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Abstract: In the present paper, a new sufficient condition for the approzimation of the
reciprocal of an entire function by reciprocals of polynomials on [0,00) with a speed of a
geometric progression is provided. This condition sharpens a result of H. P. DBlatt.

Introduction:

Let f(z) be a function, real valued and continuous on R, Rt := [0,00). We shall
deal with the uniform norm, e.g., if B is a compact set in C and the function ¢ is defined
on B, then ||g||p := sup{|g(x)|,x € B}. For the positive integer n,(n € N), set

1 1
fx)  pl)

where the infimum is taken over all the polynomials p with real coefficients of degree not

“R"‘a

/)n(f) = i”‘fl'Eﬂ’n “

exceeding n (p € m,).

In the present paper, we come back to the area of the approximation on Rt of recip-
rocal of functions of the prescribed kind by reciprocal of polynomials with the speed of a
geometric progression, e.g.

lim sup p,,(f)I/" <z
n—0o0

The background of these investigations are the results of W.J.Cody, G. Meinardus
and R.S.Varga concerning the approximation of exp(—=z) (see [CoMeVar]). Later, G.
Meinardus and R.S.Varga extended the results in direction of entire functions of completely
regular growth (see [MeVar]).

The paper [MeReTayVar] gave rise to investigations devoted to enlarging the class of
the functions f those admit geometrical approximatation by polynomials on R* in the
above sense, as well as to characterizing such functions.

Before presenting the results of [MeReTayVar] we introduce the common notations.

For the positive number 7, set || f|l» := ||flljo,)- For the number s,s > 1, let ‘,( s)
be the ellipse with foci at @ = 0 and 2 = r and major and minor axes r(s % 1) /45,
respectively; that is:

PR ~)'.£ ,z
(r —1/2) + Y ; .
r(s +1)2/4s)?  (r(s —1)%/ds)?

:1}

2{rys) = fz=x+ z'y

Set My(r,s) := || fllers)-
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The main result of [MeReTayVar] is :
Theorem 1: (see [MeReTayVar]): Let the function f be real valued and continuous on
R*. Assume that the inequality

limsup/),,(f)ll" =174q (1)
n—oo
holds with a number ¢q,q > 1.

Then either f(x) = Const or f(x) — oo as v — oo. There exists an entire function
F(z) of finite order such that F(x) = f(x) for every @ € Rt. For cvery s,1 < s < ¢ there
ezist positive constants I\ = K (s,¢),0 = O(s,q) and ro = ro(s,q) such that for every
r > ro we have

M(r,s) < K| f]I°. (2)

In the same paper the authors established that for a special class of entire functions
condition (2) ensures the existence of polynomials the reciprocals of which approximate
geometrically on R* the reciprocal of f. They proved, namely

Theorem 2: Let f(z) = Y or,anz" be an entire function with a,, > 0 for n > 0
and ag > 0. If there exist real numbers I\, O and ro such that condition (2) holds, then
condition (1) is valid.

After the appearance of this paper,weaker sufficient conditions for the geometrical
approximation in the sense of (1) were shown. We refer to the papers [Blattl], [Blatt2],
[RoTay], [Meinardus] and [ReShi]. It is a matter of concern to close the sufficient and
necessary conditions. In [HeRo], the anthors called attention to the fact that condition
(2) in Theorem 1 does not admit a converse. They showed in particular that if an entire
function f, even satisfying condition (2). ocsillates strongly in some sense then condition
(1) does not hold. In the same paper, they raised the hypothesis that the complete char-

acterization of functions f with geometrical convergence should involve the rate of growth

Il £llgo, »
(mainf(z),z2>r)?

that the ratio || f||/minf(x) behaves in an appropriate way yields together with condition
(2) a geometrical convergence (see [Blatt3]).

Let f be a function of the prescribed kind and » > 0 be arbitrary. In order to
present precisely Blatt’s theorem, we introduce the number pu(r)(= jp(r)), that is u(r) :=
ming >, f(x).

