
Serdica J. Computing 1 (2007), 13–26

ON MULTIPLE DELETION CODES

Ivan Landjev, Kristiyan Haralambiev

Abstract. In 1965 Levenshtein introduced the deletion correcting codes
and found an asymptotically optimal family of 1-deletion correcting codes.
During the years there has been a little or no research on t-deletion correcting
codes for larger values of t. In this paper, we consider the problem of finding
the maximal cardinality L2(n, t) of a binary t-deletion correcting code of
length n. We construct an infinite family of binary t-deletion correcting
codes. By computer search, we construct t-deletion codes for t = 2, 3, 4, 5
with lengths n ≤ 30. Some of these codes improve on earlier results by
Hirschberg-Fereira and Swart-Fereira. Finally, we prove a recursive upper
bound on L2(n, t) which is asymptotically worse than the best known bounds,
but gives better estimates for small values of n.

1. Introduction. Let F = {0, 1, . . . , q − 1} be a q-letter alphabet. A
finite sequence of length n over F is called a q-ary word of length n. The set of
all words of length n is denoted by F n. A block code of length n over F is any
subset C of F n.

ACM Computing Classification System (1998): E.4.
Key words: insertion/deletion codes, Varshamov-Tennengolts codes, multiple insertion/

deletion codes

14 Ivan Landjev, Kristiyan Haralambiev

Given x ∈ F n, we denote by Dt(x) the set of all words from F n−t obtained
if any t letters are deleted from x. In other words, Dt(x) contains all subsequences
of x of length n−t. Similarly, It(x) denotes the set of all supersequences of length
n + t, i.e. all words from F n+t obtained if t letters are inserted in x.

Definition 1.1. The Levenshtein distance dL(x,y) between two words
x,y from F n is defined as the minimum number of deletions and insertions needed
to transform x into y.

Clearly, d(x,y) = 2(n−`(x,y)), where `(x,y) is the length of the longest
common subsequence of x and y. ClearlydL(x,y) is a metric on F n.

Definition 1.2. A code C ⊆ F n is called a t-deletion correcting code if
Dt(x) ∩ Dt(y) = ∅ for any x,y ∈ C, x 6= y.

Definition 1.3. A code C ⊆ F n is called a t-insertion correcting code if
It(x) ∩ It(y) = ∅ for any x,y ∈ C, x 6= y.

Definition 1.4. A code C ⊆ F n is called a t-insertion/deletion correcting
code if dL(x,y) > 2t for any x,y ∈ C, x 6= y.

It has been proved in [4] that t-deletion correcting codes, t-insertion
correcting codes and t-insertion/deletion codes are essentially the same objects.
In what follows we formulate all our results for t-deletion codes. A central problem
about deletion codes is the following:

Given the integers n, t, 1 ≤ t < n, find the maximal cardinality Lq(n, t)
of a t-deletion correcting code over F .

A q-ary code C of length n correcting t deletions with |C| = Lq(n, t) is
called optimal. In this paper, we focus on binary t-deletion correcting codes. This
is by far the most investigated family of deletion codes. The following asymptotic
bounds have been proved by Levenshtein in [4].

Theorem 1.5. For any fixed positive integer t and n → ∞

2t(t!)22n

n2t
. L2(n, t) .

t!2n

nt
,

where f(n) . g(n) means that lim
n→∞

f(n)/g(n) ≤ 1.

In the same paper, Levenshtein proved that L2(n, 1) ≥
2n

n + 1
which

implies that L2(n, 1) ∼
2n

n
. He noticed that the so-called Varshamov-Tenengolts

On multiple deletion codes 15

codes V Ta(n) discovered in [13] are 1-deletion correcting codes. The Varshamov-
Tenengolts code V Ta(n), 0 ≤ a ≤ n, consists of all binary vectors (x1, . . . , xn)
satisfying

n∑

i=1

ixi ≡ a (mod n + 1).

