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It is known that at the end of the last century the classical physics failed in the expla-
nation of heart radiation. In 1900 M. Planck devised the quantum theory endeavouring
to deduce the law of black body radiation. From that time on the quantum mechanics
worked out as an advanced theory on solving various physical problems. On the other
hand the efforts to combine the relativistic theory with the quantum mechanics and then
to build a unified field theory ran into great difficulties discussed in many textbooks
(cf. [1] - [8]). The attempts to apply quantum mechanical methods to non-local field the-
ories give rise to insurmountable problems exposed in [9]. All reasonings above mentioned
suggest to us to consider once more the classical setting of the black body radiation.

In the present paper we try to analyze possible causes (from mathematical point of
view) that generate the so-called by P. Ehrenfest ultra-violet catastrophe”. We establish
that the derivation of the Lorentz radiation term is not quite correct from the point of
view of the modern theory of functional differential equations. We propose a new form
of the radiation term which corresponds to the original physical assumption due to P. A.
M. Dirac [10). This leads to a nonlinear functional differential equation of neutral type
instead of the known linear oscillator equation. |

Let us recall briefly the classical formulation of the problem in question following [11].
By a black body is meant a body with absorbtive power equal to unity, i.e. a body which
absorbs the whole of the radiant energy falling upon it. To the black body is assigned the
one-dimensional oscillator

97 Ak
(1) + wiz(t) — 51”:63 (1) = %E,(z) (1)

where by e is denoted the charge, by mg - the mass, by w - the frequency of its proper

oscillations, by E.(t) - electric field of the black body radiation. The summand

prod = _:2’”"(';3 a (t) is the Lorentz radiation Lf‘rm. [t represents the influence of the
field generated by the moving charge on itsell. Following Il. Lorentz [12] (cf. also [13])
the radiation force can be calculated from I = e [ Ep(7) d7, where I is the mean ficld

generated by the moving charge, i.c. Is = f Fp(r") dv'. 2 can be found ont using

E= _%‘f o= %% It is known that the retarded potentials for the point charge are
6 st o-c B e [v(t)6(t' —t+ &
(P___e/_g__jz_,_‘f__)dt'; Arz-c-/ 7T C)(ll' (2)

where R = |F=#(1")] is the distance between the observer and the source and p(7) is the
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density function. Assuming !f_— to be a small parameter one has obtained

' 12 13
s(t! _t+”)=b(z’-t)+1 b(1' -t)+£—b(l—t)+n S(—t)+-- (3)

The differention is with respect to t'. After replacing in (2) ¢ and A, become

] Y Y
P=RT 2202 " 63 0 v Az = cR—c_2+

where R = |7 = #(t)]. Omiting some transformations given in details in [12] and [13] it
obtains for F: F = —m®% 4 2 ;; T (t)+ ---, where m® can be interpreted as a field
electromagnetic mass, while 2 323- t (t) - as a radiation term.

We point out that expansion (3) means a disregarding of the delay generated by the
finite velocity of propagation of the interaction. In this way the naturally arising neutral
functional differential equation is replaced by an ordinary differential one, namely (1).
Besides it is known from the theory of functional differential equations with a small pa-
rameter that a continuous dependence on the small parameter does not exist in general
(cf. [9], [14]).

Equation (1) is obviously a third order linear equation. It can be solved by Fouriet
transformation under assumption that E.(t) has a Fouriet expansion

— inwol __ § :
t) Z FJnC " rrn(’,w"t (wn = nwO)

Its solution is . i ¢
- Elnelnwo

’L(l) = Z mo
2 2 3
T w? = (nwo)? + 1% %&%—L

and then the mean energy is

s (nwo)?

