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1 Introduction

Let {X,} be a stationary process with mean yu, autocovariance function Ity =
E(X; — p)(Xi—r — p), autocorrelation function rx = Ri/Rp, and spectral
density f(w) = 3= Sf2_o Rrcos(wk). The sample autocovariances R, k=
0,1,..., and the sample autocorrelations 7, £ = 1,2,..., from a stretch
(X1,...,XnN) from {X;} of length NV are defined as

~ N ~ -~

R =Cny Z (X; — m)(Xi—g —m), 7 = R/ Ro,

i=k+1
where Cn is usually equal to 1/N or 1/(N — k), while m is equal to the
mean of the process or to the sample mean according to whether the mean
is known or unknown.
Because of the important role of the sample autocovariances and auto-

correlations in time series modelling their statistical properties are subject to
much research. One way to describe such properties is through the asymp-

totic covariances of Rk and 7y, defined as
I‘k,, = lim NCOV(R};, ﬁl)
N—oo

g = lim NCov(7k, 7).
N—o0

Under suitable conditions these limits exist and are given by the Bartlett’s

formulae ([3], [1]).

L= 3 (RiptBisk + RisiRick) + Ag(k, 1) (1)

1=—00



o0

S 2
Ved = D (PipiTipk + Tipilick = 200TiTigk — 2rkTiTiqs + 2reriry) - (2)

i==—00

where A.(k,!) depends on the fourth order cumulants and A(k,!) = 0 when
the process {X;} is Gaussian. Note that the formula for the autocorrelations
does not involve higher order characteristics of the process.

Theorems for joint asymptotic normality of any finite number n of sam-
ple autocovariances Rk, k = 0,1,...,n or sample autocorrelations 7y, k =
1,2,...,n are also available (see [1]). The entries of the covariance matrices
of the limiting distributions are given by I';x and 7, respectively.

The infinite sums in these formulae make them not sufficiently convenient
for “exact” computations. It is reasonable to expect that for some important
classes of models finite algorithms should exist. This is indeed the case.
Bruzzone and Kaveh [6] obtained closed form formulae for I'y; in the ARMA
case under some restrictions on the roots of the ARMA polynomials (they
should be complex and simple). Their solution is in terms of the roots of
the ARMA polynomials. It is useful in simulation and in some theoretical
considerations, but its value as computational tool is limited not only because
of the restrictions on the roots, but because usually the coefficients of the
polynomials are available, not their roots.

Recently computationally feasible expressions and recurrence relations for
the pure autoregression have been obtained by Cavazos-Gadena (7).

A general solution to this problem has been announced in [4]. The solu-

tion given covers completely the ARMA case, without any restrictions on the



autoregressive and moving average polynomials. Conditions on the distribu-
tion of the innovation process are necessary only to ensure the validity of the
Bartlett’s formulae. The aim of this paper is to represent in some length this

solution. Namely, we will show that
iy = Ry(I = k) + Ry(I + k) + Ax(k, 1), (3)
and
N1 == T%[Rg(l ~ k) 4+ Ry(I 4+ k) — 2R (k)ry — 2Ry (1)ri + 2rkr1d24(0)],  (4)

where R,(k) is the autocovariance function, corresponding to the spectral
density g(w) = 27 f(w).

This result reduces the computation of the asymptotic covariances of the
sample autocovariances and sample autocorrelations to the computation of
the autocovariance sequence R, (k).

Conditions when these results hold are discussed in Section 3. From
computational point of view the most important case is when {X;} is an

ARMA process, for which we have the following Corollary.
Corollary 1 Let {X;} be an ARM A(p,q) process,
#(B) X, = 0(B)ey,

where €, is white noise, the polynomials ¢(z) and 0(z) have no common

factors and ¢(z) has no roots with |z| = 1. Then if (1) (respectively (2))



holds then (3) (respectively (4)) holds with Ry(k) being the autocovariance

sequence of an ARM A(2p,2q) process

#*(B)Y; = 0*(B)ay,

2

a*

where the variances of the white noises obey the condition o} = o

Proof. It is well known that the spectral density f(w) of the process X is

given by the formula (see for example [5, Theorem 4.4.2])

e o? |0(e~*) :
fI(w) e -.27‘_- ¢(C—|'w)
Hence :
; e 2n0? 0(e='v) 9 i _r_r_z 0%(e=") i
27['_[:((4)) i _4}7 W % o ¢2(e_,'u,) o fy(w)
Q.E.D.

