BbITAPCKA
AKALQEMUA
HA HAYKUTE

BULGARIAN
ACADEMY
OF SCIENCES

UHCTUTYT MO MATEMATHKA C M3YUCJ/IMTEJIEH LHEHTBP
INSTITUTE OF MATHEMATICS WITH COMPUTER CENTER

ON CERTAIN DUFFIN AND SCHAEFFER

TYPE INEQUALITIES

G. NIKOLoOV

PREPRINT

JUNE 1995
No 12

DEPARTMENT OF NUMERICAL ANALYSIS



ON CERTAIN DUFFIN AND SCHAEFFER TYPE
INEQUALITIES *

Geno Nikolov
June 19, 1995

Abstract

Duffin and Schaeffer type inequalities related to some ultraspherical
polynomials are established. One of the results obtained reads as fol-

lows:
THEOREM. Let {t; ;‘;11 be the zeros of the ultraspherical polynomial
P,(li)l, to := —1, t, := 1. Let f be a real algebraic polynomial of

degree not exceeding n and satisfying the inequalities
£t < 1PVW)], 5=10,...n.
Then the uniform norms of f*) and di:;;P,s'\) satisfy
() d* )
< Jf_
1O <l PO

for each k € {1,...,n}, if A > 1, and for each k¥ € {2,...,n}, if
A€ [1/2,1).

*Research supported by the Ministry of Education and Science under Contract no.
MM-414



1. INTRODUCTION

Answering a question of the prominent russian chemist D. Mendeleev,
in 1890 A. A. Markov proved that if f(z) = Y, a;z' is a real algebraic
polynomial of degree at most n such that |f(z)| < 1 in [-1,1], then in the
same interval

|f'(z)] < n.

Two years later, in 1892, A. Markov’s younger brother V. A. Markov (being
that time a student at St Petersburg University) extended this result proving
the following

THEOREM A. If f(z) = =%, a;x* is a real algebraic polynomial of degree
not exceeding n and |f(z)| <1 in [-1,1], then
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fork =1,2,...,n. Equality holds only for f(z) = £T,(z) = % cos(n.arccos z).
The inequalities of the brothers Markov type has been a challenge for many
mathematicians. In 1941 Duffin and Schaeffer [DS] strengthened Theorem A
proving that the inequality (1.1) remains true if the requirement |f(z)| < 1
in [-1,1] is replaced by

IfHI <1, j=0,1,...,n, (1.2)

where 7 = cos% are the points of local extrema of T),(z) in [-1,1]. In
addition, Duffin and Schaeffer showed that (1.1) fails to hold if the conditions
(1.2) are replaced by f|g < 1, where I is any closed set of points in [-1,1]
which does not contain all the points {7?}. In fact Duflin and Schaeffer
proved a more general result including inequality for polynomials in a strip
in the complex plane, but it does not fall in the frame of this paper. We
only mention that their proof involves complex arguments, in particular the
Rouche theorem.

Denote by m, the class of all real algebraic polynomials of degree not
exceeding n, and by IP,, the subset of 7, containing only polynomials with n
distinct real zeros, located in (-1,1). In our notations Q, will mean a given
algebraic polynomial of exact degree n, and ||f|| := sup,e_y|f(z)]- We
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now formulate our definition for Duffin and Schaeffer type inequality (DS-
inequality).

DUFFIN AND SCHAEFFER TYPE INEQUALITY The polynomial @, and
the mesh A = {t;}7 (=1 =t < t; < -++ < t, = 1) are said to admit
DS-inequality if for an arbitrary f € m, the assumptions |f(¢;)| < |Qn(t;)]
(7 =0,1,...,n) imply the inequalities || f®| < ||QW|| for k = 1,2,...,n.

Note that the inequalities DS-type do not hold unconditionally. The validity
of such inequalities depends on the choice of the majorant O, and on the
mesh A. Actually, to the best of our knowledge, only a few DS-inequalities
of the above mentioned type are hitherto known. In [RS] and [RW] the
original idea of Duffin and Schaeffer was modified for derivation of some new
DS-inequalities.

