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Absract. We prove existence of global solutions to a semilinear mass-

less Dirac system with small initial data. We study solutions in generalised
Sobolev spaces suggested by S. Klainerman. Our approach is based on using
conservation law of charge together with Sobolev type weighted estimates
for the spinor field. Our result seems to be sharp in a view of blowing-up
results obtained by I'. John (see [7]). We also study decay properties of the
spinor field.
With similar methods we prove global existence for a nonlinear wave equa-
tion in three space dimension. The same equation was studied by TI'. Sideris
[14] and H. Takamura [15]. They proved global existence for spherically sym-
metrical initial data. In this work we remove this condition on the initial
data.

1 Introduction

We consider the Cauchy problem for the semilinear massless Dirac equation
in Minkovski space-time R+

Dy = F(¥),

*The author was partially supported by Contract MM-516 with the Bulgarian Ministry
of Education, Science and Technology



$(0,2) = =), (1)
where D = y"d,, (with usual sumation convention) is the Dirac operator,
do = 0,05 = 0,1 < J < 3,0 = (¥1,92,¢3,%4)" is the spinor field and
y# are the Dirac matrices. Dirac matrices satisfy the following commutator
relations:

Y+ = 2901,
0< < 3,

where (g,,) = diag(-1,1,1,1) is the Minkovski metric and 14 is the unit 4 x 4
matrice.
For the nonlinearity /' = (Fy, Iy, Iy, Fy)" we assume F() = O(|9|?).

Various problems in quantum mechanics can be reduced to (1) (see [2]).
We are interested for which p the Cauchy problem (1) has global solution.
As an extension of the preveous work [16] we prove that (1) has a global so-
lution for p > 2 providing the initial data are sufficiently small with respect
to suitable Sobolev norms. With the method we prove global existence for
p > 2 we can obtain local solution in the case p = 2. In a view of [7] one may
conjecture that this lecal solution blows-up in finite time for some nonlin-
earities F'(1). If we follow ideas of 'I'. Sideris (see [14]), we have to require
some symmetry of the initial data 7 (spherical symmetry is not apropriate
for the case of Dirac equation). One also may conjecture that global exis-
tence of (1) when p = 2 could be obtained if the nonlinearity F' satisfy some
structural condition similar to the well-known null condition of S. Klainer-
man (see Klainerman[10], Bachelot[1]). In the case p = 2 we show that for
every ¢ > 0, there exists 7 such that |92 = ¢ and [¢(1,.)];2 tends to oo in
finite time (sce Theorem 2).

We construct global solutions of (1) for p > 2 in generalized Sobolev
spaces following ideas of Klainerman(see [9], [10], [11]).
We introduce the following vector fields:

J J
Oh=—,0;=—,1<j5<3,
=Y Qz sk
J 1]
Qy;=l—+z;—,1<7L3,
0 Gt gty Mgir el
J d
Qi =2, — —20;—,1<i.7<3,
: IJ(').I',' , ('):l:j At =
| IU * J : J I J
L= tl— 4 )= + x9— + ra—.
()[ h (.)J'l 12(.);!.'-‘) .*l.).lf;‘

The above vector fields are a part of the full conformal group in Minkovski
space time.
Since £, does not commute with the Dirac operator we introduce Fermi
vector fields (sce [1]):

A 1

QIU’ = Qu + 5 Tuvs

0<n.r<3



Let us denote:
= (Ty,..,I'n),

where I'y,...,I'y; are 9,,Q,, and L.
I'=(Ty,...,I'n),

where f’l,...,fll are (')‘,,Q,“, and L.
We have:

[Fia FJ] = C?jrka

[[:, T;) = eT,

1<4,5 <11,

where cf;, ¢¥; are constants (see [9] and [1]) and [.,.] is the usual commutator
of vector fields. Therefore the linear span of vector fields from I' forms a Lie
algebra. The same is true for I'.
If a =(a,...,a11) is a multiindex, then we set:

o i
Y =T ealsdt,
We define the following norms:

[u(O)lr,ep = D IT%u(t, )lLr,

laf<s

W(Olpsp, = 2 1T %L ) Lo

lal<s

Further we set:

llwllr,s,p = sup [u(t)|r,s,p,
tER+

”wllf’,s,p = tsel}%:_ |¢(t)|[.‘,3.P’

W = {u: ullr,p < 00},
WF"’ = {hs ||¢“1",s.p oy

Remark: For simplicity we shall omit in most of the cases the index I
(respectively I') from norms ||.||r s, (respectively ||.||I="‘p).

