy, Nog) < d(2xg, M)+ |0 — -"-‘l” + (M, Ny) <

n—3/An+¢e +0o < n,

since d(xg, M) < n—n""'.

F'ind now a point x5 € [x, 2] such that a3 = (1 = t)a; + t2; where
t = 6(¢/4n) and for arbitrary z € Ny\{z1} make use of lemma 6 (i) with
respect to zy—ay, z—ayand d = |lvy—zy||. Then |Jag =z || +dt? < ||z -z,
whence

|2 = =] + 3¢'t? < ||eg = z|| whenever z € Ny\{z1}. (7)

and
|21 = 22| = t]|lx1 — 21| < né(e/4n) < €' < 1/16n. (8)

Let [x9, 2] N S[z1,€'] = {u}. Since Ny is a 7-net in €' there is ¢ € Ny
such that ||zy + e¢; — u|| < 7. Denote

Yi =z + fl'(('l)‘ /‘Ii =Mn ”(;l/,‘,(‘f), i= 1,2
and zf = z; + ney/e’. It is possible to apply lemma 7 for aly and the sets

M;, because o < 4= (n — ")62(y/n). Then for arbitrary p € [¢',n — Vdon]
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there exists x, € S[zy,p] N co{yi,ak,y2} such that d(z,, M,) = d(z,, M2).
However, (6) and (8) imply

2¢ < ||lxa = 21| = (1 = t)||x1 = 21|| < n — nb(e/4n).

On the other hand v4on < né(e/4n), since obviously 5 < €/4 and é6(n/n) <
6(e/4n). Thus ||zg — z|| € [¢/,n — Van] and then there is a point which
we denote by w3 such that a3 € A = S[zy,||e2 — 21|} N co{ys, 25, y2} and
d(z3, My) = d(z3, M3); see the sketch.

PSS
(?5/ \O :

j2 )

)
4

,..//

Z,"' e ]/,/{a}s)
Slxs,m-e4n]
Slz,,p]
e S(z,,n]

Figure

In order to estimate ||z — 3|| we observe that the arc A is mapped by
a retracting homothety with center 6 in a subset of Blzy,n — ¢’ +n]Nne'B
and has a diameter less than £'86(7/4¢’) as is seen by (4). Hence

lzg — 3]l < nr/e’ + €'é(7/4¢’) (9)
and by (7) and (9)
d(x3,21 + €' D) < d(ag, z + €' B) = 3"t 4 2nr /e’ + 26'6(/4€"),  (10)
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where t = é(c/4n).
Our next aim is to prove that d(x3, M;) = d(z3, M) and more precisely:

d(g, M) + €'t* < d(ay, M\ | M) (11)
1=1.2

Take arbitrary w € M\ U=, , B(yi,0). There are z € No,e € Nyand y € N
such that w € B(y,0) and y = z + fj(e) for j € {1,2}. Consider two cases:
() : 2.=.2. Denote &’ = z; + ne/e’. According to lemma 8 (ii) for
rt=n— (4 a)(l = 6§1/2" + a))) = /2 and v, = 1y 4+ /2 the sets
C=Bla',r)N (21 + (¢ + a)B) and C) = Blah,ra) N (2 + (¢ + 0)B) have
diameters less than 7/2. Ilence, their intersection is empty since the former
set contains 2y 4 e and the latter set contains 2y 4 ey but ||e—ey]| > 7. Thus
w € C by lemma 8 (iii) and w ¢ B[a%, 7o) but Blag,d(z3, My)] C Blah, r]
by lemma 8 (i). This means d(a3, M) + r, — r; < ||23 — w|| and (11) holds
because 19 — 1y = /2 < 1 < £'6%(c/4n).

(1) z# z;. Denote {v} = [23,2]N S[z1,¢]. It follows by (10) and the
inequality d(x3,z + ¢'B) < |3 — w|| + o that

d(xs, M;) < ||xa = ol + d(v, M) < d(ey, 20+ €' B) +€'8(1/4e") + 0 <
d(x3,z+ €'B) - 3't? + 2ur /e’ + 3e'6(r/4e') + 0 <
|23 — w|| - 31> + 2nr /e’ + 3e'd(7/4e’) + 20.
Since 2n7 /e’ = €'t? and obviously 37/16+ 20 < 7 < €'t? then the inequality

(11) holds in this case too.
At the finish we estimate ||2g — 23|| having in mind (5), (8) and (9):

llxo — al| < 1/dn+ 1/16n + €'t?/2 + 7/16 < 1/2n.

Since €'t < n~! then for 4 € (0,¢'t?/2) the ball B(z3,7) is contained in
B(zg,n~') and by (11) d(z, M) = d(z, M, U M3) whenever 2 € B(x3,7). It
remains to apply the corollary from the preceding section to conclude that
there are continuum many points from B(xg,n~1)NX(M;, My) at which the
metric projection P(+, M) is two-valued and upper semicontinuous. Q.E.D.

The following precised version of Zamlfirescu’s theorem is an immediate
consequence of theorem 5.1:

Corollary 5.2 Let X' be strictly convex and finite-dimensional with
dim X > 2. Then there exists a dense (75 subset ¢ of K(X') such that every
compact from U generates two-valued on an everywhere continual subset of
X metric projection.
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