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1 Introduction

A special feature of oriented Riemannian four-manifolds is the fact that the 2-vectors
can be decomposed into self-dual and anti-self-dual components under the action of the Hodge
star operator *, Ag a concequence, the Weyl conformal tensor W splits into two parts Wy
1

and W_ defineq by Wi = —(W= + W). The tensors Wy are invariant under conformal
changes of the metric and reversing the orientation of the manifold interchanges their roles.
An oriented Ricmannian four-manifold M is said to be self-dual (resp. anti-self-dual) if
W T 0 (resp. Wi = 0). It is well-known that the sell-duality property plays an important
role in the twistor theory since it can be interpreted as the integrability condition for the
ALiynh-lliLcllin-Sing('r almost complex structure on the twistor SIHN'(“UI' A1)

The classification (up to conformal equivalence) of the compact sell-dual manifolds is
a very difficuly problem which has boen solved so far under additional curvature or topological
assumptions (5, G, 7. 8. 9. 10. 13, 15, 16, 17. 19, 21, 23, 24, 25, 28]. The main purpose of the

present paper is 0 obtain a classification of the compact solf-dual Hermitian surlaces.

-
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If M is a llermitian surface, its complex structure fixes an orientation on M and this
destroys the symmetry between Wy and W_. lor example, the action of the complex struc-
ture on the 2-vectors gives rise to a decomposition of Wi whereas W_ remains unallected,
In the self-dual case this can be used to obtain, via the Chern-Weil theory and the Miyaoka
inequality, useful integral inequalities involving the scalar curvature, the *-scalar curvature
and the norms of the Lee form and the traceless Ricci tensor of M.

The main result in this paper is the following:

Theorem 1 Any compact self-dual Hermitian surface M which is not conformally flat is
conformally equivalent either to CF? with the Fubini-Study metric or to a compact quotient

of the unit ball in C* with the Bergman metric.

This combined with the description of the compact conformally flat Hermitian sur-

faces due to Ch.Boyer [6, 7] and M.Pontecorvo [24] gives:

Theorem 1’ Any compact self-dual Hermitian surface is conformally cquivalent to one of e
following:

(i) the complex projective space CF* with the Fubini-Study metric;

(ii) a compact quotient of the unit ball in C* with the Bergman metric;

(111) a complex torus with its flat Kdhler metric:

(1v) a hyperelliptic surface with its flat Kdihler metrie;

(v) a CP'- bundle over a Riemann surface ¥, of genus g > 2 with the conformally flat Kihler
metric which locally is the product of the (41)-curvature metric on CP' and (—1)-curvature
metric on X,y

(vi) a Hopf surface with ils conformally flat locally conformally Kdahler mctric of constant

positive scalar curvalure.

. The proof of Theorem 1 goes as follows: According to a result of Ch.Boyer [6] M is
either a surface of general type or biliolomorphically equivalent to CP2. By the solution of
the Yamabe problem [27], one can assume that the scalar curvature 7 of M is constant. Now
it can be shown, by means of the Miyaoka inequality [22] and an integral formula for the
norm of Wy (cf. Lemma 3.1), that it 7 < 0, then A1 is a Nihler surface of constant negative
holomorphic sectional curvature. In the case 7 > 0, the Gauduchon plurigenera theorem [12]
implies that all plurigenera of M vanish (Lemina 3.3). Therefore M is biliolomorphic to Cp?

(according to the result of Ch.Boyer mentioned above) and it follows, by a result of Y.Poon



[25], that M is conformally equivalent to C* with the Fubuni-Study metric.

Theorem 1’ implies the well-known classilication result of B.-Y. Chen [8] (cl. also J.
P. Bourguignon [5] and A.Derdzinski [9]) that any compact self-dual Kihler surface is one of
that listed in the cases (¢) - (v) of Theorem 1’ _

Theorem 1’ is also used to classify the compact Hermitian suifaces of pointwise con-
stant holomorphic sectional curvature with respect to the Riemannian or the Hermitian con-
nection. Simple local calculations show that these surfaces are sell-dual and a case by case

examination of the surfaces listed in Theorem 1’ gives the following:

Theorem 2 FEvery compact Hermitian surface of pointwise constant holomorphic sectional
curvature with respect to either the Riemannian or the Hermitian connection is Kdihler, so is

a complex space form.