The cardinality of these codes has been determined by Varshamov for a = 0 [12],
by Ginzburg for a = 1 [1] and by Martirosyan [8] for any a (cf. also [9]).

Theorem 1.6.

|V Ta(n)| =
1

2n + 1

∑

d|n, d odd

φ(d)
µ

(
d

(d,a)

)

φ
(

d
(d,a)

)2(n+1)/d,

where φ is the Euler function, µ(n) is the Möbius function and (d, a) is the greatest
common divisor of d and a.

This implies the following corollary.

Corollary 1.7 [9].

(i) |V T0(n)| =
1

2(n + 1)

∑

d|n+1
d odd

φ(d)2(n+1)/d;

(ii) |V T1(n)| =
1

2(n + 1)

∑

d|n+1
d odd

µ(d)2(n+1)/d;

(iii) |V T0(n)| ≥ |V Ta(n)| ≥ |V T1(a)|.

The codes V T0(n) are optimal for all n ≤ 8 [9] and very close to being
optimal for large n. Due to the asymptotic estimate by Levenshtein (Theorem 1.5),
one has |V T0(n)| ≥ 2n/(n+1), a result which is not transparent from Corollary 1.7.
It is conjectured that V T0(n) are optimal for every n.

A code C is called perfect t-deletion correcting code if the balls Dt(x),
x ∈ C, partition the set F n−t. Remarkably, all the codes V Ta(n), a = 0, . . . , n,
are perfect codes.

The question about the value of L2(n, t) for t ≥ 2, i.e. about the maximal
cardinalities of binary codes of length n correcting more than one deletion, is

16 Ivan Landjev, Kristiyan Haralambiev

far less clear. Multiple deletion correcting codes were constructed in [2] (for
t = 2, 3, 4, 5, n ≤ 14) and in [10] (for t = 2, n ≤ 12). The codes in the first
paper are obtained in an attempted generalization of the Varshamov-Tenengolts
codes. The codes in the second paper are obtained as a result of a greedy search
performed on 5 ·104 random permutations of the 2n binary words of length n. No
infinite classes of multiple deletion correcting codes have been proposed so far.

The aim of this paper is to present constructions and upper bounds that
improve on the results of [2] and [10] for codes that correct t ≥ 2 deletions. In
section 2, we give constructions for multiple deletion codes. We present the results
of a computer search that was performed for t = 2, 3, 4, 5 and n ≤ 30. Some of the
constructed codes have larger cardinality than the largest codes known previously.
In section 3, we start by proving some exact values for L2(n, t). Then we present
a recursive upper bound which gives better estimates for small n than the best
known upper bound on L2(n, t).

2. Constructions for t-deletion codes. We start with a cascade
construction for multiple deletion codes.

Theorem 2.1. Let C be a t-deletion correcting code of length n. Then
the code

C(s) = {(c1 . . . c1︸ ︷︷ ︸
s

, c2 . . . c2︸ ︷︷ ︸
s

, . . . , cn . . . cn︸ ︷︷ ︸
s

) | (c1, c2, . . . , cn) ∈ C}

is a code of length sn correcting st + s − 1 deletions.

P r o o f. Let u be a word of length sn− st− s + 1 and assume that there
exist two words c′ and c′′ from C(s) such that u can be obtained from either
of them by deleting st + s − 1 symbols. There exist runs in u that are not a
multiple of s. Denote by ũ the word obtained from u by completing each run
with symbols to the nearest length which is a multiple of s. Since every run in
a codeword from C (s) is a multiple of s, ũ is obtained from either c′ and c′′ by
deleting at most st symbols. Clearly, there exist two words in C that give rise to
the same sequence of length n − t after deletion of t symbols. This contradicts
the fact that C is a t-deletion correcting code. �

Remark 2.2. This theorem can be modified in order to obtain codes of
lengths that are not a multiple of s. If we need a code of length sn + r we just
repeat the last symbol in any codeword s + r times instead of s times.