~ In arecent paper A. Shadrin [AS] turned back to the original V. Markov’s
idea - Lagrange interpolation. He presented a simple proof of Theorem A
under conditions (1.2). The crucial part for his proof is

THEOREM B. Let g € IP,, and let t; = tj(q) (j =0,...,n) be the points
of all local extrema of q in [—1,1]. Suppose that f € 7, and

IF)| < lg(t3)l, 5 =0,...,n.

Then, for every = € [—1,1] and for k=1,... n,

79(@)] < max{ld® (@), (e ~ 1) (z) + 2g®(2)]).

Moreover, Shadrin has conjectured that DS-inequality holds for every @, €
IP,, provided the mesh A is taken to contain the points of local extrema of
Qnin [-1,1], ie., if A = {=1}U{t : Q(t) = 0}U{1}. Unfortunately, as some
simple examples show, this conjecture is not true in general. Nevertheless,
using Theorem B, Bojanov and Nikolov [BN] proved that DS-type incquality
holds for such a choice of A with majorant @, = P - the ultraspherical
polynomial (the polynomial, orthogonal in [-1,1] with respect to the weight

(1 o x2),\—1/2).



THEOREM C. Let t; :=t;(PWM), (j =0,...,n) be the extremal points of
P® in [-1,1] . Let f € m, satisfy

e S IPO@), 5=0,...n
Then the inequality
[T || P‘*)”

holds for all k € {1,...,n}, if A >0, andfor allk € {2,...,n}, if —-1/2 <
A<0.

A very interesting result (though not exactly of DS-type) is established
in [BR]. There, inequalities for the norms of the derivatives of polynomials
are found on the basis of comparison of their corresponding local extrema.

The contents of this paper is organized as follows. In Section 2 we give
some preliminary results, including the V. Markov’s lemmas about inter-
lacing property of zeros of polynomials, Chebyshev and Zolotarev intervals
associated with a pointwise estimate of polynomial derivatives, as well as
some properties of the ultraspherical polynomials. In Section 3 we extend
the pointwise inequality given by Theorem B (this is the content of Theorems
3.1 and 3.2). Precisely, starting from a fixed mesh A we obtain a family of
polynomials which may serve as majorants in DS-type inequalities related
to A. In Section 4 we apply this extention to obtain DS-type inequalities
for @, = PM with A = {t;}7, to = =1, t, = 1 and {¢;}7~" being the
zeros of P, (Theorem 4.1). In section 5 we establish DS-type inequalities
for similar choice of A but for majorants that vanish at the points -1 and 1
(Theorem 5.1). Section 6 contains some comments and remarks.

2. AUXILIARY RESULTS

The following two lemmas belong to V.A. Markov and reveal the very
interesting fact, that if two polynomials have only real simple zeros, which
interlace, then the interlacing property remains valid also for their deriva-
tives.

LEMMA 2.1. Let by > by > 2+ > b5 61 > 3 > 1+ > ¢,, and let
by > ey > by 2y 2 bogr Let p(t) =TT, (t — i) and q(t) =TI (¢ — bi).



Then for 1 < k < s—1 the zeros of p¥)(t) : 71 > 72 > +++ > v,k and the
zeros of q¥)(t) : By > Pa > +++ > Pyy1-k interlace, i.e., satisfy the inequalities

B> s S v iBic ks 2 Yk SiBat1-ks

LEMMA 2.2. Let by > by > -+ > by; ¢4 > ¢ > -+ > cs, and let by >
c1 > by > ¢, with b; # ¢; for at least one j. Let p(t) = [T, (t — ¢;) and
q(t) = ITi=y (¢ = b).