In the case ol constant nou-positive holomorphic sectional curvature Theorem 2 has
been proved by Sato & Sekigawa [26] for the Riemannian connection and by Balas & Gaudu-
chon [3] for the Hermitian connection. Under the condition that the scalar curvature is
constant and non-positive the Riemanuian version ol this theorem has been recently proved
by Sekigawa & Koda [28]. Theorem 2 and a result of T.Koda [18] (cl. also Lemma 4.1) imply
“that any compact self-dual Einstein Ilermitian surface is a complex space form, a result due
to Ch.Boyer [7] and Koda & Sekigawa [19, 28]. Note that any compact complex space form

of dimension 2 is one of the surfaces (i) - (iv) of Theorem 1’.

Acknowledgment: We would like to thank P.Gauduchon and M.Pontecorvo [or their attention

to this work.

2 Preliminaries

Let M = (M,.J,g) be a Hermitian surface (i.e. a Hermitian manifold of real dimen-
sion four) with complex structure J and compatible Riemanunian metric g, Denote by O
the Kahler form of M deflined by QX)) = (N, JY) for X,Y € \(M) (\ (M) is the Lie
algebra of all smooth vector fields on 7). We shall always consider M with the orientation
determined by the complex structure .JJ. Then the volume form of M is V" = ;I;SZ ASL I
is well-known (cf. [31]) that dQ = w A { where w = 602 0 .J is the Lee form of M. Note

that M is Kahler iff w = 0; M is locally conformally Kahler ifl dw = 0; M is conformally



Kahler iff w = do for a smooth function ¢ on A (in this case e™%¢ is a Kahler metric). Let
V, R, p and 7 be the Riemannian connection, the Riemannian curvature tensor, the Ricci
tensor and the scalar curvature of M respectively.(I'or the curvature tensor we adopt the
following definition: R(X,Y,Z,W)=g¢([Vx,Vy]Z - VxyZ,WV)).

Recall that the *-Ricci tensor p* and the #-scalar curvature 7 of M are defined by

1
P (X,Y) = 3 R(Ey, X,JY,JE,)

s=1
and ;
T = }: p (L, I,)
s=1
where {£;} is a local orthonormal frame of the tangent bundle 7°M. Using the first Bianchi

identity, we get

| ks R e
(2.1) p(,\,))_-521{(.\../).L3,JL,)

s=1

We also have (cf. [31]):
(2.2) T—7" = 2w + ||w]||?

Note that on a Kahler manifold the Ricci tensor and the +-Ricci tensor coinside; in particular

T=7"

The Riemannian metric ¢ induces a metric on the bundle A? of 2-vectors on M by
9(X1 A Xo, X3 A Xy) = det(g(Xi, Xj)). The curvature operator R is the self-adjoint en-
domorphism of A? defined by g(R(XN AY ). Z A W) = RN VY. Z, W) The Hodge st
operator defines an endomorphism * : A2 — A% with +% = [d. Let A% and A% be the
subbundles of A% corresponding to the (£1) eigenvalues of . Then A? = A% A%, Let
B = %('R - *¥Rx*); W= ;l-('R+ *IR#*) — ]7:—2/(/; W, = %(W +*W); W_ = %(W — *W).
Then
.

(2.3) R= o Id+ B+ Wy + W

is the irreducible decomposition of R under the action of SO(4) found by Singer and Thorpe

[29]. Note that B and W represent the traceless Ricei tensor and the Weyl conformal tensor



respectively. The manifold M is called self-dual (anti-sell-dual) if W_ = 0 (resp. W4 = 0).
M is conformally flat iff W = 0. It is well-known that the condition W_ =0 (W4 = 0) is

conformally invariant.

