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Abstract: In the present paper, we consider families of rational approzimants with an
unbounded number of the finite poles, analytic in a domain and not taking a given complex
value in this domain. Under additional conditions, we establish the normality of these
sequences.

Introduction

Let B be a domain in the extended complex plane Cand F-a family of functions,
holomorphic (analytic and single valued) in the domain B. The set F is equipped with
the sup-norm on compact subsets. In what follows, we shall deal with local uniform
convergence inside B, that is an uniform convergence in the sup-norm on compact subsets
there.

The family F is said to be normal on the compact subset I, K € B, if each sequence
F',F D F' subsets is either uniformly bounded or converges uniformly to infinity on I.
The family F is normal in the domain B, if it is normal on compact subsets in B. For
normal families, we shall use the notation F' € N (B).

The classical result of Montel provides a sufficient condition for the normality of a
family; that is

Theorem 1 (Montel): Let F be a family of functions holomorphic in the domain B. If
there are two points a and b, a,b € C,a # b such that f(z) # a,b for every f € F and
z € B then F is a normal family in B.

For details in the theory of the normal families, and for the proof of Montel’s theorem,
in particular, the reader is referred to [1], for instance.
We remind of the important generalization of Montel’s theorem; that is

Theorem 1’ (Montel): If there are two points a and b, a,b € C,a # b and a positive
integer m such that each f € F takes the values a and b in B not more than m times, then
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the family F' is normal in the domain B.

If, in addition to Montel’s conditions, the family F converges uniformly on some
continuum K in B to a function f, then it necessarily converges locally uniformly inside
the domain B itself; thus there is a holomorphic function F in B,(F € H(B)) with
f(z) = F(z) for every z,z € B.

In the present paper, we show that for some sequences of rational approximating func-
tions, it suffices only one finite point for the sequence under considerations to be normal.
This means that the function, being approximated, admits a holomorphic continuation
into a wider domain (provided the approximating sequences converge to f on a continuum
belonging to the domain).

For simplicity, we shall deal with the zero-point. It is clear that the generality of the
considerations will not be lost.

Let A be a real segment [—1,1] and ¢(z) = z + v/22 — 1 with ¢(c0) = co. For each
p,p > 1, we denote by E, the ellipse £, := {z = = + iy, 22/((p + 1/p)/2)* + v*/((p —
1/p)/2)? <1} ; Tp:= 0&, . Asit is known, |¢(z)|r, = p.

Suppose, the function f is real-valued and continuous on A(f € Cgr(A)). For a
nonnegative integer n,(n € N), we set

en = en(f,A) = inf||f — p||a,

where the infimum is taken over all the polynomials p of degree not exceeding n.

Let P, be a polynomial of best uniform approximation to f on the segment A, that

is:

”f BT Pn“A = €n
In the conditions for f, the polynomial P,, n € N always exists and is uniquely determined
by the alternation - theorem of Chebyshev (see [2]).

We say that the function f is holomorphic on A, (f € H(A)), if it admits a holo-
morphic continuation in some region E,, p > 1. We define the radius py = po(f,A) of
holomorphy as follows: po = sup{p,p > 1,f € H(E,)}. In the case when f ¢ H(A), we
set pp = 1. S. N. Bernstein pointed at the relation between lim SUP, s e},/" and pg. He
proved, namely (see [1])

Theorem 2: If f € Cr(4), then

limsup ||f = PallY" = 1/po(f).

n—oo

Hence, {P,} € N(E,,).

Bernstein also studied the connection between the distribution of the zeros of the
sequence {P,} and the holomorphic continuability. The following theorem (see (3]) is
,Valid.

Theorem 3: Let f € Cr(A). Assume that there is @ domain U,U D A, such that
Py(2) # 0 for each z € U and every n € N starting with a number n,.
Then P,(z) — f locally uniformly inside U.
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Herewith, f € H(U) and P,(z) € N(U).

The fact that P,,n € N, are polynomials of best uniform approximation plays an
essential role in this statement. In general, this result is no longer valid for arbitrary
polynomial sequences even behaiving in a "very good way” on the segment A. In fact,
Bernstein showed (see [3]) that for each function ¢ € Cr(A), one can construct a sequence
of polynomials P, uniformly tending to ¢ on A such that for every p,p > 1, the zeros
of almost all P, lie outside E,. Later we shall extend Bernstein’s result in direction
interpolation polynomial sequences (Theorem 7).

