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Abstract

Let N be the total progeny of a Bienaymé - Galton - Watson process {Z;} , i.e.
N = Ezo Zy . A local limit theorem for the distribution of Z; , conditioned on the
event {N = n} as n,t — oo, t2n~! — 0 is proved . A corollary for a random rooted
labeled tree is obtained .
branching process ;  total progeny ; local limit theorem ; ran-
dom trees ;

1 Introduction

Let us on the probability space (2, F, P) define ¢ = {&(t)}, i,t = 0,1,2,... — indepen-
dent, identically distributed (i.i.d.) random variables taking non-negative integer values. The
Bienaymé - Galton - Watson process (BGWP), starting with a single particle could be defined
as follows

7
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Usually Z, is interpreted as the number of particles existing in the moment ¢t = 0,1,2, ...
and the sum N of all Z, - the total progeny of the process. The moment when Z, becomes
zero is called the moment of extinction and the distribution of € - oflspring distribution of one
particle .

In general three cases are considered, according to the mean of the offspring distribution
- when it is less then one (the subcritical case), when it is one (the critical case) and when
it is greater then one (the supercritical case). For the process, conditioned on non-extinction
various limit theorems, depending on the criticality, are obtained .

The first proof of a local limit theorem for the BGWP, conditioned on non-extinction is
attributed to Smirnov but it is not published. Chistyakov (1957) has given a proof for the



continious time process. Later Kesten, Ney and Spitzer (1966) have proved the theorem under
the assumption E¢?log(l + ) < oo. To our regret a proof, based on finite second moment
only has apparently not yet been found.
~ The asymptotic behavior of the BGWP, conditioned on the event {/N = n} as n — oo has
been thoroughly investigated by Kennedy (1975). This is analogous to the standard device in
branching processes of conditioning on non-extinction. In the critical case the two methods
of conditioning yield similar results, however, in the non-critical cases the obtained results
are very different. It has been shown that conditioning on the total progeny for the suitably
normalized BGWP yields limit results of the same form for all three cases .

Kolchin (1977) has considered a critical BGWP with finite variance o2. It has been proved
that when the r-th (» > 2) moment of the offspring distribution exists and z = 3—% lies in a

certain finite interval [z;, z,]
ot . 2 ik
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as n,t — oo and t2n~1HY/0@T D) o

The author’s interest to the topic was inspired by one problem, proposed by Kolchin
(1986). The problem has the following formulation: the local limit theorem is still to be valid
uder the same conditions for n and ¢ as the integral one. Evidently the problem is interesting,
especially in view of the connection between the random rooted labeled trees and the BGWP.
(see Kolchin (1986;2.2); Vatutin (1993); Sevastyanov (1993)).

A tree could be defined as a connected non-ordered graph without cycles. When we
choose one of the nodes of the tree for a root it becomes rooted. If it’s nodes are numbered
by 0,1,2,...,n it is called labeled. Each node is connected to the root by an unique path.
The length of this path ( i.e. the number of the nodes in it ) is called height of the node.

It is well known that the number of all labeled rooted trees with n nodes is (n + 1)(n —1) :
n =1,2,.... If we define uniform distribution on the set of all labeled rooted trees with n
nodes they become random, n =1,2,3,....

The possibility of a relation between the random rooted labeled trees and the BGWP
with a Poisson offspring distribution is first noted by Stepanov (1969). This connection
has been found by Kolchin, who has used the studing of the BGWP with Poisson offspring
distribution, conditioned on the total progeny as a part of a method to obtain asymptotic
results for combinatorial objects such as random trees, random forests and random mapings.
In Section 5 using this method we will obtain a corollary for a random rooted labeled tree.

2 Main results

Let f(s) = Yroopis' ,| s |< 1 denote the offspring probability generating function (pgf)
of the process , po +p1 < 1 and po > 0.



Further on we will suppose that

A F)=Lwm 0L WS 0,
) { E€log(1+¢) <o , ged{k:p>0}=1 .

The main result of this paper is

Theorem 2.1 If t,n — oo, t>n™! — 0 in a way that A) holds, then

o2t 72 hor
TP(EZt=z | N=n)=ze “(1+0(1))
uniformly for all k, 0 <z, < = %2% < Ty < 00.

Now using Kennedy (1975), Lemmal it is not difficult to extend the assertion of Theorem 1
to the subcritical and the supercritical cases.
We need the extra condition.

B there exists a > 0 with f(a) = af (a) < 0o ,
) { f(a) < o0

Theorem 2.2 Suppose A) holds with f'(1) = a < co. Under the conditions B) uniformly for
allk,0<x1<x=%l%<x2<oo as t,n = o0, t?n"1 =0

pt
i

where B = 2 f" (a)/(2f()).
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Finally, we will establish a corollary, exploiting the connection between the random trees
and the BGWP. .