Using (2.3) one can obtain the irreducible decompsition of R under the action of the
unitary group U(2) (cf. [30]). Under this action B decomposes into two parts By and B

determined as follows:
1
(2.4) B = %(B +J.B.J); By, = E(B - J.B.J)

Here J is the involution of A? defined by J(N AY)=JX AJY.

Let V¢ and R be the Hermitian connection and the Hermitian curvature tensor of
(M, J,g). Denote by A the dual vector field of the 1-form w. Then V¢ and V are related by
(cf. [31]):

| LR A l
(2.5) V&)":V,\')"—Eu()').\ - =w(JN)JY + (/(\ YA
Set L(X,Y) = (Vxw)(Y)+ %w(.\').w()"). It is easy to check that

RE(X,Y, 2,W) = R(X,Y, 2,W0) + S{LOX, W)g(Y, Z)+
FL(Y, Z)g(X, W) = LY. W)g(N. Z) = L(X, Z)g(Y. W)} +
o) et
¢ T {g(X, Z)g(Y, W) = g(Y, Z)g( X, W)} +

+§Sl( 7, W)d(wo J)XN.Y)
Using the fact that (N, Y, Z,W) = R(N.Y,JZ,JIV) we get ([31]):

HR(X,Y, Z,W) = R(X,Y,JZ,JW)) = ¢(Y,W)L(X,Z)-
—g(X, W)LY, Z) = g(Y, Z)LIX W) + g(X, Z)L(Y, W)+

(2.7) FQUY, Z)L(X, JW) = Q(X, Z)L(Y, JW) + QUX, W)L(Y, J Z) -

2
—QUY,W)L(X,JZ) + lleol® “ B (Y. Z)g( X, W) = g(X. Z)g(Y, W)-
—QY, Z)SUX, W) + .\,z)sz().u )



Let :
PN EIRR(E,, X, Y, E})

s=]

XY )= ——lef X,JY, E,;JE;)

s=]

and

4
2ui=) pi(Esy Es)

s=1

20 = Z [)r( 1'4‘59 Es)

s=1
Using (2.6), it is easy to see that
_ 1 ,
2u = 5(1‘ +77) + ||wl|?

(2.8) | .
2 ST '2“»&)“2

Denote by \, p1 and ¢f the Buler characteristic, the first Pontrjagin class and the

square of the first Chern class of M, respectively. According to the Chern-Weil theory

l

(2.9) X= g7 [ UV 4 IV + 5~ 1By

| f bl e ;
(2.10) p= 1 [ UV = V-
G4 N

Taking into account that e? = 2\ + p; (cl. [33]) we get
; | X
(2.11) it = g3 [ IV + 5 = IBI)av

3 Proof of Theorem 1

Let M = (M,J,g) be a compact Hermitian surface. We assume that all tensors are

continued by complex linearity. For any orthonormal J-lrame { £y, J Ly, Ly, J I, ), we set

4:714, WE) Zy= s i), =12

6



and Kapep = R(Za, Zp, Zc, Zp) where A, B,C, D € {1,1,2,2}).
Let <, > be the Hermitian continuation of g on A2 ®C and

l (Z]/\ZT-i— Z')/\Zi), a= ZTAZ§

7

l (Zl/\ZT—ZQ/\Zi), ¥= ZTAZ'Z

%

Then {a,3,a@} and {y,6,7} are orthonormal frames of A3 ® C and A2 @ C respectively.

a=2Z1NZy, =

y=Z1NZ5 6 =

For the proof of Theorem | we need two lemmas.
Lemma 3.1 Let M be a compact Hermitian surface. Then

. , 82 D] (T_' .)2 ’
Tt W2V = 5 fy (ol + =55 v

Proof: Consider W4 as an endomorphism of AL @ C. Then the matrix of Wy with respect
to the frame {a, 3, @} has the following form (cl. [6]):

H"i W2 H"_L
(3.1) We=¢ Wi 203 -w3
T R
Here
H’J_ (Ra,@) = Ky ’12
(3.2) W= (Ra,p) = 7{1\'””4- HEes Ty
W3 =(Ra.a)—1/12= K,,55—7/12

Since VxY € TVOM for all X,Y € 710N | we have W) = Ky = 0.