We have the following relation between elements of I' and Dirac operator:

['D, flu',,] =10

[D?au] =0,
(D, L] =D,
0 < pu,v<3.

Taking into account the above relation one can obtain the following form of
the conservation law of charge for Dirac equation:

'



Lemma 1 If ¢ is such that:
Dy = I,

then for any m > 0 one has:

]
l¢(")|m.2 S C(l‘/[‘(o)'mﬂ +/0 ll( -"')Im,’l(ls)-
Now we can formulate our first result:

Theorem 1 («) Suppose that p > 2 and the initial data of (1) satisfy:
Do I+ Do)l < (2)

laf<2
If:
Xo = {9 : 1]l < 0,

then there ezists ¢y > 0 such that for p > 2 the initial value problem (1) has
a unique global solution in X for 0 < € < ¢, providing § > 0 sufficiently
small.

(b) If p = 2 and the initial data satisfy (2) then we have:

Te > exp(efc) — 1,

where T, is the life span of the solution.

(¢) Suppose the initial data (1) satisfy:
Do I+ LD gz + 10+ LD (e + 10+ LDPVR() e < €.
lof<2

Then (1) has global solution with the following decay property:
c
t,)| < :
NS T TR+ 1= el

where k = max(1/2,p — 3).

|

Remark: It scems to be true that the local solution obtained in part
(b) blows-up in finite time for some special nonlinearities.

We can prove the following.
Theorem 2 Suppose the nonlinearity I in (1) has the form:
F($) = Gp)y" v,
where G() = O(|v]) and G(¥) > |
Then for every ¢ > 0 there exists 1, such that:
InlL2 =

and the solution of (1) with initial data 1 is such that [{(t,.)|;2 tends to co
n finite time.



Remark 1 : We can take for example:

F(y) = (Il + 192l + 193] + [9a])7°%,
F($) = [¢17%9.
Remark 2 If F(y) =< 1°%,% > e or F(¥) =< 1°7°%,9 > e,
then due to Klainerman and Bachelot(see [10] and [1]), one may conjec-

ture that there exists global solution of (1) (here e is a constant vector and
7® = —ir%yy%y).

In this paper we shall also consider the Cauchy problem for the nonlinear
wave equation:
we — Au = |ug]”, (3)
u(0,z) = f(=),
u(0,2) = g(z),
where (t,z) € [0,00) X R™, f,g are the initial data and A is the Laplace
operator on R™. In [14] T. Sideris obtained global solution of (3) in the
case n = 3 for v > 2 requiring the initial data are spherically symmetric
functions and they have compact support. Il. Takamura [15] removed the
assumption on the support of data for integer v. The case of spherically
symmetrical data is in fact one dimensional problem and classical Sobolev
inequalities are well adapted to the Cauchy problem (3).
Here in the case n = 3 we obtain solution of (3) for » > 2 in generalised

Sobolev spaces with the same idea of the proof of Theorem 1. We have the
following.

Theorem 3 (a) Suppose n = 3 and the initial data of (3) satisfy:
2o 1A+ LD Ol + 30 11+ LD07g()lee < e

lo]<3 laf<2

Let Hp be the closure of CG° with respect to the seminorm:
lullip = IVull22 :

If:
Ys={ue Hp: |lullu, <6}

then there exists ¢g > 0 such that for v > 2 the initial value problem (3) has
a unique global solution in Ys for 0 < € < ¢y, providing § > 0 sufficiently
small.