Let Z;(T.) be the number of the nodes with height ¢ in the random labeled tree T,,. In the
particular case when the process {Z;} has a Poison offspring distribution of one particle with
parameter 1 we will obtain

Corollary 2.1 If n,t — oo, t?n~! — oo, then

untformly for all k, 0 <z, Lz = T SERI<00



3 Preliminaries

Let {Zi} bea BGWP wth Zg =m ,m = 1,2,3,... . Let N(m) =372, Zi(m) denote the
total progeny and Ny(m) = E:=0 Zi(m),m=1,2,3,...; Ny = Ny(1).
We will use the well known fact that as t — oo

‘

(3.1) 1)(z.>0)=;‘%(1+o(1))

I.Kesten, P.Ney, and [*.Spitzer (1966) have proved that for m, ¢t = 1,2,...

C
(3.2) supkx1 P(Zy(m) = k) < ;;n @y >0,
: Ca .
(3.3) supr>1 P(Zi(m) = k) < ity C2>0 ,

and if k,t — oo in such a way that &/t remains bounded, then, for fixed i > 1

20.2

(3.4) lim é—,—(‘—)zP(Zt(i) = k)exp {;:i’} =]

[

Dwass (1969) has shown that forn >m >0 ,n > 1

m

(3.5) P(N(m) =n) = —;1’({1(0 + st (t) =n—m)
The following results are used in the next Sections but are of independent interest also .

Lemma 3.1 If k — oo in a way that A) holds, then
l
P(Ne=1)=0(z;) ,
untformly for all v > k .

Proof. From (3.5) for each k =1,2,3,... and each r = k,k 4 1,... we have

(3.6) P(Ny=r) = éP(él(t) +o &) =r—k)
Moreover
) i o)L e —10(r—k) r
Pb(t)+...+&()=r—Fk) el L @ (0)d0



where ¢(0) = f(e®), | 8|< 1 is the offspring characteristic function.

Put 2= —— . Th
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Consider a sequence of functions Gi(z), G2(z), G3(z),... , defined as follows

G: (=)= zS/Mﬁ eimz(cp*(i))rdz snr—a] 9.3
e 0'\/;‘- y &y 9y

From (3.6) and (3.7) for each choiceof kand r ;1 <k <r

102 k
P(Nk = r) = FQ_ﬂ'Gr(;’_\/y—')

The lemma will be proved if we show that when 0 < St <landr— o

\/‘;
(3.8) G.(z) = 0(1)

Assume ¢ > 0. Since the process is aperiodic there exists ¢ = ¢(¢) < 1, such that

(3.9) SUP.<|o|<r |07 (0) 1<8g oD e < s

Now we get

3.10 ;:3/ 12 (L W\ de < _Z':%/ 535 "y
B10) |2 e Gl s Gl T e s
/T :
S5 | ¢*(0) |" db
g0 e<|f|<n
2T 4 p
=g 4 -0 ,r—o00



We will i)rove that

3 za\/F z:vz d _01 |
(3.11) /f (' (o) de = 0Q) .
Since 0 — 0
(3.12) o (0)=1- T+ o)

hence there exists €; > 0 such that for | ¢ |< &

(3.13) PO A P

The basic properties of the characteristic functions imply that there exists such €, , that
for | 0 |< €2

(3.14) [ (e"(0)) IS 207 |0] , [ (¢7(0)" IS0
Let 0 <e < min(sl,ez) and without loss of generality assume r > 4 . Using (3.13) and

(3.14) we have for | \/— | < €
A" (=Z))" Cdp(=2n)
(3.19) |— | = iR —2
<. 2z ]e - fyz’
and
z d"a.(ﬁ) 12
(3.16) It = (2 (2| 5wtk
Under the same assumption
(" (=52))" » d(¢*(=52))
a1 | — | = - D R (e
A
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(3.18) | r(r— 1)—2F—— as < 8|z e 44z be
and
(===)
T L y ) Y
(3.19) = N2 | < 2)s|ed

Now integrating by parts the left-hand side of (3.11) we obtain

[ b gy [ gy
—eo\/T 3 U\/F i —ea /T G\/;

A ()T oz [ (¢ ()’

ki e
1. dx ~eav t T dx?

=0o(l)=O(re”16") + 3 ciosl dmg T de®?

3521~ l /Ca\/; dz(so‘l( x2 ))7

ca /T T d‘P (0_
=o(1)+i/_ f(1(1~l (a‘f )5l (VT \f

T 'lz?t(;zr/‘rf) ST
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uniformly for all z, 0 < —\/i’-r- < 1lasr— oo.