On multiple deletion codes 17

Corollary 2.3. Let C be a binary single deletion correcting code of length
n. Then the code

C(s) = {(c1 . . . c1︸ ︷︷ ︸
s

, c2 . . . c2︸ ︷︷ ︸
s

, . . . , cn . . . cn︸ ︷︷ ︸
s

) | (c1, c2, . . . , cn) ∈ C}

has length sn and corrects 2s− 1 deletions. There exist binary (2s− 1)-deletions
correcting codes of length n = sm and cardinality ≥ 2m/(m + 1), for any s ≥ 1.

These codes are poor for large values of n since they lie below the lower
bound in Theorem 1.5. On the other hand, there exists an obvious decoding
algortithm for C (s) that has the complexity of the decoding algorithm for C.

The codes defined in Theorem 2.1 and Corollary 2.3 are not maximal in
the sense that there exist words from F sn that can be added to C (s) without
destroying the t-deletion correcting property. The number of runs in a word
obtained from Theorem 2.1 does not exceed n while the code C (s) has length
sn. This gives the possibilty of extending the code C by taking words with more
than n runs. Let x and y be two words of length n having r(x) and r(y) runs,
respectively. It is easily checked that if r(x)− r(y) = 2d + 1 then dL(x,y) ≥ 2d.
This follows by the fact that the deletion of a single symbol reduces the number
of runs by at most 2.

In [10] a greedy search was performed in order to construct insertion/
deletion codes with Levenshtein distance s > 2. Starting from an arbitrary
permutation of all 2n words the authors pick up a word which is at Levenshtein
distance at least 6 from all chosen words. This procedure is repeated for 5 · 104

starting permutations and the largest code is selected.

In the table that follows we present our results for 2-deletion correcting
codes of length up to 14 compared with the codes obtained by Helberg-Fereira
and Swart-Fereira. We used several different approaches to constructing such
codes.

(A) Construction of a 2-deletion code as a subset of V T0(n), i.e. backtrack on
the words of V T0(n).

(B) Given C = V T0(
n
2) we consider C (2) and try to add words to it by a greedy

search on the words from F n \ C(2).

(C) The same as in (B) but repeating the greedy search on 5.104 permutations
of the words outside C (2).

(D) Greedy search performed on 5.104 random permutations of all words
from F n.

(E) Greedy search performed on various Gray codes.

18 Ivan Landjev, Kristiyan Haralambiev

(F) Exhaustive search (backtrack). For n = 10, 11, 12 the program has been
terminated after 24 hours of computation. This is indicated by a question
mark in the last column of the table below.

Surprisingly, the largest codes for n = 13, 14 have been produced by
strategy (E).

n [2] [10] (A) (B) (C) (D) (E) (F)

4 2 2 2 2 2 2 2 2

5 2 2 2 2 2 2 2 2

6 3 4 4 2 2 4 4 4

7 4 5 4 4 4 5 5 5

8 5 7 5 5 5 7 6 7

9 6 10 7 8 9 10 10 11

10 8 14 12 10 12 14 14 (?)16

11 9 20 17 17 20 20 21 (?)20

12 11 29 26 25 28 29 31 (?)29

13 15 — 38 40 43 43 49

14 18 — 59 63 63 65 72

Below we list the 2-deletion correcting codes with parameters (n,M) =
(9, 11), (10, 16), (13, 47), (14, 72) that were previously unknown.

The (9,11)-code.

000000000 111111111 000000111 000101100

000111111 001100010 011111000 101001001

110110110 111000000 111000111

The (10,16)-code.

0000000000 1111111111 0000000111 0000101010

0000111111 0001111000 0101010111 0110010001

0111110011 1000110011 1001010000 1100111101

1110000111 1110101010 1111000000 1111111000

The (11,21)-code.

01000011010 01000000011 11000000000 11000001111

11000110001 11001101110 11011010000 11011110011

11110001011 11111111000 11111111111 10101010101

10001111111 00001100111 00001111000 00010100100

00110100011 00111000000 00101110110 01110101111

01110110010

On multiple deletion codes 19

The (12,31)-code.