Various efficient algorithms for the computation of the autocovariance
sequence of an ARM A process exist, e.g. [9], [8]. These can be used for the
computation of R,(k), and therefore of I'y; and .

It is important to note that only the probabilistic structure of the white
noise sequence of the ARMA model may preclude the validity of the Bartlett’s
formulae and the above formulae. This is so because the coefficients in the
. infinite moving average representations of the ARMA models decrease suf-
ficiently fast to ensure the validity of the conditions on them in all known
results concerning the Bartlett’s formulae (see [1] and Section 3 below).

Furthermore, causality conditions on the model are not necessary. This

is of some importance in the non-Gaussian case, since then the innovations
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sequences of the different representations of the ARMA model have different
probabilistic properties. For example, if an ARMA process is non-Gaussian
and the “forward” residuals are independent identically distributed, then the
“backward” ones are only uncorrelated. Hence the conditions for the validity
of the Bartlett’s formulae may turn out to be fulfilled for some of the ARMA
representations of a process, and not for others.

The Bartlett’s formulae for the sample autocorrelations and sample au-
tocovariances look similar, but there exist important differences. The con-
ditions under which the former hold are weaker than these for the latter.
Moreover, the formulae for the autocovariances involve fourth-order cumu-
lants, except for the Gaussian case when these are zero. The asymptotic
normality is easier for the sample autocorrelations as well. Detailed presen-

tation of these and related issues can be found in [1].

2 Closed form of Bartlett’s formulae

We will use the property of the Fourier transform of the convolution to multi-
ply the Fourier transforms of its arguments. Noting that the autocovariance

function is an even function, we have the following lemma.

Lemma 2 Suppose that "2 |Ri| < 00. Then

1=—00

i Risispr = 21 /rr cos(w(k — 1)) f*(w)dw (5)

1=—00 =T

(54§



We use this lemma in our proofs. Most of them could be equally well based

on the integral representations, given in [1]. For absolutely summable auto-

covariance functions both approaches are essentially the same.

Theorem 3 Suppose that formulae (2) hold and that 32 __ |Ri| < oo.

Then formulae (4) hold.

Proof. Multiplying and dividing by RZ, substituting (5) into (2), and bearing

in mind that r, = Rx/Ro, we obtain

Tk

Q.E.D.

o i (PigtTidk + TigiTick — 20iTigk — 2rkritiq + 2rgmir?)
F _1%(2; ;goo(RMRHk + RipiRick = 2r1Ri Riyk — 2r RiRiyq + 21 R RY)
pr j;; [/_ cos(w(k — 1)) [*(w)dw + /_ cos(w(k + 1)) f*(w)dw
—2r) /_ W cos(wk) f*(w)dw — 2ry /_ " cos(wl) f3(w)dw
+2nyr [ )]
= 1173[129(1 — k) + Ry(1 + k) = 2R, (k)ry — 2R, (). + 2rir Ry (0)]

The same arguments lead to the corresponding result for the autocovari-

ances.

Theorem 4 Suppose that formulae (1) hold and that Y2 _ |Ri| < oo.

Then formulae (3) hold.



A closer look at equation (4) reveals that 7 can be written in terms of
I';; as (assuming A,(k,!) = 0)

1 i i
Vb = F(Fk,l —rlk0 — kL0 + remilop), (6)

since 2Rk = Rk—-O ol Rk+0.
The equz}xtion (6) can be obtained also directly from equation (1). The

function ¢(xo, zx, z1), defined as

T Y
g(fo,frkyl'l) s Eeme Tty WY
g To

transforms (£, Rk, R,)' into (7, r1)'. The matrix D of its first derivatives at

(Ro, Rk, Ry) is given by

b 00 RN
B(m) (Ro,Rx,R)) —5131/1(2) 0 l/wo (Ro,Rk,Ry)
0t Iy
1 =tk 1 0
Ry - 0 1

Assuming that the sample autocovariances are asymptotically normal, it
can be verified easily that the conditions of [5, Proposition 6.4.3] are fulfilled.
Therefore the sample autocorrelations are also asymptotically normal with

asymptotic covariance matrix equal to DX D', where
Loo Tok Toy
Y=l Thor-Lhx Thy

Fro==rie: L



Direct calculations show that

DD = _1_ piloo — 2pxTok + Tik

2 al 'y al Al
0\ prpiloo — prlog — pilok + Tik piTo0 — 2pL0u + iy

which, as expected, coinsides with (6).
This derivation shows also that 4x; does not depend on higher order

cumulants if and only if

pepiAc(0,0) — pr Ag(0,1) — pAL(0, k) + Al k) = 0.