In the same way from (3.16)

3 v 1Tz r r—2 #0 (U\/—) 2 1Tz eo/T
z/-wﬁe (o (a\/_)) de = o(l)+ir(r—1)(p f)) (— )26t | -

PN & dp (a )
—ir(r — 1)/_60\/; cnzd((<p‘(;—\/—_;))r—2 g = d:r\/- B9
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St o_ZT =1 (\/_) iz
A el DT ) e

| N (Ulea il G Y
= o(l)—ir(r — 1)/_‘0\/;6 e

' e /T z 1 d? .(0)
* r—1
+r /_,,\/F(‘P (0'\/7_')) ( d02 Io = =

Finally using more integrating by parts , (3.18) and (3.19) we obtain

ea/r . T 1 ea\/7 x o0 ER Yt .
3 1Tz, . By 3 . r—1 Al 3 Emy AN
? [ e e = 0+ [ T m e

m=0
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ca\/? w(_,_*_ x s d@ ( \/")
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Since the sum Y >°_, pm(m — 1)* diverges (3.11) holds .
Now from (3.10) and (3.11) we get (3.8) , which complites the proof of the lemma .

Lemma 3.2 Ift — oo in a way that A) holds, then
EthI(Zt = k) = O(l) y
uniformly for all k, 0 < ¢; < %— <lcy <.00,

Proof. Let the integers ¢, k and j satisfy the conditions

(3.20) c1<§<cz and 0 <<

From (3.2) and (3.3) for jym =1,2,3,... and k> 31_} we have
(3.21) P(Z;(m) = k) < fji it g 0k
Therefore :
(3.22) supigs yP(Z3(m) = i) < -Cj’-

Suppose m > 4k . We will prove that in this case

(3:23) P(Z,(m) = k) < 2221

C1 t

Since EZ;(m) = m and DZ;(m) = mo?j using the Chebyshev’s inequality we find

(3.24) P(Z;(m) < k) < P(Zj(m) < —) = 4022



From (3.20) - (3.22) and (3.24)we obtain

P(Zj(m)=Fk) = Z” (m —2k) =1)P(Z;(2k) = k — )

=0

(4]
= ) P(Zj(m — 2k) = 1) P(Z;(2k) = k — i)+
3=l k
+ 3 P(Zi(m = 2k) = i) P(Z;(2k) = k — i)
(3141
Pt
< =) P(Zi(m - 2k) -—z+——LI’ k) =k — 1)
J 1=0 [ J+1
= J(I’(/(m—ZA <[]+l’ 5(2F) <l.—[]—-l
3 5 k
< -J(/(/(m~ﬂ/(l )+ P(7; (2 A‘~[:z-‘]—l))
< c_"(‘zg?iJr‘)g”_) idguss
Jo & ke . Gk kit &°

i.e. (3.23) holds .

From (3.2) there exists a non-negative ¢4 such that for cach choice of k and 1, ¢ < 'Af < e
(3.25) P(Zy=k)< = .
Noting also (3.23) we find that for each j € [1,1] such that ¢ < -’,”— < 03
(3.26) EZX(Zy=k) = EZ;N(Z =k, Z; < Ak)+ BEZ;1(Z, = k, Z; 2 4k))
< 4kP(Z +Zl’/ = 1) P(Zi-j(Z;) = k)

>4k

40%c3 1

< 4kP(Z,=k)+ —F7 (75 > 4k)

€y
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40%c3 1
< 4kP(Z, = k) + —>-EZ;
1 t
cs  4o’cs
< 4k§+ a7

1
< (4cgeq + 4029).—
Cq t

Then as t — oo uniformly in all & which satisfy ¢; < —It”r < ¢

Shsi 263y1
(l+k)t2 + (t — 1)(dezeq + 4o cl)‘t ;

A

which complites the proof of the Lemma.
Lemma 3.3 Ift — oo in a way that A) holds, then
EN}(Z, = k) = O(t?) ,
uniformly for all k, 0 < ¢; < %— < ¢y < 00.

Proof. Under the conditions ¢, < lz— <ec , 0<jy<t and s >4k the statements (3.21)
- (3.23) hold.

Moreover
(382NENM(Z;=k) = E(1+ 21 +...Ze1 + k)’ N(Z, = k)
= (14+k)?ENZ, =k)+2(1 +K)E(Zy+ ...+ Zi1)I(Z, = k) +
+E(Z1 o T Zg_1)2I(Z¢ = k) .