Theorem 3 [Blatt$]: Let f(a) be an entire transcendental function, real valued on Rt
and having not more than a finite number of zeros there; f(x) — oo as @ — oco. . Assume
that condition (2) holds . Further assume that there ezist real numbers s > 1,4 > 0 and
r' >0 such that

as r — oo. H. P .Blatt showed that a "nonstrong ocsillation” in the sense

171" € i)

for allr > ',
Then condition (1) holds.
In the present paper, we prove
Theorem 4: In the conditions of Theorem 3, assume that for everyr > vy the inequality

LAl < (e

o



is valid with v positive.
Then condition (1) is true.

Auxilliary Lemmas

In what follows, the function ¢ is continuous and real valued on RY.

The base of our forthcoming considerations is the following lemma, established by
H.P.Blatt (see [BLATT1]).

Lemma 1 [Blatt 1]: Denote by f the total number of zeros of g on RY. If § < oo
then for every positive integer n either p,,(_/) = 0 or there ezists a unique polynomual
PusPn € T, Pn = Pu(g), with “— = _”R = paly

If degp, = n, then the (lzjjcvcncc (1/g — 1/1),, (2) attains alternatively the value py(g)
atn+2-24 (cliﬁcrcnt} points y, i, e.g., there are y, ; (different) points with 1 > n+2-24

for those

1 1 :
= = a(=1)'pn(9)
,(/(Un,i) I)n(yu.i) £

with a = +1.

If degp, < n, then the number of the alternation points y, . s at least n + 1 — 273
and the last alternation point is a (+)-point of the difference (1/g —1/pn)(2). (e.9. (1/g —
1/]311)(3/) >0.)

For a set E € R+ and an integer n.n € N, we introduce the notations p, (g, E), that
is pa(g, F) = mf|| e p(l;)l g. Further, let E, (¢, E) be the error of the best uniform

approximation of ¢ on E in the class 7,. In [MeReTayVar], it was shown that

Lemma 2: If the function g is in addition nowhere zero on RY, then there exists a
positive constant C,C = C(g) such that for every n € N

pnlg, E) < C.E,(9,F). (3)

In what follows we will use a modification of t.his lemina. Naln(‘l\’ let y and a be real
numbers, y ¢ E. Set p,(g, E,y,a) := infex,_, [[1/9(x) = 1/(a — (z — y)p())||g. Similarly,
we define E,(g, E,y,a) as the error of the best Zl])])lO\llnathll of ¢ on E by polynomials
p € m, satisfying the additional condition p(y) = a. We have the analogue to Lemma 2,
namely

Lemma 2’: For any y,a € RY,y & E. there czists a positive constant C' such that for
every n € N 1t s truc that

pn(9, E,y,a) < C'.Ey(g,E,y,a). (4)

It is easy to verify that the constants C,C' appearing in both lemmas satisfy the
inequality C,C" < 4/m? with m := minp+g(x). Set max(C,C") := C}.

In what follows, we will denote by Cj.: € N positive constants which do not depend
on the integer 1.



At several stages of the proof of Theorem 4, we will use the following classical result
due to S. Bernstein. : .

Lemma §: [Bernstein] Let v, s be positive numbers, s > 1 and let g be analytic in the
ellipse E(r,s) and continuous on E(r,s). Then, for any n,n € N we have

U, (r,s)
E.(g,7 <2-—/ Sl
(g,7) < (s —1)

Proof of Theorem 4

For the sake of clearance and simplicity, we will assume that the function f under
consideration is nowhere zero. Later on we will give the sketch of the proof for the general
case.

Before presenting the new sufficient condition, we introduce for the positive integer r
the set I, that is

I,:={x.x € R+,f(;L‘) <r}

In the conditions of Theorem 4, the set I, consists apparently of a finite number of subin-
tervals I x,1 < & < k. Further, we introduce into considerations the number m(r) as
follows:

m(r) :=nun{f(x),x € U Lk}

k>2

. . X
Fix now a positive number s',1 < s’ < s and set s1;= s'?7. For the number n,n € N
kn * :
denote I, := Isle,k,, := k(s}) and I, := UL, Lok with Ik := [ank, by i) for & > 2. Let
the number r, be determined by the condition f(r,) = || f||», = s}. It will be assumed
throughout that 0 € I, 1. Set, finally, m(r,) := m,,, if k, > 2 and m,, = f(r,), otherwise.
We have obviously
T = 1)

Set 6, := -———'—,ll"h'l"s’ . With respect to the conditions of Theorem 4, we may write
; 3

a:= mf 6, >0 (

n>no

(7]

for an appropriate integer n, € N.