Z 7110 ‘EJ nl
1 [(nwo)? — w22 + (320l

It has a maximum for those values of n for which nwy &~ w. This means that it is assumed
a relation between wp and w namely wo = ——5 Then after not at all rigorous calculations
(cf. for instance [15]) one can reached Rayleigh-Jeans radiation law

E = mg2? = 2myg

Mw) = -———I' = ——=kT. (1)

Obviously the spectral intensity distribution increases as the square of the frequency and

for great frequencies becomes infinite. This implies that tho total energy of m(]mnon is

kT

e w? dw
. by 0 n2c3

ultra-violet catastrophe. To remove this difficulties M. Planck postulates discrete, finite

quanta of energy €o. The energy of the oscillators is to be neg,n € N and then he obtains

his (Planck’s) radiation law

infinite too. P. Ehrenfest calls the divergent integral u = pw)dw =

hw?

n2cd(exp(hw/kT) - 1) (5)

plw) =

2



where f is the Planck constant.

The present paper consists of three sections. In the first one some fixed point results
are given. ‘T'he second section contains a derivation of a new form of the radiation term
corresponding to the Dirac assumptions. In the third section an existance theorem for the
oscillator equation is proved. It is shown that ultra-violet catastrophe does not exist.

1 Fixed point results

Let us recall some definitions and theorems from [16].

By (X,.A) we mean a sequentially complete Ty-separated uniform space with a unifor-
mity generated by a saturated family of pseudometrics A = {p,(z,y) : @ € A}, A being an
index set (cf. [17], [18]). Let j: A — A be a mapping of the index set into itself whose
iterates are defined as follows j°(a) = a,j*(a) = j(j¥'(a)),k € N. Consider a famil-
ly of functions () = {®4(t) : @ € A}, ®4(t) : R* — R = [0,00) with the properties:
(®1) : ®4(t) is non-decreasing, continuous from the right on Rt and 0 < ®,(t) < t,Vt > 0;
(92) : Va € A3D, (1) € (P) such that sup{® j*(a) * vik =), 1,95 00 d)a(t) with & o(t)/1
non-decreasing.

The operator T': X — X is said to be ®-contractive if po(T'z, TJ) < C4(pj(a)(2,9))
for every z;y € X and a € A.

Theorem 1 [16] If T : X — X is $-contractive and there is o € X for which exists
Q = Q(a,xo,Txo) such that pjk,)(zo,Txo) £ Q(k = 0,1,2,...), then T has at lcast one
fized point in X. If X is j-bounded (that is, for every x,y € X and a € A there is a

constant Q = Q(a,x,y) such that pjx,)(z,y) £ Qi k = 1,2,...) then the fized point of T is
unique.

Let (2,\’)b be the family of all bounded subsets of X'. Let F' be a family of functions
a: A — Rt with a uniformity generated by point-wise convergence and partial order
defined in a usual way: ay < ay if ay(a) < az(a)Va € A.

By 7o : (2%)y — I we mean Kuratowski or Hausdorfl measure of noncompactness
(cf. [19]). If X is a locally convex topological vector space we suppose that X possesses a
property denoted by (C'); the convex closure of every compact is a compact in X. Property
(C) is satisfied provided X to be complete or even quasicomplete [20].

An operator T': X — X is said to be ®-densifying if for every bounded set Q@ C X the
following inequality holds true y,(T()) < ®u(7;(q)(2)),a € A.

Let M C X be bounded closed and convex where X is a locally convex topological

vector space. The following theorem guarantees an existence of a general class ®-densifying
operators.

Theorem 2 [21] If T': M x X — X has the properties: 1) for each fized y € X the set
T(M,y) is totally bounded; 2) for each Jized x € M and cvery y,y € X,a € A is satisfied
NT (2, y) = T )lla < Pallly = Ulli(0)-

Then the operator T(x)=T(x,z): M — X is &-densifying.

Theorem 3 [21] Let T': M — M be continuous ®-densifying mapping. If there exists a
constant Q = Q(a, M) > 0 such that

’)’jn(a)(Al) < Q < 00(11 =i031925%5)3

then T has at least one fized point in M.



2 A new form of the radiation term

As we have already mentioned in the introduction the main purpose is to derive a new
form of the generally accepted Lorentz radiation term R = _%m_,z? z (t). We would
like to point out that the radiation term here proposed is obtained on the base of the
original physical assumptions due to Dirac in [10]. In the next Section we investigate the
question of how this new radiation term influences over the ultra-violet catastrophe.