Using (3.23) and (3.25) we obtain

(3.28) E(Zi+...+Z:2)(Zi=k) = EZ)N(Z,=k)+...+ EZ 1 J(Z, = k)

40’263 1

< (t-1) sma

On the other hand

11



(3.29) E(Zi+ ...+ Za) W2 =k) = 2 Y3 EZZ(Z =k)~

1<i<j<t
- > ZiZ = k)
1<i<t
<2 Y EzZz(Z=F) .
1<i<j<t

We shall use the decomposition

I(Z.=k) = (I(Z: =k, Z; <4k, Z; S 4k)+X(Z: = &k, Z; > Ak, Z; < 4k)+
+X(Z, = k, Z; < 4k, Z; > 4k) + X(Z, = k, Z: > 4k, Z; > 4k)) .

Since ¢; < lt”- < ¢y we have

2 > EZZX(Z =k Z <4k Z; <4k) <216k > EX(Z =k, Zi < 4k, Z; < 4k)
1<i<j<t 1<i< <t
< 82K2 By P(Zu—F)

1<i<j<t
and (3.25) implies
(3.30) 2 Y EZZX(Z =k Z; < 4k, Z; < 4k) = O(t?)

1<i<j<t
From (3.27) for all k£ |, ¢ < I-LT- < ¢y we obtain

2 EZ:ZX(Z =k, Z; > 4, Z; < 4k) <8k Y EZX(Z =k, Z; > 4k)

1<i<j<t 1<i<j<t
t-1

<8ktY EZI(Z =k) .

=1

Therefore as t — oo

(3.31) 2.y EZZl(2, =k Z; > 4k, Z; < 4k) = O(t*)

1<i< <t

Similarily as ¢t — oo one gets

(3.32) 2 Y EZ:ZN(Z = k(2 < 4k)[(Z; > 4k) = O(t)

1<i<i<t

12



At the end using (3.23) we obtain

2 > EZiZX(Z =k Z>4k2Z;>4k) = 2 Y > ) mumaP(Zi=mi)X

1<i<i<t 1<i<5<t my >4k ma >4k

XP(Z;=i(my) = mg)[ (Ze-j(ma) = k)

= 80 o Z Zml (Z; = my)X

1<i<j<t my =1

X Z maP(Zj—i(my) = my)

map=1

8a?cs
= E E m2P(Z; = =m)
il

1<i<j<t my =1

t—=1 oo
< Boses Z Znﬂl’ (Zi=m)
1=1 m=1
And since EZ? = O(i) as t — oo then uniformly for all &, ¢ < !‘,— < ¢
(3.33) 2' Y EZZX(Z, =k, Z; > 4k, Z; > 4k) = O(t*)
1<i<j<t

From (3.30) - (3.33) we find that uniformly for all &, ¢; < ¥ < ¢,
(3.34) E(Zy+...4 21)*(Z, = k) = O(£?)
Then from (3.28) - (3.30) we get
EN(Z, = k) = O(t?)

and the Lemma is proved.

4 Proof of Theorem 1
Uniformly for all s and k , such that n—_k—:—_—K lies in a finite interval
2
(4.35) P(Npx=n-s)= : 6_2‘72(7l_‘5—k)(1 +0(1)) , n—o00 .

(n—s)y/2ma?(n—s)

(cf. Kolchin (1986;2.4)).

13



.2
Moreover if Ln— —0and 2 — 0 then

n
(4.36) P(Ny =n—3s) = ———k——(l +o0o(l)), n— 00 .
nV2roin

In particular

(4.37) P(N =n) L e )i o0
. =N = — y .
nyV2ro’n
Puting v = \—}—ﬁ — 0 and 0 < b < 1 without loss of generality we assume

m<bhn<n-—k .
Now for all n , t and k

n—k =n—3
(4.38) P(Zy==ki|:N-=n)= Z P(Zy= R ENT="8) P(ﬁ/(kN—:n) )

s=1
= Si(n,t, k) + Sa2(n,t, k) + Sa(n,t, k) , say,

where
P(Np=n—23)
Si(n,t, k) = s <an BZ/=kiN = 3) P(N =n)
P(Np=n—3s)
Sa(nyt, k) = z‘m <s<bn PlZi=kN =s) P(N=n) '
P(N,=n-—3s)
Sa(mt, k)= Vpn<s<n—k PlZ=FkN=5) P(N =n)
We are going to prove that uniformly for all k,z, < -0-_27% <
1
(4.39) Si(n,t, k) = kP(Z, = k)(1 + o(1)) + 0(\/—5) )
4.40) S B =0
(4.40) 2(ny k) = T
1
(4.41) Sa(m 58) = 0()

14



as t,n — oo, t2n"! = 0.
From (4.36) and (4.37) uniformly for all s < 4n and all £,
21<z=2E <,

ot
P(Ny=n-s) ,
P("N = T k(1 + o(1)) .
as t,n — oo ,t2n"1 — 0
~ Therefore
(4.42) Si(n,t,k) = Y P(Zy=k,N,=s)k(1+ o(1))
s>yn
= kP(Z:=k)(14+o0(1)) — Sy(n,t,k)(1 + o(1)) , say,
where

Su(n,t,k) = k)" P(Z,=k,N,=3s).