3 Some sufficient conditions

The sample autocorrelations have “better” asymptotic behaviour than the
sample autocovariances. Higher order cumulants do not enter the Bartlett’s
formulae. When the sample autocovariances are asymptotically normal, so
are the sample autocorrelations. Moreover, asymptotic normality has been
proven without any conditions on the higher order moments, a result which
is due to Anderson and Walker (see [2], [1, Th. 8.4.6.]).

In this section we give some sufficient conditions under which formulae

(3) and (4) hold. We state the conditions as in [1].

Definition 1 A process { X} is said to be linear process if it admits a rep-

resentalion as

Xi= Z /l,‘€¢..,', (7)

t==—00



1=—00

where 32 __ |hi| < oo and the process. {e:} is such that Ee, = 0, Ee? =

0% < 00, Eeie, =0 when t # s.

To say it another way, {X;} is a linear process if there exist white noise

{e:} and absolutely summable sequence of constants {h;} such that the equa-

tion (7) holds.

Theorem 5 Let the process {X;} be linear with representation (7), where

(1) {e:} is a sequence of independent identically distributed random vari-

ables
(i) Ti2_o li|A? < 00

Then (4) hold and the joint distribution of any fized number of sample
autocorrelations is asymptotically normal with elements of the asymptotic

covariance matriz given by (4).

Proof. The validity of the Bartlett’s formulae and the asymptotic normality
follow from [1, eq. (47), Th.8.4.6.]. Then by Theorem 4 the formulae (4) also
hold. Q.E.D.

Theorem 6 1f|2}’§_w k(h,—1,9 — z)l < oo and the spectral density f(w) of

the process {X;} is continuous, then

Lrp= Ry(l — k) + Ry (1 + k) + Z &(h,—1,9 — 1), (8)

t==—00

where R,(k) is the autocovariance function corresponding to g(w) = 27 [*(w).
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Proof. Under the imposed conditions we have from the first part of Theorem

8.3.3 in [1] that

Iy =4dx /: cos(wk) cos(wl) f*(w)dw + f: k(h,—1t,9 — 1), (9)

1=—00
As any continuous function on [—=, ] is square integrable we can split the

integral into two integrals, using the formula for the product of cosines,
1
cosacos b= i(cos(a + b) + cos(a — b))

to get the desired result. Q.E.D.

Note that the spectral density of a process with absolutely convergent
autocovariance function is continuous, while the inverse is not true. Difficul-
ties may arise in the reconstruction of a convolution by invérting the product
of the Fourier transforms of its arguments, when the arguments are not ab-
solutely convergent. This explains why we do not use the second part of
the Anderson’s theorem which establishes Bartlett’s formulae (1) under the
weaker condition that the squared autocorrelations form a convergent series.

For linear processes the infinite sum in (9) simplifies to a single term,
under some distributional asumptions about the innovation process, as de-

scribed in the following corollary.

Corollary 7 Let the process {X,} be linear with representation (7), where
(1) Eciesereq =0, whent # s andt # r and t # q.
(i) Ee; =30+ K4 < 00

10



(iii) Eele? = 0!, when t # s.

Then
Dt = Ryl = k) + By + k) + — R (10)

Proof. The result follows from Theorem 3 and from [1, Corollary 8.3.1.].
Q.E.D.
If the innovations sequence is strictly stationary then asymptotic normal-

ity can be obtained.

Corollary 8 Let the process {X,} be linear with representation (7), where

(i) {e:} is a sequence of independent identically distributed random vari-

ables
(ii) Ee} = 30" + k4 < 00

Then for any fized n the vector [AZO,...,R,, " is asymplotically normal
y

with elements of the asymptotic covariance matriz given by equation (10).

Proof. The result follows from Theorem (3) and from (1, Theorem 8.4.2.].
Q.E.D.

We have given the main result (see Corollary 1) in the Introduction. In
view of the above results to prove it it remains to note that the infinite
moving average representation X; = 1(B)e; of the process ¢(B)X; = 0(B)e,
exists and its coefficients form an absolutely convergent series (recall that

#(z) # 0 when |z| # 1).

11



The following results show that I'y; and 7% satisfy difference equations,

which can be used for further simplifaction of the computations.