As we have already remarked we use the physical model from [10]. The derivation
is valid for 4-dimensional case nevertheless we shall apply the results obtained to the 1-
dimensional case. By &x(k = 1,2,3,4) we denote the components of the "incoming” field
(cf. [10]), by &x(k = 1,2,3,4) - the components of the "outgoing” field. In accordance with
Dirac assumptions the radiation term can be defined as a half of the difference between
both retarded and advanced potentials, that is,

prad _ 1 [((?A,'f‘ - (')AZ,") (0/1‘,‘1“" DAz
uaos ) 0% Oi" Ty 01&71 )

oy OB winpdyia __e;\_"
' (/\$ET81> ? (’\,fadv),

and &yet, Eady are isotrope vectors lying on the light cone

where 3
ret. oo C’/\n

Eret [E1(1) = 21 (£), &2(t) — 22(1), &3(t) — za(l), ic(t — 1)] ,t > 1

Eadv [E1(t) = 21(D), (1) — za(D), Ea(t) — 23(f), ic(t = 1)] ,i > t;
c is the speed of light;

Xty (1), g (), @ta(t), i¢), A(ity (1), a(2), @ta(t), ic),

dio(t),&a(t) i di (1)
dt adl
() is the scalar product in the Minkowski space.

The explicite form of F}2? can be calculated following the technics from [22] (cf. also
(21]). Before to write down the radiation term we have to adjust the times of incoming
and outgoing ficlds setting t — { = 77(t) and { = t 4 7°%(t). Then the isotrope vectors
€rer and Eqqy become

fall) =

(a=1,2,3);

Ered (&(1) — 2(t = 770, ier"™ (1) Eat (#(1) = 2t + 724(1)), der1)

(throughout the remainder of the present paper we need the one-dimensional case) where
the functions 77¢(¢) and 7%4¥(t) can be defined from

el (t) = % |'L(t) —a(t - T"'(I))I s To(t) = % ':i:(l.) —z(t + T“d”(t)‘ (6)

Ilaving in mind that the components of the velosity vectors i, = ‘%‘ta, ity = %&l reduce to
i, i, we are able to give the new form of the radiation term R denoting from now on

by:



Rred = F7ed (1-dimensional) =
Gy {[5"' = rreta(O)fa(t)u(t = ) = ) = [u(t — 777) = @(t))[€rerit(t) — 2777
2mgc? [Eretu(t — T7et) — c2pret)3 ‘

2(t — Trcl) i C2TrctArct | — gret ret
|(ATet)? 4 Dret ( & Eretu”( u(l — 7))\ du(t - 7"¢)
[( ) + E et (Aret)2 dt +

S re du(t—rret ult=1T =0 e
D"Ct [Erct"(t) - C2T t] [ (t (“T ) Si (¢ (‘rA”'))2 (1) u(t i Tre!)d__(ljt__')_]
[Erecu(t — T7et) — c27ret]2 =
Y Y U 2(y_yret 2u —‘r" B
- [6ree = 007" ["(‘) PRI T D] . }

[sretu(t —rret) — C‘ZT"']2

+

x £1071 {[Eaau — ()T ) [a(t)u(t + 7°%) — 2] - [u(t + 7°%) — @(1))[Eadvit(t) — 277
2171062 [Eaduu(t + ‘r“dv) - c'ZTadu]S :

2(t i% Tadu) C2Tadvu(, + adv d adv
. Aadu 2 + Dadu (fadu + €advt 2 4 T9%) ll(t +T )
[( ) (Aadu)? Aadu di +

U adv du t+radu u ady -1 u radv
| [Gaan(t) — o] [ g i) i)
(Eaduu(t + Tadv) = ()27"“1”]2

[fadu R ,&(t)radv] [ﬂ.(t) 1S a(t)u? (t472) i c2u(t+‘r““")] du(t-:—i'tr“d") }

+D

(Audv )7 Aadv
[Eu(lu“(l + Truiu) — c'ZT(ululz

b

where A = [c? — u3(1)]7, AT = [c? — ud(t — 77¢)]7, A% = [¢? - u2(t + ro)]3,

= Ercgu(t - Trel) I)Hdv L Eudvll(t + Tadu)
ClErCtI cl&ndu‘

Instead of (1) we propose the following equation which can be assigned to the black
body:

Drct =1

5 254 o rad _ i ;
E(t) +wia(t) - B = —Eq(t) (7)
du(t)  d*x(t)

We put w(t) = i Y and then obtain
t s
w(t) + w? [:vo + u t+/ / w(d d()ds} B praieS g
: 0o Jo e ¥ m a(t) (8)

where 2¢ and ug are the initial values.
In order to shorten the further calculations we introduce the following notations:

Avet = [grct i T""t’[(t)][ft(l)u(t B Trd) s C2] = [“(t T Trd) i ﬁ(f-)llfretft(t) 2 C2Tret]

[Erctu(t R TTC‘) b C21-Tﬂt]3 3
bz £ 3 srdu?(t - .rret) i CZTrct.u(t 24 Trct) i Erctﬁ(t) & c21-rct
r Sy RC r re k] retiss
¢ (A et )2 A t [Eretu(t — TTC!) o C2Trct]2,
Gt [frctﬂ(‘) o C2Trct][u(t - 7-1'61) - 1'[(!.)] Hips Eret — ft(t)T"’t
re (Arct)2[£retu(t _ Trct') e C‘).rrcl]'l Vel e [Erctu(' o Tret) = C2Trd]2’



a(t)u?(t —1¢t)  cFu(t— 1)

Cret = ﬁ(t) T (ATCf)2 Aret )
Agdy = [€aay — T2 a(0)][i(t)u(t + r0dv) — 2] — [u(t + 7°%) — @(1)][€aauit(t) — c2T2%)
P § [Gadou(1 + 740%) — cFradv]3 ,
2 adv 2..adv d 3
Bady = adv + i (id-:t- : ) - ‘ll(td+ 2 s Badv = Eaavii(t) — Aot
(A ) e [Eaduu(t + T“d“) — c'21-adu]2 ’
g g [baas8@) e lu(t £o2) — ()] €adv — W(1)To
adv (Amlu)?[£ 1+ adv) _ ~2,adv]2 I{adu = ’ ’
mln‘ll( +T ) C T ] [f,"‘“u(z + Trldv) » CZT‘""’]?
= a(t)ud(t + %) cEu(t + r°dv)
Con 5 u(t) ¥ (Aadu)2 = Aadv

3 Existence results

In this section we formulate an initial value problem for (7): for prescribing initial
. 0 b .
acceleration w((, )(t) defined on (—00,0], to find a solution on [0,00) of

‘ e t s
w(t) = —E.(t) - w? |20 + ugl + w(0)dbds| +
my 0o Jo

ctA?

2 2mc? {(AT)2 Ay + D™ [a7 + Eper] w(t — 77)} - 9)
62A2 adv
T 2mgc? {(A ) Away + D™ [audv =k Eadu] w(t + r““")} >0
w(t) = wi(),t<0,

where

aret = Arcl-Brct + Grelu(t e ,rret ) T ]Iretcrct ) audu = Aadeadu s Gaduu(t + ‘l'adu ) i Iladvcadva

t.rs
z(t) = zo + uot + / / w(0)do ds,
o Jo

zo is the initial position, ug - the initial velocity.
Recall that the functions 77¢(t) and 74 (1) are defined as solutions of cquations (6)

In fact, (9) and (6) should be considered jointly like a system. In what follows, however
we show that (6) has a unique continuous solution (each of equations). ’
We make the following assumptions:

(C) the velocity of the oscillator does not exeed a function ¢(t) : R — R*, that is
lu(t)] < e(t) <e¢ and sup{c(t): t € I} = ¢; < ¢ for every compact I C R.
(R) #(8) 2 (e &)™, #(0) 2 (c+e)r, where #(1) = Ha(t) = a(1)], #(1) = Ha(t) - 2(0).
(T) the functions (1) and 70 (1) have a strictly positive lower bound, i.e.
rret(t) 2 70, T*(1) > T0.