$>9n

Using Lemma 3.2 we obtain uniformly for all £, z; < g% <z

o O(L s 1

;P(Zt =k N =)= R O(tﬁ) :
Now we have
1
Sa(n,t, k) =kO(—=) =0
(n,t,) = KO(—=) = O(—=),

i.e. (4.39) holds .
Moreover uniformly for all s,yn < s < bn and all k,z, < 4‘2—}1 <z,

ot —
A T VH
P(N.=n—3s) = kot e SR 1 o ST W)
5 ) (n — s)y/2ma?(n —s) (1)
Since (1 —b) <
P(M =n —3) (1 5 b) ;’1\/‘_)’_0-—7'0_5;(1 +O(1))

15



Obviously from (4.37) there exists a; > 0 such that for n =1,2,3,...

I

4.43 P(N =n) > aj————— .
( ) ( ") aln\/27r02n

Then uniformly for all k, 2z, < 2#— <z

ol
(1-b)"2
Sa(n b k), < N TP(Z, = kN = s)———Fk(1 4 o(1))
yn<s<bn . o
- 0)"2
< (l—;)—-——kl’(Z, =k, Ny > yn)(1 + o(1))
1

S Coel Ny

a \/—

Hence (4.40) holds .
Using Lemma 3.1 and (4.43) one can obtain uniformly for all &,z < ;24‘7 )

3 Som 2
San,t,k) < Y P(Z =k N,—c)()(tl)n £ng

bn<s<n k

<O(—7=) Y, n*P(Z=kN=s).
t2\/— bn<s<n—k

ay

And since bn < s

1
Sa(n, t, k) =0(§—\/-7_;) Y oflkP(Zsi="k;iNj=s)
bn<s<n—k

o0

2 ATt 1 — g
tz\/_ Z P(Z=k,Ny=5s) .

<0

Now from Lemma 3.3 we get (4.41) .
From (4.39) - (4.41) uniformly for all k,z; < a%% <zgast,n—oo,tin"t =50

.34
T
= kP(Zi=k|Z > 0)P(Z > 0)(1 +0(1)) + O

P(Z,=k|N=n) = kP(Z = k)(1+o(1))+ O

l
("\71—;) :

16



Finally using (3.4) and (3.1) it is not difficult to obtain unifohnly for all z = %2% € (21, z2)

as t,n — oo ,t’n"! = 0

iy TP 2
B(Zam b N =) = —0E28 . & ) L o(1y)-t0)

2 o o

= e (L +o(1))
ot

1
-

which complites the proof of the Theorem .

Kennedy (1975) has shown that if @ = Y ;2 ip; < oo and the distribution po,pi1,p2, ...
satisfies the condition A) we can define a new process Zo, Z1, Za, . . . with offspring distribution
pr=a*pe/f(a), k=0,1,2,... whichis a critical one . Foreachn>1,j>1,

0 <kiy,...,k; <n and all choices of ry,...,7; > 1

R(Zr; =01y 05820, =rp| Ne=m)imeB(Z5, =y, b Dip=myd N=in)

where N denotes the sum E:‘;O-Z—, :
From this construction and Theorem 2.1 it is clear that Theorem 2.2 holds.

5 An Application for Random Trees

In this Section we will apply Theorem 2.1 to obtain a limit theorem for random rooted
labeled trees .

Consider a random labeled rooted tree 7, with n nodes . For each node the number of
arcs , connected to it , excluding the one that belongs to the path , leading to the root , is
called number of it’s direct successors . Let Zy(r,T,) be the number of the nodes in the tree
with height ¢ and exactly r direct successors, n =1,2,... ;r=0,1,...,n—1t.

Let G be a critical BGWP with a Poisson offspring distribution of one particle with
parameter 1 . Let us denote the number of particles in the ¢-th generation of G with exactly
r direct successors by Z(r,G) , t,r = 0,1,2,.... Let N(G) denote the total progeny of the
process .

Using Theorem 2.1 and the arguments of Kolchin (1977 ; Th.7) one can prove Corollary
2:14
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