Theorem 2 is the background for investigations connected with approximating se-
quences of rational functions. There are accomplished results for the case when the number
of the finite poles is fixed. For instance, an analogue of Theorem 1 is valid (look [6]). For
further analogous results we refer, for instance, to the papers [5],{6],(7],[8],(9] and [10].

In the present paper, we confine ourselves on rational functions with an unbounded
number of the finite poles.

The first result in connection "an analogue of Montel’s theorem to some rational
sequences” was obtained by G. A. Baker and P. Graves-Morris in [11]; they considered
the diagonal in the Pade - table of a given power series f(z) = Y.°., fn.2". Under the
assumption that all the rational Pade approximants 7,(z) are holomorphic and different
from zero in a disk D centered at the zero - point, they showed that the sequence {m,(z)}
is normal (and, herewith, f admits continuation as an analytic function in D).

Throughout the present paper, we will assume f not to be a rational function. Set

on = inf ”f o R”A’

where the infimum is taken over the rational function of order (n,n). Let R, be the
function for which ||f — R||la = on. As in the case of polynomial approxiomation, the
rational function R,,n € N, always exists and is unique determined by the alternation
theorem of Chebyshev (sce [2]). Further, it is a well known fact that

on — 0, asn — oo

In 1988, Grothmann and Saff (see [12]) considered the rational functions R,, of best
uniform approximation with an unbounded number of the finite poles and established an
anologous result to Theorem 3; they proved, namely

Theorem 4:Let f € Cr(A). Assume that there is an ellipse E,,p > 1 ,for which Ry(2) €
H(E,) and R,(z) # 0 for every z € E, and each n,n € N starting with an integer.
Then {R,} € N(E,) and f € H(E,).

The result of Grothmann and Saff was extended for rational functions of best uniform
approximation with a "small” number of zero-points in the domain under considertions.
Let us denote, for cach n, n € N, and cach compact set I\ in C, by k(IR,, X) the number
of the zeros of R, on IV. The following theorem is valid (sce (13]).

Theorem 5: Let f € Cp(A). Assume that there 13 a domain U, U D A such that
Rn € H(U) for every n large enough. Assume further that k(Ry, ) = o(n) as n — oo
for each compact subset I of U.



Then {Rn,} € N(U) and f € H(U).

Before formulating the next result, we denote for a number n € N by 7,(K) the
number of the poles of R, on the compact set I\
In the present paper, we prove the following theorem:

Theorem 6: Let f € Cr(A). Assume that there is a domain U, U DO A, such that
E(R,,K) = o(n) and m,(I) = o(n/logn) as n — oo for each compact subset K of U.
Assume , further, that there 1s a domain D D A such that R,, € H(V') for every n starting
with a number n.

Then the family {R,} is normal everywhere in U ezcept for a set of zero my - meas-
sure.

If there s an integer mym € N such that 7,(I{) < m for every compact set I in
U then f admits a continuation as a meromorpic function in U, having not more that m
poles there.

(The poles are counted with regard to their multiplicities.)

Let now {T} := {Tu(2)}s2, = {[Is=1(z — Zx,n) be the sequence of the Chebyshev
polynomials on the segment A. Denote by X = {yn}{=, the correspondimg sequence of
Newton type, and T¥, n = 1,2, ... - the Chebyshev polynomials of Newton type. We recall
that yv ;== zppnfor N=1+4+ .. +nand ynyi:=zp41ifor N=1+..+nandl <1< n;
Ti(2) o= [T (= — ve):

Let f € H(A) and n,m be a pair of fixed nonnegative integers. There exist polynomals
Pn and ¢, of degree < n and < m, respectively such that the function

\11(2) = (f(3)~_(/m( ])n( / 1+m+1

is analytic on A. We now set 7, 1 := pn/qm. The function r, ,, is called an interpolting ra-
tional function of order (n,m) to f of Newton type, corresponding to T', or T-interpolating
rational function of order (n,m). Obviously, for each pair of integers (n,m),n,m € N the
rational function r, , always exists and is uniquely determined.

This construction is a particular case of a general construction introduced by E. B.
Saff (see [9]).

We prove the following theorems.

Theorem 7: Let the function f be holomorphic on the scgment A. Denote by P* the
sequence {P*,},n € N of the T-interpolating polynomials. Assume that there is an open

set U, U A # 0 such that for each compact subset ¥ of U we have k(P*y, ) = o(n) as
n — o0.