Corollary 9 Suppose that
Cry = Ry(1 — k) + Ry(I + k). (11)
Let k > 0,1 >0 and | — k > max(2q,2p). Then
¢*(B) k) =0,
where the shift operator By operates on 1, i.e. Bil'x; = Tk .

Note nonetheless that when R,(I — k) and Ry(I + k) are already avail-
able there is no need to use recurrences. More valuable appears to be the

corresponding result for the autocorrelations.
Corollary 10 Suppose that ({) holds.

(i) if 1> q-+1 then

H(Bi) s = 7 (BTt — ri(B)T].
(ii) if | > max(2q + 1,2p + 1) then

*(Bi)vka =0

12



Proof. From (6) follows that

1
Yoo = Rz(Fkl — Lrori = Liork + Loorir)

Applying the operator By to this equality we obtain

d(Bi)vky = ¢(B)y — Lrop(Bi)ri — rid(Bi)lio + Toorrd(Bi)ri)

1
Rz(
But ¢(B;)r; =0 when | > ¢ + 1. Therefore

OBy = '1%7(¢(Bl)1‘k,l —1xd(B1)T10),

This proves (z). Applying the operator ¢(B;) to this equation and using the
previous corollary we obtain (¢2). Q.E.D.

We end this section with a generalization of the Bruzzone and Kaveh’s
result (see [6]). Although Corollary 1 shows that R,;(k) can be obtained
as the solution of the difference equation ¢*(B)Ry(k) = 0, for k > 2¢ + 1,
subject to the initial conditions given by the even property of R,(k), we will

state the result in the form obtained in [6].

Corollary 11 Suppose that ¢(z) can be written as

P
=[] - Pz7"),
1=1

where P; are distinct and formulae (1) hold. Then

(1) Ry(7) is given by the following formulae

13



o forj=0

[zm+ZZ v e
r=1 s=1
e forj - odd
G172 v, v, PJ
2[§R12,+,+ 2 RiR;_; +};1§1-P

o forj — even

321 I 1,1)1
ZRR,+,+ Z 1{12_.+§:Zl +R,§,2

1=0 r=]1 s=1

where vj, j =1,...,p are the solution of the system

p .
1£k=zvi-l)ik_qv k=q,q+l,...,q+1)-—l-

i=1
(ii) $*(B)R,(k) =0 when k > 2¢ + 1.
Proof.  The first part of the corollary has been proved by Bruzzone and
Kaveh [6] under the additional assumptions that the roots of ¢(z) are com-
plex, and those of 6(z) are complex and distinct. It can be seen that their

proof can be carried out without these additional assumptions as well. The

second part of the corollary follows from the previous results. Q.E.D.

4 An example

Let {X.} be an autoregression of order 1, i.e.

(1-¢B)X, =

14



The zero lag autocorrelation of {X;} in this case is Ry = o?/(1 — ¢?), the
autocorrelation function is given by i = ¢¥. The function R,(k) is the

autocovariance function of the AR(2) process
(1 - ¢B)*Y, = a,,

whith o2 = o2, Solving the Yule-Walker system

Ry(2) = 2¢R,(1) + ¢*Ry(0) = 0
(1+¢*)Ry(1) — 26R,(0) = 0

R, (2) — 20R,(1) + R,(0) = o?

we obtain

14+ 4% ikl R2_3¢2—¢‘2

(=g, Tty B TR

Putting these quantities into (4) we obtain, for example, for the variance of

Ho'=

i

fa = 7??—5((1+2rf)1zg(0>+Rg(2>—4nRg(1)>

_ (1 426%)(1 4 6°) + ¢*(3 — ¢*) — 8¢ (a2
i 1 — ¢2 ot

¢t —2¢% +1
1 — 42
= 1-—¢°

which is a well known result.
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5 Conclusion

We have shown that the infinite sums in Bartlett’s formulae, under quite
general conditions, can be written in closed form in terms of the autoco-
variance sequence of a model, closely related to the model of the process
under consideration. In the ARMA case this reduces to the computation of
the autocovariances of the “squared” model, which is also an ARMA model.
Efficient algorithms exist for this task. We also presented a closed form
expression which may be usefull occasionally. Conditions under which the
Bartlett’s formulae can be written in our form have been given as well.
The recurrent expressions of this paper can be used for efficient computa-
tion of the asymptotic covariance matrix of the sample autocovariances and

autocorrelations.
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