Then for 1 < k < s—1 the zeros of p¥)(t) : y1 > 42 > +++ > 44—k and the
zeros of qF)(t) : B1 > Pa > -+ > Py satisfy the inequalities

Bi:>1-3, 03 D D10k 945k

As it is pointed out by Prof. Bojanov in ([BB], p.39), the assertion of Lemma
2.2 could be regarded also as monotone dependence of the zeros of the deriva-
tive with respect to the zeros of the polynomial. For the proof of lemmas
2.1-2.2 the reader may refer [AS] or Rivlin’s book ([TR], Lemma 2.7.1).

The next lemma can be found in ([AS], Lemma 2)). It summarizes some
V.A. Markov’s observations concerning the pointwise estimates for deriva-
tives of a polynomial. Its proof is based on Lemmas 2.1-2.2 and the Lagrange
interpolation formula.

LEMMA 2.3. Let w € Py have zeros {t;}7_y. Let Q, € P, be a fized
polynomial, such that Qn(tj-1)@n(t;) <0 forj=1,...,n. If f € m, satisfies
the inequalities

IS < 1@u(t)] Sor j=0,...,n,

then for every k € {1,...,n} there exisls a sct Iy = I, j(w), such thal
/O (@) < 1@ ()| Sfor all x € I
The set I,k is given by
Lk =[-1,08]U[BF,05] U... U [Bi sy ef JUBE ., 1], (2.1)

where {af};‘“k and {ﬂJk "=k are the ordered zeros of w((,k) and wk), respec-
tively, and w;(z) = w(z)/(z — t;).
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REMARK 1. The conditions Qn(tj—1)Q@n(t;) < 0 for 7 =1,...,n can be
replaced with the weaker requirement the zeros {0;}7 of @, to interlace with
the zeros of w, i.e., to satisly the inequalities tp < 0 < t; < --- <0, < t,.
Moreover, @, can be allowed to have a zero at 1, then w and f must vanish
at this point, too.

The n—k+1 intervals forming I, x are known as the Chebyshev intervals.
In fact, Lemma 2.3 remains true with the first and the last intervals in (2.1)
replaced by (—oo, af] and [B5_;,00). The intervals (e;,5;) (j = 1,...,n—k)
are called the Zolotarev intervals (sce c.g. [VG]). We denote the comple-
mentery set by Jnk := Jur(w),

Ink = [~1,1]\ Lo = UTZF (a2, BY).

Next, we list some properties of the ultraspherical polynomials P(") which
will be needed for the proofs of Theorems 4.1 and 5.1.

Properties:
(i) y = P satisfies the differential equation

(1—2®)y" = (2A+ Dy’ +n(n +20)y =0 ;
(ii) For A > 0, ||[PWV|| = |PPM(£1)];
(i) 4 P(’\)( ) = 22PN (),
(v) 2 P () = 22 PO(z) + (0 + 2) PO (o),
(

v) For A > 0 the ultraspherical polynomials obey the representation
(’\) E anm(A) T ()

with positive coefficients anm(A).
The proof of these properties can be found in the book of Szego [GS]
(concerning property (v), the reader can find a more general statement in

([TR], p.158, Remark 1)).

We conclude this section with a lemma, based on the property (v).

LEMMA 2.4. Let g = PMN, X >0. Then for k=1,2,...,n and for every
s>k
22 =1 (k41) (*) (¥)
|——a"" =) + 27 (=) = g (L) (2:2)

For \ € [—1/2,0) the equality (2.2) holds for k =2,...,n
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Proof. We apply the approach proposed in [BN]. Instead of (2.2) we shall
show that for all z € [—-1,1] and for A > 0

|(2? = 1)g**V(2) + s2¢¥(2)| < s¢(1). (2.3)

In the case s = k and ¢ = T, (i.e., for A = 0) (2.3) has already been
proved by Shadrin ([AS], Lemma 3). Then, for A > 0, we make use of the
properties (v) and (ii) to obtain

(2* = 1)g"**)(2) + kag® ()]
= |(z? - 1) Z an,m()‘ﬂ‘v(nkﬂ) )+ ka Z @n,m( T(k)( )|
=0

m=0

<Y anmW)|(@® = NTE(2) + k2T ()|
m=0

< Y anm(MRTH(1) = kg™(2),
m=0

proving in such a way (2.3) for s = k. For s > k we have

(=* - )‘l(k“)(x)‘i'sxflm( )|
< |(2? = 1)g** () + kag® ()| + |(s — k)zq¥)(2)|
< kg®(1) + (s — k)g™ (1) = s¢®(1).