Assumption (1) does not contradict the inequalities 7(t) < 2¢r7* and #(t) < 2eredv,
(It is easy to check that every solution of (6) satisfies the inequalities above me;tioned).

Assumption (7') is quite natural because otherwise the incoming and outgoing fields should
be act instantancously. Assumption (C) is introduced for sake of technical convenient

)



Theorem 4 Under assumptions (C),(R) and (T') each of equations (6) has a unique

solution which is continuous and satisfies the incqualiti t 4
—tdonstinsl0 fi qualities I < a, Fadv(r) < a, where

Proof: Consider C'(R) with a locally convex topology generated by a saturated family of
seminorms A = {||7||l; : I € B}, where B consists of all compact intervals I C R;

Il = sup{|T(t)| : t € I'}. We prove an existence theorem for the first equation of (6).
For the second one the proof can be accomplished in the same way.

Define the operator T : C(R) — C(R)

uvw>=5ﬂn—xu—ﬂnL

Proceed as in [21] we establish the inequality ||T'r — T'F||; < &||r — 7|
e % = ¢ I
where &7 = sup{c(t): t € I}.
Define the set M C C(R): M = {r(t) € C(R): 7(t) > 10 and =} < a})
. 3 m . I T_(Tj R 5
One can be checked that M is closed. The following inequalities imply that 7' maps M
into itself:
(Tr)(8) = Lla(t) - 2(t — m(1))] = H&(t) — ()] - Hlz(t) - z(t - 7(1))| =
e+ &)r(t) — Ler(t) = ().
Tllen Theorem 1 garantees that T has a unique fixed point which is a solution of the first
equation from (6). Theorem 4 is thus proved.
Further on we assume
(W) there exists a function wo(t) : R — R* (whose properties will be prescribed below)
such that |w(t)| £ wo(l).
Let us denote by I the right hand side of (9) and present it as a sum F = F 4 F — F°
where ’

F= ‘E’Ez(f) - wia(t),
mo
v 62A2 Arcl 2A Dret ret Py
Hs 217’[062 {( ) ret + [(l + Eret]w(t Sor )}’
2 62A2 Aadv 2 \ Dadu adv y 2y
e 2771062{( )2 Aady + D*[a®® + Eqgo]w(t + 7°%)}.

We need the fol!owing estimates:
|F| < P+ 1R+ ]S

e? V Vow /.
<Ml e+ g [ + P+ o + ),

2mg | (T7et)? rret (radv)? radv
4(1+V+U+V W1+4v?1 e
1T = u)l g T
8 ke ! 2 L) — 42 3 3
i (15 + 12v — 9v° 613)V1 + v 1! + 24 20 — 4v? + 20 + (61 + 6v2)V/1 = 1A e,
(1-v)'(1+v) v (1=v)(1+v) c?’

|F(€rch u(t)au(t . Trel)’ w(t T Trct)) ey F(E-rch '“(t), ﬂ(f- = T"‘),u')(t — T"t))l <

e wo(lr, o\ wo(l) :
< 2’m‘0{ TTet(t) |u(t) a(t)] + [ Tret(t) ]2|£'°‘ Eret|+
wo(t)FSIu(t P Trcl) 3 ﬂ(t rct)| + wOU)F“ |w(t £ Trct) = 1D(l %3 Trct)n’

rrei(f) rrel(D)

-J



IF(fadu, w(t), u(t + 7°%), w(t + 7)) = F(€aan, (1), @(t + 7°%), 0t + 7°))| <

= 2m { :2,(1:)(1)” (t k1 u(”' Tt [“n—ud(u’)'l_]%lgadu EaduH‘
+w0(t) 3|u(t+7'adu) oY ,&(t+,radv)l 4 wO(t)F4|w(t+ adv = adv

Tadv(t) Tndv(t) T ) - w(t ~ A )I}’
I, = 14+ 1w+ 1502+ T8 = 160" 1 12024 603 + 60'V1 =02 1