110111101010 110111111111 110111000111 110111000000

110101001100 111100111101 111101100001 111111111000

111001001011 111000100000 101000000011 101000011110

101001100010 100100111111 100111001001 100110101110

100011111000 100001001101 100000101000 000000000000

000000011111 000011000001 000011101010 000110110011

000111111110 000100010110 011000110111 011110000110

011100111000 010101010101 010111111001

The (13,47)-code.

1000101110110 1000101010000 1000101000111 1000111110001
1000111111111 1000001011001 1000000111111 1000000001000
0000000000111 0000000110110 0000001110000 0000110000010
0000110011101 0000111111100 0000111010011 0001110010100
0011000010111 0011000110001 0011011011011 0011011110000
0011010000000 0011110000110 0011100111110 0010010101010
0110001001100 0110011100111 0110010000101 0110111111001
0111100111000 0111101001001 0111111011110 0101000111101
1100110110010 1101100101110 1101110100011 1101010111111
1101000110011 1111000000000 1111000000111 1111110000010
1111111101000 1111111111111 1111111001101 1111100011111
1110000101010 1010110000100 1011100110101

The (14,72)-code.

11000100010000 11000100010111 11001100000011 11001100011010
11001100111111 11001101111000 11001111001011 11001010101001
11011001100000 11011110111101 11011111001100 11011100001111
11010010011100 11110000000001 11110001100111 11110001011000
11110110101010 11110111110111 11110101111100 11111100000010
11111101100011 11111111010000 11101000010101 11101011100001
11100010111101 11100001000110 10100000011001 10100000111110
10100011011011 10100011100100 10101100100101 10111111001111
10110101010111 10010010000010 10010110011110 10011101010000
10011111110110 10001001100011 10001110111001 10000101111111
10000010111000 10000000001111 10000000000001 00000000110100
00000001111011 00000001000110 00000110101001 00000111001110
00000111000000 00001100001011 00001101111010 00001111100011
00011001001000 00011010011111 00011111100000 00011111111111
00010101010110 00110000111100 00110011100010 00110110011001
00110100000001 00111100000110 00111110111000 00101111010101
00100001010111 01111010010001 01110100110110 01110011111110
01110011010011 01010000100000 01010101101000 01010100011101

20 Ivan Landjev, Kristiyan Haralambiev

The next table contains the cardinalities for the best t-deletion codes
generated by us with t = 2, 3, 4, 5. The entries given with bold letters indicate the
cardinalities of the optimal codes. The codes obtained by Helberg and Fereira [2]
are given in the second, third and fourth column.

Helberg-Fereira[2] improved lower bounds

n t = 3 t = 4 t = 5 t = 2 t = 3 t = 4 t = 5

4 2 — — 2 2 — —

5 2 2 — 2 2 2 —

6 2 2 2 4 2 2 2

7 2 2 2 5 2 2 2

8 3 2 2 7 4 2 2

9 4 2 2 11 5 2 2

10 4 3 2 16 6 4 2

11 5 4 2 21 7 5 2

12 6 4 3 31 10 5 4

13 8 4 4 49 12 5 5

14 8 5 4 75 15 7 5

15 109 24 9 5

16 176 31 12 7

17 286 48 15 7

18 485 71 21 9

19 813 103 26 12

20 1358 154 38 15

21 2299 242 49 18

22 3949 368 72 24

23 6787 579 100 32

24 11754 913 145 42

25 20491 1459 216 57

26 35858 2348 316 72

27 63035 3792 470 101

28 111176 6182 695 141

29 196932 10185 1057 193

30 350172 16776 1608 276

On multiple deletion codes 21

3. Upper bounds. In this section we prove several exact values and
derive some upper bounds for the numbers L2(n, t).

Theorem 3.1. L2(n, t) = 2 for every t = 1, 2, . . . and every n = t +
1, . . . , 2t + 1.

This result is straightforward and does not require a proof.