In the last step we have taken into account that, according to (iii) ¢*) is
ultraspherical polynomial, too, and therefore in view of (ii) for z € [—1,1]

lzq®(z)| < ¢®)(1).
Finally, for the case A € (—1/2,0) one can apply the above arguments to

¢'(x) = 2/\P('\+1)( ) . The proof of lemma is completed. &

REMARK 2. In [BN] the same reasonings are applied for the proof of
Theorem C, the case A > 0, while the proof of the case A € (—1/2,0) relies
on different arguments. Lemma 2.4 furnishes a short proof of Theorem C for

both cases.

3. POINTWISE INEQUALITIES

For the proof of our DS-inequalities we will need the following extension
of Theorem B.



THEOREM 3.1. Let ¢ € P, and let {tj};-‘;'ll be the zeros of ¢, to :=
=1, t,:=1. Let Qn(z) = mzq'(z) + q(x), where m is a real parameter such

that
q(=1) q(l)}
1) ¢

(3.1)

m > max{

If [ € 7, salisfies the inequalities

1) < 1Qn(t;)] for j=0,...,n, (3.2)
then for all k € {1,...,n} and for every z € [—1,1]
/B ()] < max{|QP ()], |Znr ()1}, (3.3)
where
Zaa(z) = (S = m)g*(z) + (). (34)

Proof. Without any restriction we may regard the leading coeflicient of ¢
positive. It is easily seen that the polynomial @), has exactly n real zeros,
which interlace with the zeros of w(z) = (2% — 1)¢/(z). Indeed, we have

sign Qn(t;) = signg(t;) = (=1)"7 for j = 0,...,n — 1, (3.5)

hence each of the intervals (t;-1,%;), (7 = 2,...,n—1) contains a zero of Q..
The requirement (3.1) implies @, (1) = mq'(1)+4¢(1) > 0, while Q,(tn-1) <0
in view of (3.5), therefore @, has a zero in the interval (2,-1,¢,]. Analogously,
we obtain the existence of one additional zero of @, located in [to,¢;). Thus
we established the desired interlacing property. Moreover, it follows from
(3.5) that @, has a positive lcading cocflicient. By the above reasons we
conclude that the zeros of wo(z) = (z+1)q¢'(z) and @, (z) as well as the zeros
of Q.(z) and wy(z) = (z — 1)¢'(z) interlace. Then Lemma 2.2 asserts the
same property for the zeros of their k-th derivatives, i. e , for _7 =1,... .k
the j-th zero of Q(k) is surrounded by the j-th zero aJ of wo (k) and thej th

Zero ﬂ," of w{F), and consequently
sign Qf}k)(af) = —sign Q&k)(ﬂf) = (—l)n—k—j—l G=1...,n—-k). (3.6)

By direct calculations we obtain that Q") and Z,x(z) satisfy the relation-
ships
~(z—1—km) w(z), (3.7)

>-|-—

Zn,k(x) 3 QSlk)( )

co



Zui(2) + QV(2) = +(z + 1 + km)w®(z). (3.8)

We therefore have for j =1,...,n —k

k-

Q¥)(z) for z = of,
Zn(z) = ’ (3.9)
—Q¥(z) forz = pk.
The last relation yields, by virtue of (3.6),
sign Z ,,k(ﬂ ) = —sign Z",k((vf“) = (—1)*k-i1 (3.10)

forj=1,...,n =k —1. Morcover, since

Zn i (Bri_i) — Q&k)( Regyes —2Q£;k)(,3k-k) <0,

while Z, x— Q¥ > 0 for z large enough, it follows that zo = z¢(k) := 14+km is
the last zero of Z, x — QSI"), 1e., To > ﬂ"_k. By similar reasonings, —zo < af.