(1—1/)‘1 v, (1—-1/)“ 3’
) = (1202 + 1803 + 1204 + 60°)VI =12 1 8v + 240”4 261° — 1005 1, 1+4v 1
(l-—u) c? (1-p) c? +(1—u)4c“’
Iy = 11 4 57v + 7402 + 3903 + 3201 4+ 120° — 9u6)i
(1-v)5(1+4v) ct

(3 + 24v + 3302 4 450° + 84v* 4 61°)V1 — v2? |
K (L= vP(L+v) &
e a+av—-vi+v' 1 Q43+ 28 + )T

e (1=w) 3 (1 =w) cE

Assumptions (3):
(B1) the function x(t) and F;(t) are bounded.
(B2) the function wo(t) satisfics the in(-qualitios

LL|E,,.(t)| + w?|2(t)| + & mo G £,
R ° < wp(t) € Mo_To
Ry £Iya+ (a+ 1)2Ty + (a + 1)Ta)’
where
[%IE t)l + o) + 55 ] vz [al1+ (a+1)T2 + (a4 1)lg] < [‘1‘ 5::,%]2

and < ;n-;m < q, where ¢ < 1. (It follows = £ l—‘- < ¢, because I'y < V).

(B3) the initial function w((j )(t) satisfies |u.v(() )(t)| < wo(t).

Theorem 5 Under assumptions (W) and (B) initial value problem (9) has at least one
solution belonging to Li5.(R).

Proof: Consider the lincar space X Lis (R) with a saturated family of seminorms

A= {|llla : « € A} where the in(lcx set A cousists of all compact intervals of R and
l|wlla = esssup{lw(?)] : ¢ € a}.

Define the operator T': X — X by the right-hand side of (9) for t > 0 and by w(o)(i)
for t < 0. It is easy to check that T maps X into itself.
composition of measurable functions can be solved as in [23).

Introduce the set A C X: M = {w € X : |w(t)] < wo(t)}. 1t is easy to verify that M
is closed convex and bounded.

The inequalities (cf. (B2))
(Tw)® ls YL B, (01 + w20 + 55 5 + 5 Buwo(t) < wo(t) for ¢ > 0

and |w (t)| € wy(t) for t < 0 imply T(M C M.
Présent the operator 7" as a sum of T and T where:

The problem of existence of

4 r . adv)2
(7,’“))(1) - { E)(A t)</(l)rcl (A ) /‘adv] 71),0(:i (t)’ t> 0,



z(t) + 22A {Drct[arct + Erct]w(t s Trct)_
(Tw)(t) = - DY [a% 4 Eqgn)w(t 4 T29)}, t> 0,
wg")(z), t<0

drret(t) P \/ﬁ(c.*. ¢r) d.,.adu(t) < \/ﬁ(c-i- 1)
N dt = (c—=¢p) "’ dt = (c-¢
can show that 1" is completely continuous (as in[21]).

Now we can establish that 7" is contractive operator.

Choose an arbitrary compact interval @« € A and introduce the notations
I, = sup{t : t € a}, Irer = [0, 71, Lnav = [0,72%],

rret = sup{t — 774 (t) 1 t € a}, 73 = sup{t + (1) : t € a},

Jret = {t Y Tret(t) te (l} ]adu = {t + Tadv(t 't € (l}
a= [0’ Ia] U Iret U Tady U Jret U Jado-

Define the mapping j: A — A in the following way:

Using the inequalities

, (t€ T € A)one

i(a) = a, ifaCRYoranRt #0
NY=1 a, ifacR-.

For t € a we have

(F)®) ~ FaNO1 S g 0 = w00+ 25 21— 7, ~ 30~ ranlt
+ 2O (e ) — it = 7+ (e ) (= )+

+§%{%l 0= 40|+ i f,ff():ﬁzl (t+ Tady) = 2( + Tagy)|+
3’%%%%|u(t+rad°)-a(t+r“d”)|+ 5 |w(t+'r“"" w(t + °%)|} <

£

< {—[(t[1+(a+1 )21y + (@ + 1)I'g]wo( l)+ E"
0

which nnplles [(Tw)(t) - (Tw)(1)||a < ql|w - U’“J(a)

Then T is densifying operator (in wiew of Theorem 2) with respect to a measure of

noncompactness in the space prescribed in [21].