. A direct computation involving lormula (2.7) shows that

Wfr = "\/-{/‘luz + W50 =

dw(Ey, Ey) — dw(JEy, JE,)} - dw(J Ey, E3) + dw(Ey, JE3)}

et T
Since §(wo J) = 0, we have dw( Ly, J Ey) = —dw(E,..JE;). Then

9 | : I

r212 r 2 -

vV l‘ e — l- —_— I‘
Wil :sz”“““ dV + :udw/\rw



and, by Stock’s theorem, we get:

Ay | 5
3.3 W2RdV = — / dwl||? dV
(33) [ AR Y = g5 ] ol

We also have

(3.4) T= 2{ K a5 & 2K 5 + ‘21\'15-1-2}

(3.5) T = 2{N g5, + Ny — 2013 + 28 37, )
and therefore
(3.0) TeTr =8N,

Now, by (3.2) and (3.6), we obtain

X l ‘ »
W= i)

Hence o -
S VA2 AV = [ AL + 632 + V)V

1 5 (T =3r*)2 g
= < huflldwl? + Ty

and Lemma 3.1 is proved .

Corollary 3.2 ([18]) A compact Hermitian surface is anti-self dual iff 7 = 3* and dw = 0.

Let M = (M,g) be a compact four-dimensional Riemannian manifold. According o
the solution of the Yamabe conjecture [27]. there is ametric g in the conformal class of ¢ such
that L‘he scalar curvature 7 of g is equal to the constant A(M,g) = inf( [y, 7'dV")/([,, 4V')?
where the infimum is taken over all metrics ¢' conformally equivalent to g. We shall say that
M = (M,g) is ol positive (resp. zero or negative)type il A(M, g) is positive (resp. zero or

negative).

Lemma 3.3 Let M be a compact Hermitian surface of positive type. Then all plurigenera
of M vanish.



Proof: Let fy be the eccentricity lunction of A defined and studied by Gauduchon [11, 12].
He has proved that fy = 1 iff éw = 0 and that there always exists a metric in the conformal
class of the metric ¢ of M whose eccentricity function is equal to 1 (L1, Theorem of Null
Eccentricity]. The fundamental constant C'(M,g) of M is defined by C(M,g) = [y, foudV.
According to a result of Gauduchon [12, Plurigenera Theorem] to prove the lemma it is
enough to show that C'(M,g) is positive. Since the sign of C(M,g) is a conformal invariant
of g (cf. [2, Remark (1.7)]) we can assume that fo = L.

Let g J e~%¢ be a metric of positive constant scalar curvature 7. Since e777 =

T — 300 - —||da||2 (cf. [4]), it follows that

/ nl\*':/( AT —||(/(r|| JdV' >0
M M

Hence, by (2.8) and (2.2), we have

n :
(‘:(M,,,):/ i / (4 0 5 0
M 2J/M 2

Now we are ready to prove Theorem 1.1

Let M be a compact sell-dual Hermitian surface which is not conformally flat. Boyer
[7, Theorem 5] has shown that in this case either M is a surface ol general type or M is
biholomorpfically equivalent to CP2. Therefore the Mivaoka inequality [22] ¢f < 3\ holds o
M. Then, from (2.9) and (2.11), we get

L 212 A 112 i .
573 S (ZUIBIP = WP + 57 )V =

l : 3| 2 l - . » s
512 Ju (EBIBIP = Il 4 (7 = 7)(r + 377) )V

0<3xmect=

By the solution of the Yamabe problem [27], we can assume without loss of generality
that the scalar curvature 7 of M is equal to the Yamabe constant A(M,g). Then taking into

account (2.2), the above inequality cau be rewriten iu the form :

(3.7) 0< /(—.s“b” TR ——(r—-‘r 2 4 7llwll?) dV

= Gdn?