Now let f € 7, be an arbitrary polynomial satisfying (3.2), then according
to Lemma 2.3 the k-th derivatives of f and @, satisfy the inequalities

1/ ()] < 1QW(z)| for all = € I 4. (3.11)
The theorem will be proved if we show that
IS (@)] < 1Zap(2)| for all z € Jop. (3.12)
From (3.9) and (3.11), for j = 1,...,n — k we get
1/ ()] < 1Zng(h)], (3.13)

|f BB < 120k (B7)I- (3.14)
This coupled with (3.10) yields

(Zoge £ [O)(BE)-(Zne £ f¥) (k) <0,

therefore Z, x+ f(*) has at least one zero in [8%,aky] for (5 =1,...,n—k=1).
The same observation applles to the intervals [—xo,al) and ( n_k,xo]. We
prove this for the interval (85_y, zo], the proof of the second case is analogous.
Since Z, s is a polynomial of exact degree n — k 4+ 1 with a positive leading
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coeflicient and zy is the last zero of Z, x — Q¥), we have Z, x(z) > Q¥ (z) >
0 for & > 2o (we recall that the zeros of Q{¥) are located in the interval
(o, B%5_)). Then, from |f®)(z)| < |Q¥)(z)| for = > B5_,, we obtain

sign {(Znx £ f(k))(mo)} > 0.

On the other hand, according to (3.9), Z,x(B5_,) = —Q%(B5_,) < 0, there-
fore

sign {(Znx £ fP)(BE_1)} = -1,

whence the desired result holds.

Thus, we showed that each of the polynomials Z,\ £ f*) has at least
n — k + 1 distinct zeros, located outside J,, k. Since their degree is n — k + 1,
they have no zeros in J, . The inequality (3.12) then holds by virtue of
(3.13)-(3.14). The theorem is proved. &

REMARK 3. The requirement (3.1) is fulfilled, e.g., if m > 0. In the
special case m = 0 Theorem 3.1 reproduces Shadrin’s Theorem B.

Theorem 3.1 treats the symmetric case only, but applying the same argu-
ments as above one can extend it as follows (the proof is identical with that
of Theorem 3.1, therefore we omit it here):

THEOREM 3.2. Let q € 1P, and let {t;}}Z) be the zeros of ¢', to :=
-1, t,:=1. Let Q.(z) = (mz + s)¢'(z) + q(x), where m and s are real
paramelers such that

q(=1)
¢(=1)’
If [ € m, satisfies the inequalities
|S(t)] £ 1@n(t;)| Jorj=0,...,n,
then for all k € {1,...,n} and for every x € [—1,1]

If®(z)| < max{|Q¥()],|Znx(2)I},

q(1)

m+8 2> ——=

q'(1)

m—38 2

where

2

-3
Zui(2) = (S = sz = m)g (&) + (& — k)W)
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4. A DUFFIN AND SCHAEFFER INEQUALITY

As an application of Theorem 3.1 we prove in this section another DS-type
inequality where the majorant @, is the ultraspherical polynomial P

THEOREM 4.1. Let {t;}?Z] be the zeros PV (A>1), to:=—1, t,:=1.

1=1
If f € 7, satisfies the inequalities

1t < 1P, 5=0,...,m,
then
IIr®) < ||d =B (4.1)
for each k € {1,...,n}.
For X\ € [1/2,1) the inequalities (4.1) hold for k > 2.

Proof. We set q := P, )\ ;t +1 in the statement of Theorem 3.1, then
property (iii) yields ¢’ = 2,uP Y, therefore {t;}}~" are the zeros of P{%),.