Preserving these notations, we will prove the following statement:

Theorem 4’: Let f(x) be an entire transcendental function, real valued and positive on
R*, f(z) - 00 as @ — oo. Assume that there ezist positive numbers s, ro and 6,s,6 > 1
such that condition (2) holds . Assumnc, further that for all n > ny inequality (5) is valid.

Then condition (1) holds.

Proof of Theorem 4’
Denote by r,, the crossing point of the ellipse E(rn,s1) with R*; the calculation

implies 7,0, 1= (rn/2)(1+ 1/2(s1 + 1/s1)). Set fusther Ly = {2,0 S @ < ruy).

In accordance to the situation of the point r, s, we have to consider three cases: a) If
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Tn,sy € [bnkys Un ky+1), for some &y, 1 < &y < IV, then let I be the segment with endpoints

. y(l')—f("n,a ) I'—=Tn, e
Tn,sy and @n k, +1y that 1s r—f(r,,,,l)l = l

Qn k) 417 Tn, ey i
We now introduce into considerations the function f, 4, (2) constructed in the following

way:
fll.sl(“l") = f(.'l.'),;lf = In,sla

fn.sx(:v) o= 3/(-'7«')-_7'71_31 <& < Apky+1,

Ju,i(2) = f(2),x € Ly kb 2 k1 +1
fn,sl(:v) == ':;l»m € R+ T In [7'1z,snan,k1+l] UIn,sla

b) If there is a number ky,1 < ky < &y, such that r,, 5, € I, 1,, then we define f, i,
in the following way:
fn.s;(‘v) = I‘(I)O L= bn.k2

fn,sn(‘t) = f(.l'),.’l.' € In,kyk > ]\?2,
fn,sl(l') = 5’1,-,-1' € Rt — I U-[n,sla

¢) Finally, if 7, 5, > bk, , then set
fn.sl = .,'(3")-,-'17 € In,sl

and
fn.sl(-F) = f("n.sl e R+ = In,s,-

For any n,n > ng, the next inequality could be easily verified

pu(f) L pulfr.sy) + 1/3;' (6)

As we see from lere, it suffieces to show that limsup p,(fa,s, LA}
Further, we may apparently assume that (for any n,n € N,n > ng the inequality

is fulfilled.

Indeed, denoting by pa.s, the polynomial for which the imfimum p,(fu,s, ) 1s attained
and assuming that (7) is false, we conclude that in cases a) and b) there holds that
/pn,si(2) > pu(fu.s,) = 1/st > 0 for every positive real number @ sufficiently (z > b, x, ),
which is obviously impossible. Consequently, (7) Lolds in the cases a) and b). As for case
¢), we have in general p,(fn.s,) = 1/f(rn.s,) s0 that (7) may be destroyed. For such a
case we may exlude of the considerations the possibility pu(fus) < 1/s7, since otherwise
we get, by (6), the requiered geometrical estimation of poriet);

Coming back to (7), we see that all the (+)-alternation pomts of the difference 5

n,s

1 + . )
P SAY YT, lie on I,.



Assume, for the first that there are (+)-alternation points those lie on Ustdidsn, i
Then, using (5), we obtain

pll(fn,xl <1/ ”ﬁ".