We consider first the case when M is of negative type. Then 7 < 0 and (3.7) implies
B =0and w=0. It lollows from [17, Theorem [} (ef. also Lemma A4 1) that M is o compaet
Kahler surface of constant holomorphic sectional curvature a7 < 0. Henee Mois a compact

)
quotient of the unit ball in €% with the Bergman metric.

Now suppose that M is of zero type. Then (3.7) gives dw = 0 and 7 = 7* = 0.
Therefore W, = 0 (cl. Corollary 3.2) which contradicts to the assumption that M is not

conformally flat.

Finally, let M be of positive type. It follows from Lemma 3.3 that A is not a surface
of general type, hence M is biholomorphically equivalent to CP# according to the result of
Boyer mentioned above. Then by a result of Poon [25, Theorem A}, we conclude that A is

conformally equivalent to CP? with the Fubinbi-Study metric. Thus the theorem is proved.
4 Proof of Theorem 2 for the Riemannian connection

Lemma 4.1 A lermitian surface M is of pointwise constant holomorphic Riemannain sec-

tional curvature ¢ iff By = 0 and W_ = 0. In this case 7 + 37% = 24c.

Proof: M is of pointwise constant holomorphic sectional curvature ¢ ifl

(4.1) 2. 7.7%.%) =) 2|

for every Z € TV M. It follows from (3.6) that the latter equality is equivalent to

(4.2) l\lﬁz - I"fﬂl = I\lfliz()
Mg = Mgz = WNygg + g = —¢
The matrix of By, with respect to the frame {a,3,@,9,6,7} defined in Section 3 has the

[ollowing form :

0 0 0
i )il By By Dby
1= B; 0 . § AEe 1 2 1

‘ | B

where

| i ¢ J S, x
by = ﬁ(l\“_h + ]\22—12); by = 72—(1\1',—” + I\Qﬁ'z.)

10



Consider W_ as an endomorphism of A2 @ C. Then the matrix of W_ with respect to the

frame {7, 6,7} has the following form :

W st WE
W_o={ W2 —2w3 —w?
Wl —w? w3

Here

Wl=NKy;
(4.3) W2 = %(-—I\'lfﬁ + Iy357)
Kisr—1/12

w3
Hence By = 0 and W_ = 0 ill

(4.4) Ky, = Nz = N33 =0
King = Nz Nyga = 7/12

Using (3.4) and the first Bianchi identity we see that (4.4) is equivalent to (4.2). Finally, by

(3.6) and (4.3), we get 7 + 37 = 24c¢

Lemma 4.2 A compact Hermitian surface M is «-Einstein iff By = 0 and dw = 0.
Proof: By definition M is #-Einstein ifl p*(.X',Y) = —l—g(.\,)’). [his is equivalent (identifying

»

) T . [k
2-vectors with 2-forms) to R(Q2) = TSl. Using the frame {a,3,@,7,6,7} we see easily that

M is #-Einstein ilf By = 0 and H"i = 0. By (3.3) the latter condition is equivalent to dw = (

Lemma 4.3 Lel M = (M,.J,g) be a compact Killer surface of constanl holomorphic sce-
tional curvature. Then the only Hermitian mctrics of powntwise constant holomorphic Ric-

mannian sectional curvature in the conformal class of g are the constant multiples of ¢.

Proof: By Lemmas 4.1 and 4.2, any metric of pointwise constant holomorphic sectional cur-
vature conformal to g is *-Einstein. Since every Kihler surface of constant holomorphic

sectional curvature is Binstein the lemma follows from 14, Corollary 3.1].

Let M = (M, J,g) be a compact Hermitian surface of pointwise constant holomorphic

Riemannian sectional curvature. According to Theorem 1" we have to consider the following

11



three cases:

1. M is conformally equivalent to a Kihler surface of constant holomorphic sectional

curvature. Then by Lemma 4.3 M is Kihler.