We consider firstly the case g > 0. For Q,, = PP properties (iii) and (iv)
yield

n+2p( 1

L w0
Qu(e) = 5= - HPEA@) = "5 (o

zq'(z) + q(x)> o)

and since 1/(n 4 2u) > 0, we can apply Theorem 3.1 to obtain |f(¥)(z)| <
max{|Qg‘)(z)|, |Znk(z)|}, where

= = (g )+:L'q(k)(:v)]—q(k“)(m)J. (4.3)

1
Zusla) = g |(n+ 201

The theorem will be proved for A > 1 if we succeed to show that ||Q¥)|| >
| Zskll. In order to prove this we apply Lemma 2.4 with s = k. We have

2l Zuall < (0 2IEEGE() + g0 @] + g+

4.4
= (n+20gP(1) + ¢+ (1). 44)

On the other hand, from (4.2) we obtain
2| QP = l|lzg* () + (n + 2 + k)qV ()| (145)

= (n+2u+ k)q® (1) + ¢*H(1),
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where we have taken into account property (ii) of ultraspherical polynomials.
Now comparison of the right hand sides (4.4) and (4.5) asserts the desired
result, hence Theorem 4.1 is proved for p > 0 (i.e., for A > 1). The proof
of the case A = 1 needs a slight modification because of the different nor-
malization of the Chebyshev polynomials of first and second kind. Namely,
we can replace property (iii) with T (z) = nU,-1(z), the identity (4.2) with
Unle)= %mT,"(:z:) + T,(z) and to repeat the above arguments to prove The-
orem 4.1 for A = 1. Finally, the case A € [1/2,1) is treated in a similar
way, however, in this case Lemma 2.4 is valid for £ > 2 only. The proof of
Theorem 4.1 is completed.

5. A DUFFIN-SCHAEFFER-SCHUR INEQUALITY

A Duffin-Schaeffer-Schur inequality (DSS-inequality) is called any DS-
type inequality, for which the majorant @), vanishes at the end points t, = —1
and ¢, = 1. The reason is I. Shur’s paper [IS], where A. Markov’s problem
has been examined subject to zero boundary conditions.

In this section we discuss the possibility for derivation of DSS-inequalities
on the basis of Theorem 3.1. Our starting point will be the property (i) of
the ultraspherical polynomials. With ¢ = P{") we have the representation

22 +1

2 _ " > 24 /
(& = D0'E) = nln + W sad @ a6
Clearly. I i Al rement (3:1) Wikt
carly, the parameter m = R sfies the requirement (3.1) with

equality sign, therefore Theorem 3.1 is valid with Qn(z) = (2* — 1)¢"(z). In
this special case it reads as follows:

TueoreM 3.1, Let g = P, let {t;}1Z] be the zeros of ¢, and ty := —1,
tn :=1. Let Qu(x) = (z* — 1)q"(2). If [ € 7y salisfies

|f(t)] £ 1@n(t)l, 1=0,...,n,

then for each k € {1,...,n} and for every x € [—1,1] we have the pointwise
inequality

If®(z)] < max{|QP(z),|Znx(z)]},

12



where

g |

= a(z) + 2g9(@)] + (22 + Dg V(). (5.2

Zni(z) =n(n + 2)0)|

In order to prove DSS-inequality, we have to show that ||Q.|| > || Z. |- It is
easily seen on the basis of Lemma 2.4 that for A > 0 or for £ > 2

1Zakll = 1 Zap(D)] = n(n +20)l®(1)] + (24 + 1)|g*+D (D).

On the other hand, it follows from the proof of Theorem 3.1 that in this case
zo(k) < 1 and therefore |Q¥)(1)| < |Z,x(1)|. These observations show that
we may obtain DSS-inequality on the basis of Theorem 3.1’ only if ||Q¥)]| is
attained at an interior point for [-1,1]. However, it is seen from (5.1) that this
is not the case for A equal or close to -1/2. In the following DSS-inequality
we have chosen A € [—1,—1/2] in sense of Theorem 3.1".