Hence, for n > ny we get

n(fn sl < 1/ na‘ S)

Assume now that there 1s no (4)-alternation point that lies on Uk>z n,k- By the
preceding argumentation, we get that all they lie in (0,7, ). We concern ourselves with the
case when

p"(fn,.u) > 1/*”;16"' (9)

In fact, if pp(fan,s,) < 1/51’6", then we come accordingly to (6) again to inequality (8).
Under the assumption (9), we see that the (4)- alternation points lmve to be be
located on [0,7,) (1, nén (Notice the obvious relation [0,7,) ()1, nn € [0,7,)
Consider first the case when degp, s—1 < n. In view to Lenmn 1 and to the previous
considerations, the set of all the alternation points belongs to [0,7,). Hence for Pulfh. s;)
we obtain

/)n(fn.sl ) = Pn-1 (f) n )
Applying now successively Lemma 2, Lemma 3 and condition (2) of Theorem 4, we get

= J\/lf(7na ‘) < C)(b) ”f”r,,

Pn—-l(f".sl) S C].En—l(fe 7'11) < Cl I(S 1) & <N
, o S

Taking account of the choice of the number r,, we finally obtain

né
$

il Frise).S-C3(38)

(10)

Consider now the case when deg p, -1 = n. There are again two subcases: the set of
all the alternation points belongs to the segment [0, 7, ,,] and there are alternation points
those lie outside this segment. In the first case we have

Pn(fn.sl ) = /)n(f- T'n,s) )

so that analogously to the previous case

. . /\A (7111 s ) ”f“r,,,
/)n(fn,sl )) S C’I-En(jv"n,s; < C eIt —I(\—_li—)—— < C.’.( ) o E—
Taking account of the obvious fact that
”f”"n.sl < /Mj(l‘,,,s),
and having im mind condition (2), we finally get
S?uﬂ
Pn(fn.sl) < CZ(*)—\T (11)



As for the second case, we notice that there is only one alternation point y with

Y > T, (12)

and it is necessarily a (-)-alternation point of the difference Tl— - I—,-l— Recall that
n,a) n,a

Trysy = 2-.(1+3(s1+ ;‘-‘-)) Let 7 be the biggest (4 )- alternation point; it suffices necessarily

the inequality

T < (13)

In the case under consideration we have

f)n(fn,sl) = Pn(f(-r)»r,y,fn.h(?/))

so that, by mean of Lemma 2’, we may write

( f(1) o fn,sl(?/)

.L"—y

pu(fns) £ Cr.Ea(f(2), 7y, fas(y)) < Cry. By ,T)

"The application of Lemma 3 leads to the estimation

/\/{/ z)=Jn,s (y) T,S
E l(f(a:) = fn,Sl(y) T) < 2.6'1. _HTI_I’( ) < C3(3) /Mf(I)_fn,al(y)(T’S)
s rT—y ) i S"_I(S—].) 2y y-—-‘r' N

By mean of (2), (12) and (13), we have

/)n(fn,s,) S C':;(.\‘). "n,s; :

'n,sy —Tn ST,
which implies, finally
g130
4 =1
Pn(fn.s; ) < C‘;(S)—,‘l‘-
s

Consequently, by (8), (10), (11) and the last inequality

Pn(fn 5, ) < max(1/st, 1/s15 Ga(s)

FiN0 L st Re (D T g
gh ,CQ(S) sh ' sh )

This inequality combined with (6) proves Theorem 4 for the special case when the
function f is nowhere zero on RY.

The proof in the general case does not contain essentially new elements. Assune
f(z) = w(z).¢(z), where w(z) = Hf.=l(.v —x;)P, ZL] Pi = B and ¢(x) is positive on R,
It was shown in [Blatt3] that for every n > /3 the polynomial p,, for which p,(f) is achieved,
is given by p,, = p+w?(x).pk, where p¥ € 7,_25, and the polynomial p is determined by the
conditions p(¥) (z;) = F&Y @) for k=0,....23; —1.i = 1,...,l. There exists a polynomial P
of degree < 33—1 such that f(x)—P(x) = w?(x).F(x); in the conditions of Theorem 4, the
function F(z) is of the kind presented in Theorem 4’. In [Blatt3], the validity of Lemma

T



2 was established with E, (f, E) replaced in (3) by E,(F, E). Analogously, E,.(f,E,y,a)
in (4’), Lemma 2’, should be substituted by E, (F. E,y,a).
Taking account of these results, the proof of Theorem 4 repeats the previous ideas.
Theorem 4 is completely proved.
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