2. M is a holomorphic CIP' bundle over a complex curve ¥ of genus > 2 and g is
conformal to the IKahler metric i , obtained locally as the product of the metric of constant
curvature —1 on the base ¥ and the metric of constant curvature 41 on the fiber . Denote
by 7 the projection m: M — ¥. Take local coordinates (zy,22) on M such that the metric h

has the following form:
_ddny @ dEy ddzy & dZ3

o =122 () 4 |22]2)2

Then the Kéahler form €, the Ricci form ¢ and the Laplacian A of M are given by

h

Jodzy NdE dzy N dZ

U G T T

: s odzin dzZy dzy N dZ
ol V=M mrE T Ut el

A=A+ 4
where 22 = 52
A=~ = 2V g B = =~ + =) 5=

Let g and h be related by ¢ = %/L for some simooth positive function " on M. According

to Lemmas 4.1 and 4.2, g is - Einstein. Now taking into account [14, Theorem 3.3] and the

fact that the scalar curvature of (M, h) is equal Lo zero we obtain
(4.6) —AFQ = 21 - 4id0F

By (4.5) and (4.6) we have

(4.7) Ayl — A F =2F
Differentiating (4.6) we obtain

(=dAFYASY = 2d1° At

12



which in the local coordinates (21, 22) can be rewriten as

( )
DA 2r) = -L(AF+2F) =0
(4.8) %1 %
—(AF =2F)= —(AF - 2F) =0
022( ) (.)5( )
Set
(4.9) fi=AF =2F; fy=AF +2F

It follows from (4.8) and (4.9) that

4P =fi—fiy Mih+2h=82/2-2fa=¢
where ¢ is a constant. T'hen, by (4.7), we obtain that ¢ = 0, hence
(4.10) 4F = fo— fi; Aih+2h =8202-2[2=0

Let pg be a point of minimum of /. Take local coordinates (zy,z;) around py as
above and let in these coordinates py = (z\,29). Since by (4.8), the function f; does not
depend on 2z, (A1/1)(2)) = (AJ1)(=),23) < 0 and, by (4.10), we get fi(z) > 0. Similar
arguments show that there is a point =5 on the fibre of M through py such that f,(z3) < 0.

Then 4F(29,23) = f2(23) = f1(2}) < 0, a contradiction.

3. M is conformally equivalent to a Hopl surface with its standart metric . So we
can assume that M = (C*—{0})/G where (7 is a group of holomorphic isometries of €* {0}

endowed with the metric dzy @ dZ7 + dzy 0 dz3) which acts properly discontinuosly and

l
S |
freely. Let m : C* — {0} — M be the natural projection. Then h' = 7*h and ¢ = 7;/: for
some smooth positive function [ on M. By Lemmas 11 and 1.2, the metric g s +- Finstein,
hence ¢’ = 7*¢g is also a *-Linstein metric. Since ¢’ = 77/:' with "= fom, by [14, Theorem
3.3], we have:

—A(1|2]]).2 = =4i0d(I)|=]])
where A and Q are respectively the Laplace operator and the Kihler form on C* — {0} with
its standart metric < , >. Dillerentiating the latter equality we get A(F|z]]) = ¢ = const
which is equivalent to
2 I’

(4.11) b e 0 P QL Wl
Tl H=l>= g e

13



It is not hard to see ([32, p. 236]) that every v € G has the form v = pU where
p is a positive constant and U is an unitary transformation of C2. By a result of Kodaira
(20, p. 694-695], there is 7o € G such that lim,—o7¢(2) = 0 for any point of the unit
ball in C? | so the latter condition holds for every point of C% Let z’ be a point of global
maximum . Since F' is G-invariant every 2/, = 7(/(2’) is also a point of maximum of M. Then
AF(z;,) <0, dI'(z])) = 0 and it follows [rom (4.11) that ¢||z}|| + F'(z") < 0. Taking into

account that lim, o 2/, = 0, we get '(z’) < 0, a contradiction.