Then {P*,} e N(U) and f € H(U)
In what follows we shall write 7, := 1, ,. Let

(2) == pa(2)/qn(2)

where both polynomials do not have common divisors. Denote for n € N by P, the set of
the finite poles of the rational function r,,. We say that P,, — oo, as n — o0 if the infinity
is the only concentration point of the set {P,} n=1,2, ...
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Theorem 8:Assume f € H(A) and P,, — oo, as n — oco. Assume that there ezists an
open set U, U (A # 0 such that k(r,,I) = o(n) for each compact subset I\ of U. Then
the family {r,} € N(U) and f € H(U).

Preliminary Results

Lemma 1: (Lemma of Bernstein-Walsh, see [4]). Let B be a domain in C and g €
H(B)N C(B). Suppose a; € B,i =1,...,n+1 and denote by S, the polynomial of degree
not more than n which interpolates the function g at the points a1 =1,...,n+ 1.

Then, for each z,z € B, it 1s valid that

n+1

ai g(1)
— Sq)(2) dt.
(g 27rz/aBHt—a,t—z

Lemma 2: For each integer n,n € N, let Ty (2) Hk ((z — xkn) be the Chebyshev
polynomaal of degree n for the segment A.

Then

a) the points {z, i} are uniformly distributed on A with respect to its equillibrium
meassure.

For the polynomials T ,n = 1,2,... of Newton type for T we have

b)
Tild" =

lml T,

and
c)
lim |T(2)|'/" = (1/2).]6(2)|

n—

locally uniformly inside C — A.
The proof of this lemma follows from results of J. L. Walsh and M. Tsuji (sce [4] and
[15], respectively).

Let now the functions Fy,(z),n = 1,2,... be analytic in a domain B except perhaps for
branch points, and let |F,(z)| be single-valued there. We say that the harmonic function
v(z) is harmonic majorant for Fy,(z) in B, if for every continuum M, M C B there holds

limsup || Fn(2)||ar < exp(n}\z}x v(z))

n—oo

If a strict equality holds, then v(z) is called an exact harmonic majorant. The next lemma
is valid:

Lemma 3: (see [14]). Let B be a domain in C and let the functions F := Sl (S =
1,2,... be as above. Assume that the harmonic function v(z) is a harmonic majorant for

the sequence {F,(z)'/"}.

()]



If there 1s a continuum M such that a strict equality holds, e.g.

limsup | F}M™ ||y = exp(m‘«';xv(z))
1

n—oo

1/n

then v(z) is an ezact harmonic majorant for the family F,'" in the domain B.

Further, for each compact subset I{ of B, we have

E(Fy,I{) = o(n) as n — oo

Lemma 4 (see [16]:Let M be a regular set in C and B be a domain, B DO M. Set
Sn be a rational function of order (n,n), S, € H(B).
Then for every compact subset K, I\ C B, there is a constant A\, \ > 1 such that

”Sn ”1\’ S ”511”1\[./\”

Proofs

Proof of Theorem 6.

Theorem 6 will be proved under the additional comdition that D C U. Otherwise,
the statement results from Theorem 5.

Let
Rn — Pn/Qn

where both polynomials P, and @, do not have common divisors and (),, is monic.

We say the integer n,n € N is normal if the number of the poles of the rational function
R,(z) in the extended complex plane C is equal exactly to n. Denote by =,= € N, the
sequence of the normal integers; = = Z(f). It is easy to verify that = is infinite iff the
function f is not a rational function. For such a function, for every n,n € N the equality

R, (2) = Ry, (z), where ng := max{n',n’ <n,n’ € Z} is true. Therefore, in what follows,
we shall assume for sake of simplicity that deg P, = deg (),, = n for any n. In view to the
above considerations, the generality of the considerations will be preserved.

We now notice that in the conditions of the theorem, the domain U is symmetric with
respect to the real axis.

As it is known

Ry(z) = f(2), asn — 0 (1)

uniformly on A.
Further, for each n,n € N, there follows from the alternation theorem of Chebyshev

the validity of the representation

(Rn-H - n ) Qn ) Qn+l( = An-“’2n+l(3) (2)

where A, is a suitable constant and wa,41(2) is @ monic polynomial of degree 2n + 1; all
the zeros of wqy41(z) are simple and belong to the interval A.
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In the conditions of the theorem, it is obvious that f # 0. (Otherwise R, = 0 for
every n € N). Let A’ be a subinterval of A such that f(z) # 0 there. By (1), there are
two positive constants Cy and C3 such that for every z,z € A’ and all n sufficiently large
(n > np) the inequalities

C1 < |Ru(2)] € Coyn > my (3)

are valid.