Finally we observe that the function wy(t) should be globally essentially bounded which
is implied by (B2). Then denoting by 7y, the measure of noncompactness above mentioned
we obtain Yjn(e)(M) < Q < oo(n =0,1,2,...) where Q = 2wy, g = esssup{wo(t): t € R}.
Since all conditions of Theorem 3 are satisfied initial value problem (9) has at least one
solution belonging to M.

Theorem 5 is thus proved.

Now we are able to calculate the spectral density function p(w) = w'(w). Let w(t) be
any solution of (9), i.e. it satisfies the equation

}”w i lD"j(a)

w(t) + wla(t) - RI*(1) = —B,,(t)(t >0)

hence E2(t ’—",Q[w + wlz(t) — RI4(1))2.
The energy (lonqnt) fun(tmn can be obtained by the formula



‘ T
u= if,ﬁ = %%/ 2dt where T' = 2r .

2n
Jmo 3n 10

'1‘/ [w(t)+w?z(t) — R dt = o7l 0/0% [w(t)+w?a(t)— RL%4(2))? dt.

Thcn for p(w) we have

du ”'u

p(w) =3 = B 62 0/ dw[w(t) + wiz(t) = BRI 2a(t) dt =

2
3mg

2“262wow /0 [w(t) + wz(t) — RIO4(1))%a(t) dt.

Consequently

2
p(@)] € 5

2r

/ [2wo(t) + w?|z(t)])|2(t)| dt <

2m
31710

< e 5 [2wo w/— wo(t)|z(t)] dt + wow /0 lz(t)]? dt).

Without loss of generality we can assume that 29 = uo = 0, i.e. z(t) = / / w(f)do ds
and therefore % ; ’

|z(t)] < wo(t)/ / df ds = 1D0/ sds = zbot—2—, wo(t) < wo.
0

0
For the spectral density function we obtain the follo\vm;, estimate:

.} 2 2
lp(w)] € el {2(0 wwu/ ()] dt + wow® / |J(l)|2df] <
0
2 g 1.4

< 3o Qwow g ’ —(lt+w0w / °t t 37”3 (27r)3w0w _*_(277)54.«13 <
= 2m2e? 0 7 27r 22 3 wg 20 uTg =

3m? wo(2m)? (27)° } by et s
< max . — 4 —| = 2t (o ek
= 27r2e2 { 3 20 J [w? i wg] (o) [wg + wi}] : (10)

Finally we show that Ehrenfest paradox does not exist. Indeed, let us recall that
Rayleigh-Jeans law is obtained by the assumption that there is some relation between

1 ~ L1 .
w and wo, l.el. wo & yw. We can choose wy = wo(w) with an asymptotic behaviour
wo(w) = O(w't®) for w — oo with a > 0. For a > 0 sufficiently small wy &~ w!te, this

S Wp N W. lllcn it is easy to v  the 1
meoz:n 0 y erify that |p(w)| < const. [—rhyz + —rhs] and hence

w)dw < oo - ultra-violet catastrophe does Xi :
o ./’( ) . : I not exist. And what is more, by a
particular choice of the function wo(w) we can obtain formulas (1) and (5). Let us put

wo(w) = [I(wo)]2 [—‘—l—-w]“

Then we replace wo in (10) and obtain

ETw? wd kT kT w?
\2 5 w
lp(w)l € —55 + (%0) @) N (ef[4]).

The second summand can be disregarded because it i
g ause it is of order larger tnah two. In the

10



same way the choise

wo(w) = [1(“’())]* {——4#;———] I

implies
hw? 1 hw? 5
P € e b L x (o)
n2e3(ed — 1) H(Wo) (n2e3)2(ekF — 1)2 n?c"(e% -1) il
Summary

The paper is concerned with the oscillator equation assigned to the black body. A
new form of the Lorentz radiation term is derived. It corresponds to the original physical
2 « «

assumptions due to Dirac. This leads to a nonlincar functional differential equation of

neutral type. By means of a fixed point theorem an existence result has been proved. As
“a consequence the ultra-violet catastrophe disappears.
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