Theorem 3.2. L2(2t + 2, t) = 4 for every t = 1, 2,

P r o o f. Let C an t-deletion correcting code of length 2t+2 and maximal
cardinality. Denote by ai the number the of words of (Hamming) weight i in C.

Then
t∑

j=0
aj ≤ 1 and

2t+2∑
j=t+2

aj ≤ 1. Assume at+1 ≥ 3. Then there exist two words

of weight t+1 having the same symbol in the first position, say 1. The Levenshtein
distance between these words is obviously at most 2t since they share the common
subsequence 10t+1, a contradiction. Hence at+1 = 2 and L2(2t + 2, t) ≤ 4.

The code

C = {(0, 0 . . . , 0︸ ︷︷ ︸
2t+2

), (0, . . . , 0︸ ︷︷ ︸
t+1

, 1, . . . , 1︸ ︷︷ ︸
t+1

), (1, . . . , 1︸ ︷︷ ︸
t+1

, 0, . . . , 0︸ ︷︷ ︸
t+1

), (1, 1, . . . , 1︸ ︷︷ ︸
2t+2

)}

is a t-deletion correcting code, which gives L2(2t + 2, t) = 4. �

Theorem 3.3. For every t = 1, 2, . . . , we have 5 ≤ L2(2t + 3, t) ≤ 6.

P r o o f. The code

C = {(0, 0 . . . , 0︸ ︷︷ ︸
2t+3

), (0, . . . , 0︸ ︷︷ ︸
t+1

, 1, . . . , 1︸ ︷︷ ︸
t+2

), (1, . . . , 1︸ ︷︷ ︸
t+1

, 0, . . . , 0︸ ︷︷ ︸
t+2

), (1, 0, 1, . . . , 0, 1), (1, 1, . . . , 1︸ ︷︷ ︸
2t+3

)}

is a t-deletion correcting code.

Assume L2(2t + 3, t) ≥ 7 and let C be a binary t-deletion correcting code
of length 2t+3 and cardinality 7. Without loss of generality, we can assume that
C contains the all-zero and the all-one words. The remaining five words are of
weight t + 1 and t + 2.

Let us note first that C has at most one word of weight t+1 beginning with
1. If we assume that two such words exist then C is not a t-deletion correcting
code since these words share the common subsequence 10t+2. Similarly, there
exist at most one word of each of the following types:

– weight s + 1 and beginning with 00;

– weight s + 1 and beginning with 01;

– weight s + 2 and beginning with 0;

22 Ivan Landjev, Kristiyan Haralambiev

– weight s + 2 and beginning with 10;

– weight s + 2 and beginning with 11.

Without loss of generality we can assume that apart from 02s+3 and 12s+3, C
contains three words of weight s + 1 and two words of weight s + 2. Up to
equvalence, we have three possibilities:

Case 1 Case 2 Case 3

u1 = (1, ∗, ∗, . . . , ∗, ∗) u1 = (1, ∗, ∗, . . . , ∗, ∗) u1 = (1, ∗, ∗, . . . , ∗, ∗)

u2 = (0, 0, ∗, . . . , ∗, ∗) u2 = (0, 0, ∗, . . . , ∗, ∗) u2 = (0, 0, ∗, . . . , ∗, ∗)

u3 = (0, 1, ∗, . . . , ∗, ∗) u3 = (0, 1, ∗, . . . , ∗, ∗) u3 = (0, 1, ∗, . . . , ∗, ∗)

u4 = (0, ∗, ∗, . . . , ∗, ∗) u4 = (1, 0, ∗, . . . , ∗, ∗) u4 = (0, ∗, ∗, . . . , ∗, ∗)

u5 = (1, 1, ∗, . . . , ∗, ∗) u5 = (1, 1, ∗, . . . , ∗, ∗) u5 = (1, 0, ∗, . . . , ∗, ∗)

In all three cases, the words u1, u2, u3 are of weight s + 1 and u4, u5 are of
weight s + 2.