5 Proof of Theorem 2 for the Hermitian connection

Let M = (M, J,g) be a compact Hermitian surface ol pointwise constant holomorphic

sectional curvature & with respect to the Hermitian connection. This is equivalent to

(5.1) RNZ,7Z,7.72) = k|| Z||?

for any Z € TYM. Let {Z,Z7, Zy, 73} be the local frame of 7'M @ C delined at the
beginning of Section 3 and let Ny = R Zy, Zp, Ze:, Zp) where A, B,C, D € {1,1,2,2}.
It follows from (5.1) (cf. also (2, Lemma 2.3]) that A is ol pointwise constant holomorphic

sectional curvature equal to & ifl

(5.2) Kizz =55t Il"fin" = Kizgt+ K553=0
Kinit = Koz = 5N + Wz + Kyng + Wigyp) = =k

Lemma 5.1 Lvery Hermitian surface M of pointwise constant holomorphic Hermitian see-

tional curvature is self-dual.

Prool: The identities (2.7) and (3.8) imply

. | . < "
l o 5 : z (R o e Sl . -(-‘ FE -‘_ gz .
W= K W= 2\/5(,‘ g Nz — Mg — )
Taking into account (3.4) and the first Bianchi identity we have
: | it i o o .
h _}__ . . R - % PR o L Lo & £ og-ah [ e A o
wo = 6(1\1T17+I‘z?zi‘u‘lfzﬁ—”‘uz ) (,-(I‘nn+ Nz Wiz = Womr = Wiz — Wiypyp)

and, by (5.2), we conclude that W_ = 0.



Lemma 5.2 Let M = (M, J,g) be a compact Kihler surface of constant holomorphic sec-
tional curvature. Then the only Hermitian metrics of poinlwise constant holomorphic Her-

milian sectional curvalure in the conformal cluss of g arve the constant mulliples of g.

Prool: Let the metric ¢' = ¢77¢ be ol pointwise constant holomorphic sectional curvature
with respect to the Hermitian connection. According to [3, p. 42]
2 I 1ot
(5.3) ci==— [ w.dV
82 Jm

where u' and v are the scalar curvatures ol ¢’ defined in Section 2. On the other hand (M. ., g)
I
YL

/" W' dV! = / AU
M JM

It is well-known (cf. [2]) that @/, v" and w are related by

is Kihler-Einstein, henee ¢ =

(el (2.8)) we obtain :

-

[y, T2AV. Taking into acconnt that 20 = 20 = 1 = 1

e v =u=2Lc)e¢ % =u- Lo)

where L is the complex Laplacian given in local coordinates by

L )2
I./ = - Z (/l-./}"——()
. ().?,\ ():/7

o, /3

Then

/ (w—2.L(c))(u— Lia))dV = / wtdv,
JM M

Using the fact that w = const and [y, L(a)dV =0, we conclude that L(a) = 0 and it lollows

from the maximum principle that o = const.

Now we are ready to prove T'heorem 2 for the Hermitian connection. Let M =
(M, J,g) be a compact Hermitian surlface of pointwise constant holomorphic Hermitian sec
tional curvature. IT'hen from Lemma h. 1 we infer that A7 s self=dual and according 1o T'heoren

I we have to consider the following two cases :

1. M is conformally equivalent to P2 with the Fubini-Study metric or to a compact

quotient of the unit ball in €2 with the Bergman metric . Then, by Lemma 5.2, M is Killer.



2. M is conformally flat. According to [6, Theorem 1, 3)] we have ¢f < 0. On the

other hand, by Corollary 3.2, 7 = 37* which is cquivalent to 2u = v. Theun, by (5.3), we obtain

05 =

(cf. (

1 , i : 1= ;
;“r—sz v2dV > 0. So ¢} =0 and w=v = 0. Then [, (u—v)dV = EZ-]M lwl|*dV =0
2.2) and (2.8)). Ilence w = 0, i.e. M is Kihler.
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