Everywhere afterwards we shall denote by Cj,7 = 1,2, ... positive constants which do
not depend on 1.

We fix the simply connected domains V and W, such that A ¢ V. ¢ W C U.
We set now Pp(z) = vn(2).ph(2) and Qn(z) = nn(2).¢,(2), where p}(2).q;,(2) # 0 for
z € W. Both polynomials 4,(z) and 7,(z) are normalized to be monic; set deg vy, = m,,
degnn = sn. Let X,,,n € N, be the regular branch of the function (7,.R;'.n;71)/"(z) in
V for which X,,(c0) > 0. The functions X,, are holomorphic on V and, the family {X,}
is with respect to lemma 4 and to (3), uniformly bounded on the set V. Further, taking
account of the conditions of the theorem, we see that

HX,I(z)Hg/n —lasn — oo

From here, we obtain
X, (2)]M™ > 1lasn - oo

uniformly on A’. Indeed, suppose to the contrary that there is a subinterval A” of A’ such
that for 2 € A”, limsup, _ . |X.(2)['/" < 1. Let |A”] be its lenght; |A”| > 0. It follows
from our assumption and from the conditions of the theorem that

R 1/n
111}1_1’1£f Inallfn >1 (4)
In fact, let 6 be an arbitrary positive number; for every n € N large enough we have

Cn > hvllar 2 (exp 61A71/4)™

so that, with respect to the conditions of the theorem, (4) holds. On the other hand, for
the polynomils 7,(z) we have, for n sufficiently large

Cy" 2 ||nmlla» = (exp 6]A7]/4)™,

which is an obvious contradiction to (4).
Taking now account of the symmetry of the functions R,,n € N accordingly the real
axes and applying Vitali’s theorem, we obtain that

X,,(z)l/" —lasn— o

'uniformly on V. Then on each compact subset I of V' the inequality

1
limsup [|(Rn41 = Rn)-77n77n+1”1\'(n <1
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holds. Denote
On(2) := (Rng1 — Ry)(2) 0 (2)m41(2);

the functions |©,|'/" are subharmonic on V. Let us assume that lim sup,,_,__ ||(—),,|[]A/" =1
= )

then, by Lemma 3, the family {© ,l,/"} has the zero-function as an exact harmonic majorant
in V (and on V). The further application of Lemma 3 yields that k,(©,, L) = o(n) as
n — oo on any compsact subset I\ in V.. But, for the compact set A, we have, in accordance
to (2), that kn(On,A) = 2n + 1. Therefore, the assumption that limsup,, _, ||@,,||X" =1
is not correct; thus

lim sup ||(-),,||}\[" <Al (5)

n-—oo

for any compact set in V.

We now are going to prove that the family R, (z) is normal everywhere in V' except
for a set of zero m;—measure; herewith the function f admits a holomorphic continuation
there and, if degn,(z) < m , then - as a meromorphic function having not more that m
poles in V (multiplicities included).

For our goal, we write

I"
7]1)(:) = H(: =2 Vn,k);
k=1
in the conditions of the theorem,
l,, = o(n/logn) as n — oo. (6)

For a fixed positive number ¢, let

Uy ii=edzs |z = vu k| < 5/21,,.1:2}

and

[o%e) (45
Qe:= LJ LJ Un$-

n=n; k=1

Further, for z,z ¢ §2¢, we have
()] 2 (/24 ) .

We introduce m;(.) as follows: for each set e in C', we set my(e) = inf ) |U, |, where
the infimum is taken over all covering disks Un x; U n,k| 1s the corresponding radius.

By our definition, we have

mq(§2) < Zs/?n2 <7E.

We notice that 2. 1s an open set and Q¢, C Q,, if €2 < £;.

)= — Sz (Z).

For each compact set I¥, let K(e
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Let p' := sup{p,&, C V}. Select a positive number ¢ such that € < (1/2).(p' —1/p")
and V(e) D A. After (5) there is a positive number ¢, ¢ < 1 such that for every z € V(e)
and n sifficiently large (n > ny)

I(RH+I - Rn)-”n-’}n—}-ll(:) < ‘1”’ (8)

(We have applied the maximum principle for holomorphic functions.)
Coming back to our considerations, we obtain from (6) and from (7)

(Rpg1 — Rp)(2)| € Cig™(2.1h.02 €)™ (2.1npr.(n + 1)2/e) "+ 2 € V(e),n > n,.