We are going to rule out Case 1. First note that the second symbol of
u1 is 0 (since otherwise dL(u1,u5) ≤ 2t) and that the second symbol of u4 is 1
(since otherwise dL(u3,u4) ≤ 2t). Moreover, the third symbols of u3 and u4 are
different. Hence C contains the words:

u1 = (1, 0, ∗, ∗, . . . , ∗)

u2 = (0, 0, ∗, ∗, . . . , ∗)

u3 = (0, 1, x, ∗, . . . , ∗)

u4 = (0, 1, x, ∗, . . . , ∗)

u5 = (1, 1, ∗, ∗, . . . , ∗)

Now x 6= 0 since otherwise u2,u4 contain the subsequence 021t+1 and dL(u1,u2)≤
2t. Further the third symbol in u1 is 0 (compare u1 and u5). Hence the five
words have the form

u1 = (1, 0, 0, x, . . . , ∗)

u2 = (0, 0, y, ∗, . . . , ∗)

u3 = (0, 1, 0, z, . . . , ∗)

u4 = (0, 1, 1, ∗, . . . , ∗)

u5 = (1, 1, ∗, ∗, . . . , ∗)

On multiple deletion codes 23

Two of the symbols x, y, z are the same. This corresponding words are at
Levenshtein distance ≤ 2t, a contradiction. Case 2 and case 3 are ruled out in a
similar way. �

The exhaustive search performed for n = 7, t = 2 and n = 9, t = 3 gives
L2(7, 2) = L2(9, 3) = 5 which suggests that we have generally L2(2t + 3, t) = 5
for t ≥ 2. In case of t = 1, we have Varshamov-Tenengolts codes that have length
5, cardinality 6 and correct 1 deletion.

Now we describe several upper bounds on L2(n, t). First we give a trivial
recursive upper bound which is true for arbitrary alphabets.

Theorem 3.4. Lq(n + 1, t) ≤ qLq(n, t) for every t = 1, 2, In
particular, L2(n + 1, t) ≤ 2L2(n, t).

The next upper bound was proved by Tolhuizen for any alphabet size q
and any t [11]. It is a generalization of an earlier result by Levenshtein [7].

Theorem 3.5 [11]. For any integer r with 1 ≤ t ≤ r + 1 ≤ n,

Lq(n, t) ≤
qn−t

t∑
i=0

(
r−t+1

i

) +

q
r+2t−1∑

i=0

(n+t−1
i

)
(q − 1)i

t∑
i=0

(
n+t

i

)
(q − 1)i

.

While the bound from Theorem 3.5 is the best bound asymptically, the
simple bound from Theorem 3.4 gives much better estimates for small n. For
example, Tolhuizen’s bound gives:

L2(10, 2) ≤ 58, L2(11, 2) ≤ 100, L2(12, 2) ≤ 172,

while by Theorem 3.4 in conjunction with the exact value L2(9, 2) = 11, we get

L2(10, 2) ≤ 22, L2(11, 2) ≤ 44, L2(12, 2) ≤ 88.

Theorem 3.4 can be improved further. Asymptotically, the improvement
is still worse than Tolhuizen’s result, but for small lengths it yields estimates that
are better than those obtained by Theorem 3.4 and Theorem 3.5.

Theorem 3.6. For every s = 0, 1, . . . , bn/2c,

L2(n, t) ≤ 2L2(n − 2s − 1, t − s).

24 Ivan Landjev, Kristiyan Haralambiev

P r o o f. Let C be a t-deletion correcting code of length n and cardinality
L2(n, t). The code C can be represented as C = D1 ∪ D2 where D1 is the set of
codewords that have at most s 1’s in the first 2s + 1 positions and D2 is the set
of codewords with at least s + 1 1’s in the first 2s + 1 positions. The codes Di

must be (t − s)-deletion correcting codes. Hence

|C| = |D1| + |D2| ≤ 2L2(n − 2s − 1, t − s). �

The table below compares the upper bounds for t-deletion correcting
codes with t = 2, 3, 4, 5 and 10 ≤ n ≤ 20 obtained from Theorem 3.5 on one
side and Theorems 3.3 and 3.6 on the other.