THEOREM 5.1. Let (¢;)77" be the zeros of ¢ := P,Si)l, (A €[0,1/2]), and
let to = —1, t, = 1. Let Qu(z) = (22 = 1)¢'(z). If f € m, satisfies the
inequalities

If()] < 1@a(t), 7=0,...,n,
then for each k € {2,...,n}

IFS < el (5.3)
For X € (—=1/2,0) the inequality (5.3) holds for k > 3.
Proof. Based on the the property (i) we obtain
Q¥(z) = (1 — 20)zgW(z) + [n(n + 22 = 2) + k(1 = 22)]¢*D(z)  (5.4)

Following the reasonings from the proof of Theorem 3.1, we obtain in the
same fashion |f(¥)(z)| < max{|Q¥(z)|, | Zni(x)|} for each k € {1,...,n)}
and for every z € [—1, 1], where

z? —1

Zni(z) = n(n+2/\—2)[——k——q(k)(x)+xq(k_l)(a:)]+(2/\—-l)q(k)(:c). (5.5)

13



(both (5.4) and (5.5) can be derived from (5.1) and (5.2) by formal replace-
ment of k by k — 1 in the derivatives of ¢ and A by A —1). For A € [0,1/2]
properties (ii) and (iii) and (5.4) imply

1R = (1= 22)g®(1) + [n(n + 24 = 2) + k(1 = 2A)}g“7V(1).  (5.6)

From (5.5) we get

z? -1 i
1Znll < n(n+2X = 2)=——¢"(2) + 2¢“ D (@)] + (1 = 22)lI¢®)].

Then application of Lemma 2.4 implies

2 _
154 M(@) + 2g* @)l = ¢*1(1) for k > 2,

whence
| Zukll < n(n+2X = 2)¢%D(1) + (1 = 24)¢™ (1) for k& > 2. (5.7)

The comparison of the right hand sides of (5.6) and (5.7) proves the assertion
of the theorem for the case A € [0,1/2] (by P{?) we mean, as in Theorem 4.1,
the Chebyshev polynomial T;,). Finally, the case A € (—1/2,0) is treated
similarly, but in this case the inequality holds for & > 3 only. The theorem
1s proved. 1

6. CONCLUDING REMARKS

1. Concerning DS-inequalities, some questions arise in a natural way. Such a
question is, for instance, for a fixed majorant (0, what is the set of all meshes
A admitting DS-type inequality ? As we already mentioned, the original DS-
inequality fails to hold if in (1.2) some of the points 97 is omitted. However, is
it not true that A = {7];.‘ T s the unique mesh allowing DS-type inequality
with Q,, = T,.. A trivial alternative choice is any n + 1-tuple, containing the
seros of 1. The converse question is, for a given mesh A (e, asel of ool
distinet points, located in [-1,1]), what is the class ol all majorants @, at
these points, admitting Duffin and Schaeffer type inequality? Theorems 3.1
and 3.2 give some possible candidates for such majorants. As regards the first
question, Theorem C and Theorem 4.1 assert that, for @Qn = PYM (A >1)
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n-1

DS-inequality holds for two choices of a mesh A = {t;}, namely for {¢;}]
being the zeros of P,S:\_TI) and P,S_)l. We conjecture that DS-inequality holds
with @, = PW for any choice of {t;}}~" - zeros of P,S‘i’l with A < p < A+1.
2. The special case A = 1/2 in Theorem 5.1 corresponds to Theorem C
(A = —1/2) (see also ([BN], Theorem 3.2)), while Theorem 5.1 (A = 0)
reproduces a result of Rahman and Schmeisser ([RS], Theorem 2).

3. Theorem 3.2 may be applied for derivation of certain DS-inequalities
for non-symmetric majorants, e.g., for @, = P{*%) - the Jacobi orthogonal
polynomials.
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