Hence, by the conditions of the theorem, the series Y (Rn4+1 — R,)(2), and herewith, the
sequence {R,(z)}, converges uniformly on V(¢).

We now recall that R, (z) — f(z) on A (sce (1)). Then, by the theorem for the
uniqueness of the holomorphic functions, f is holomorphic on V(¢).

Suppose now that there is a sequence A, A C N for which the sequence 7,(z) converges
inside V. From the generalized Montel’s theorem, it follows that this is certainly the case
when degn,, < m. Denote the limit function by 7(z); we notice that 7,(z) € H(V). Set

®,(z) = (R,.mn)(z). By the theorem for the uniqueness of the holomorphic functions, the
functions ®,,(z) converge uniformly on V itself. Let ®(z) be the limit function; obviously,
®(2) € H(V'). From the representation f(z) = ®(z)/n(z), it follows that f is meromorphic
in V and the number of the poles in V does not exceed m. Also, it is obviously to see
that all the poles of f in V lie among the zeros of n(z).

To complete the proof of the theorem, we have to exhaust W by V and U by W and
to apply the previous results.

Theorem 6 is proved.

The proofs of the coming theorems repeats the main idea laid out above. We will
confine ourselves only on sketching the most important steps.

Proof of Theorem 7.
We first notice that in the conditions of the theorem, for every n,n € N, the repre-
sentation

Pria(2) = Pi(z) = An.T44(2) (9)

holds, with A,, a suitable constant.

We recall that f is holomorphic on the segment A. Let p be such a number that the
function f is holomorphic on &,. For cach integer n,n € N and =z € £, we have, accordingly
to Lemma 1

f(:)— n i ‘)71'?/ f ,,+| /T,,+l(f Z)(H

From Lemma 2, b) and ¢), we get

limsup || f — P,,||l/" <1/p (10)

n—0oo



so that

Py(z) = fasn — oo

uniformly on A.
Hence, the family P,’,'(z)l/", being normal in the domain U, converges locally uni-
formly inside U, to 1.

Using now lemma 2, a) and repeating the considerations in the proof of Theorem 6,
we come to the conclusion of Theorem 7.

Proof of Theorem 8.

In the conditions of the theorem, we have

7'n+l(z) —ra(z) = Avl-T2‘n+I(2)/(11:(3)'(1n+l(z)

with A,, a suitable constant.
Provided f,r,,€ H(E,),n > n' we get from Lemma 1,

1 * *
f(Z) —7'11(2) = 5;_;/1‘ {f(t) 2n+l(z)qn(t)/q"(z)T%u-}-l(t)(t°—z)} dt (11)
In the conditions of the theorem, it is clearly true that for any ,7 > 1
limi n . n n =
im inf{[lglr, / min g (¢)]} 1

From here and from (11), we obtain

limsup || f — 7'”||1A/" <1/p(U) (12)

n—oo

where p(U) := sup(p, E, C U).
Hence, the sequence r, converges to f on A.
Using now the previous considerations, we see that Theorem 8 is true.

We observe that the rational sequences we have dealed with converge to f on the
segment A with the speed of a geometric progression, and the speed is given by sup(p, E, C
U). In fact, for the rational T - interpolating sequences, this follows from Bernstein -
Walsh’s lemma (compare (10) and (12)). As for the rational function {R,}, this statement
follows from Theorem 6, Theorem 1 and from the definition of the rational functions of
best uniform approximation.

This fact is of importance for the case when there is no information about the be-
haviour of the zeros of the approximating rational functions so that Montel;s theorem is
not applicable. In the case of & "geometrie” convergence on A, the sequences necessarily
converge inside some larger domain containing A. The validity of this statement follows
from

10



Theorem 9:(see [17]) Let [ € Cr(Ad). Suppose that there is a sequence of rational

*

functions {7'",,""(2)} with lim, ..o n/m, — 1 and limsup,,_, |75 (2) — leA/" < 1/py for
a number py,p1 > 1. Assume further that r) € H(E,,) for every n € N.

Then, the sequence {r;} converges, as n — oo, locally uniformly inside E,,, where p;
is gien by p2 = (p + 1)/p:1;/2 + 1). (and, herewith, the functions f admits a holomorphic
continuation in the ellipse E,,.

This result refers to rational sequences with an unbounded number of the finite poles;
as for polynomial sequences or sequences with a fixed number of the poles, the convergence

everywhere inside the ellipse E,, follows from Walsh’s results (see [3]).
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