n t = 2 t = 3 t = 4 t = 5

T 3.5 T 3.6 T 3.5 T 3.6 T 3.5 T 3.6 T 3.5 T 3.6

10 58 22 23 10 — — — —

11 100 44 37 14 18 6 — —

12 172 88 60 22 27 10 — —

13 301 176 99 44 42 14 21 6

14 530 352 165 88 67 22 32 10

15 940 704 279 176 107 44 49 14

16 1678 1408 473 352 174 88 77 22

17 3015 2816 811 704 285 176 120 44

18 5447 5632 1399 1408 471 352 191 88

19 9890 11264 2431 2816 786 704 307 176

20 18037 22528 4253 5632 1321 1408 497 352

Acknowledgements. The research of the first author has been supported
by the Bulgarian NSRF under Contract I-1304/03.

REFERE NCES

[1] Ginzburg B. D. A number-theoretic function with an application in the
theory of coding. Problemy Kibernetiki 19 (1967), 249–252 (in Russian);
English translation: Systems Theory Research 19 (1970), 255–259.

On multiple deletion codes 25

[2] Helberg A. S. J., H. C. Fereira. On multiple insertion/deletion
correcting codes. IEEE Trans. Inf. Theory 48 (2002), 305–308.

[3] Hirschberg D. S., M. Reigner. Tight bounds on the number of string
subsequences. J. of Disc. Algorithms 1 (2000), 123–132.

[4] Levenshtein V. Binary codes capable of correcting deletions, insertions
and reversals. Dokl. Akad. Nauk SSSR 163 (1965), 845–848 (in Russian);
English translation: Soviet Phys.-Dokl. 10 (1966), 707–710.

[5] Levenshtein V. On perfect codes in the insertion/deletion metric. Diskr.
Mat. 3 (1991), 3–20. (in Russian); English translation: Discrete Math. and
Applications 2 (1992), 241–258.

[6] Levenshtein V. Efficient reconstruction of sequences from their
subsequences or supersequences. J. Comb. Theory Ser. A 93 (2001), 310–
332.

[7] Levenshtein V. Bounds for insertion-deletion-correcting codes. IEEE Int
Symp. on Inf. Theory 2002, Lausanne, Switzerland.

[8] Martirosyan S. Single-error correcting close packed and perfect codes. In:
Proc. of the 1st INTAS Int. Seminar on Coding Theory and Combinatorics,
Thakhadzor, Armenia, 1996, 90–115.

[9] Sloane N. J. A. On single-deletion-correcting codes. In: Codes and
Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), (eds
K. T. Arasu, A. Seress), Walter de Gruyter, Berlin, 2002, 273–291.

[10] Swart T. G., H. C. Fereira. A note on double insertion/deletion
correcting codes. IEEE Trans. Inf Theory 49 (2003), 269–272.

[11] Tolhuizen L. Upper bounds on the size of insertion/deletion-correcting
codes. Proc. of the 8th Workshop on ACCT, Tsarskoe Selo, Russia, 2002,
242–246.

[12] Varshamov R. R. On an arithmetic function with an application in the
theory of coding. Dokl. Akad. Nauk SSSR 161 (1965), 540–543 (in Russian).

[13] Varshamov R. R., G. M. Tenengolts. Codes which correct a single
asymmetric error. Avtomatika i Telemehanika 26, No 2, (1965), 288–292 (in
Russian); English translation: Automation and remote control 26 (1965),
286–290.

26 Ivan Landjev, Kristiyan Haralambiev

Ivan Landjev

New Bulgarian University

21 Montevideo str.

1618 Sofia, Bulgaria

e-mail: ilandjev@nbu.bg

and

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev str., Bl. 8

1113, Sofia, Bulgaria

e-mail: ivan@moi.math.bas.bg

Kristiyan Haralambiev

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University, USA

Received February 20, 2006

Final Accepted February 23, 2007