(b) Suppose the initial data of (3) satisfy:
Do+ Ola + 30 1+ LD g()lee +

lo|<3 la]<2
1L+ 1D Olee + 1+ LD UgOI+ IV F(ODIzee < €
Then (3) has global solution with the following decay property:
c

|u(t, z)| < (1+t+|2z))(1 + |t = |2]])"

where k = maz(1/2,v — 2).

ot



Remark 1 The same result holds when the nonlinearity has the form
|Vul, where V = (0, V).

Remark 2 This result is sharp taking into account 7], where it is shown
that for » = 2 the solution of (3) blows-up in finite time.

Remark 3 If n = 2 one can obtain solution of (3) for » > 3 with the
same arguments of the proof of Theorem 3.

After this work was completed, the author learned that earlier K. Hidano
and K. Tsutaya obtained independently the same global existence result for
the Cauchy problem (3) (see [4]), by using similar methods.

If we turn to the general case for n, then we can obtain result just for
the integer case for v.

Theorem 4 If n > 4 and the initial data (V f,g) € W* x W™ (s > n)

is sufficiently small then (3) has global solution for v = 2,3,4, ...

2 Proof of Theorem 1 and Theorem 2

We need the following Sobolev inequality due to Hormander (seie [5]) and
Klainerman (see [11]).

Lemma 2 Ifu(t,z) € C§°(R4+ X R™) then the following inequalities hold:
_n=l il
(@)lu(t,z)] S e(T+t4]z[)” 7 (1+[t = |2|])7 7 |u(t)]sp
where s > n/p.
151
(O)lu(t, Mas < 1+ 076D u(t)]
where p < ¢ < 00 and s > n(% - ;‘,-)

Proof of Theorem 1:
We define a map:

M:p— o
For given 1 we define ¢ as a solution of the following linear Dirac equation:

$(0,2) = ().

Using lemma 1, lemma 2 and Holder inequality, one can obtain:

t
16(t)]2.2 < (e +/0 |F($(7,.))laadr) <

et [ (T 1E=9tr, sl = +

lof<2



ST e ) PP, (s )| fe )dr) <

lal<L,1B1<1
o(e + At((l £ 7))y + (14 7) 721220 D () 0)Pdr) <
e+ 1vl5.2)
Hence:
M pll2,2 < el |[l15.)- (1)

Therefore, if we take ¢ and § such that ¢(e + 67) < é, then we obtain My €
Xs, WJIC!] P € Xs.
If 9,9 € Xg, then using lemma 1, we obtain:

(M = MY Oha < e [ 3 1(FW) = FO) idr
lal<1
Further, for any a such that |a| < 1 via H6lder inequality, one has:
Il””'(l'(a/')— F($))(7,.)] 2 <
I = T (= (7, e +
P97, )l = $)( lu [(r, )L + 197, )Ee)-

Using lemma 2 one obtains:

A t 3
(M = MDYz < /) (14 7)Y (= D)) a2l (s 2 dr <

o1t ”v‘/, £ l/",”l2

' < ¢; < 1, then for any w,IL € Xs we

Hence, if we take ¢ such that ¢é”~
have:

M= Ml < exllyp = 02, (5)

Further for arbitrary b, ) € X using lemma 1 one has:

- t ~
(M — M§)(E)]az < e / (F() = F($))(7)l2adr <

/ S ()T = P G)(r, )| adr +

la]<2
/ 25 LI (F T el = F ) g )T, )2,
'0|<| |11|<l J=1
where [ is the matrice with entries 9 Fj, 1 <k, j <1, and 1] is the Hesse
matrice of /'
Using Hélder inoquulily we obtain:
[(F () = F(P) PP (T, )2 =
[(F'(9) (T = T9) + (F'(¥) = F'( d'))l‘“d’)(T»-)lu <
Jve(r, Dl T )l +
IP(r, Mazl(v = B)(r, )L (6, ) +w»<r ). (6)



Further we have:

[(F ()P plPyp — FI()TpIP9)(r, )2 <

[((F¥ () = FJ'($))T* D7y + F ()T yp(IPyp - TP9) +
FI() (T = T*9)IPh)(r, )12 <

I((F}'(¢) = F{'($))T* P p)(r, )2 +

[(r, I [P0 (r, )l PP (% = )(r, )lps +

(T, e [P (T, ) pal T (% = )(7, )l

Using (6), (7) and lemma 2 one has:
(M = MP)(t)|22 <
t . f
c/ (1+ 7)Y = dllaa (W52 + 19152 dr +

/ DY ZI((I"’(w FI'()) o plPyp)(r,.)| padr.

la|<1,|81<1 5=1

We shall consider two cases for p.
Case 1: Let 2< p < 3.

We shall use the following inequality which is valid for 0 < £ <1

|z — y*| < e|z - y|*.
Using (9) and Holder inequality we obtain:
I((F}' (%) = (@)Dl p)(r, )12 <

el(Ip — P2 Tl y(r, )l <
c|P*p(r, )|Lal TP9(r, )Ll (¥ = ¥)(r, e,

where:

1/q+1/q+(p—-2)/6=1/2,ie. q=12/(5- p).
Hence:

62>qg>4
Now we are in a situation to apply lemma 2:
W((F' () = F{ ()Tl )(r, )2 <
e(1+7) ()l - DML
Hence for any 1, P € X5 one has:

M3 = Mp||2z < |19 — Plla2(ll¥lB2" + ||z/3||"“
el = PIENYIE 2 < (6”19 = Dlla2 + 63119 — PIIT

Therefore if ¢(6P72 + §2) < 502’ then:

MY = Ml22 < c2(ll¥ = Pllzz + ¥ = D5,

8
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(8)

(9)

(10)



where 0 < ¢p < 1.

We take 1y to be the solution of the linear Dirac equation: -
Dy =0,
P(0,z) = 1(z).
We consider the usnal iteration:
Ymt1 = My,

For € sufficiently small ¢y € X5. lence ¢,, € X5 for every m. Therefore,
taking into account (5) and (10) we obtain:

||1/’m+l - ‘/’1:1“‘2.2 + ”'y/'m-H ¥ ‘»'m”l;:; S.
1/2(”1/}m - 'l»['m—l ”'2,’2 + “l/,’m o ‘»'m—-l”,lj,—'lz s (11)

providing ¢; and ¢y sufliciently small (i.e. §).
Inductively from (11) we get:

”wm-}-l = 1/’111“’2.2 + [¥ma1 = ¥l ’ll.:’2 < %
lence:

”1/)711-}-1 = ‘¢’m”2.2 < 2%’
and we conclude that v, is a Cauchy sequence in ng'z. Hence v, converges

in WIZ‘2 to the solution of (1) providing ¢ sufficiently small(i.e. the initial
data).

Case 2: Let p > 3.

When p > 3 one has:
((F'(#) = FY (NP 9L ) (7, )lpe <
el D, Ml P70 )l = D) s (1907, )IE + 1 )IE).
Using the :\,l)()wl\ estimate in (8) we obtain for any ¥, l/.’ € Xs:
M = Mplas < oM = fla
It remains to use similar arguments like in case 1. This completes the proof

of part (a).

Proof of part (b):
We denote:

Xer = {¥: sup |[(7)]22 < =}
0<r<T

Application of lemma | and lemma 2. like in the proof of part (a) leads to:

|7/’m+l(7-)|‘.’.'.’ < el I"(l + 1) sup I"/’m(T)lg.'.’)'

n<r<t

9



In order the iteration to be such that ¥,,4; € X.7, when ¥, € X, 7 it is
necessary that the following quadratic equation has real roots:

ln(1+t)-22—z+ce=0 ' : (12)
It is easy to be seen that (12) has real roots, iff:
t <exp(cfe)— 1.

If we denote by 2o the smaller positive root of (12) then the iteration provides
local solution of (1) in X, 7, where:

0 <z S. 20,
T < exp(c/e) — 1.

This completes the proof of part (b).
Proof of part (c):

The proof is direct consequence of lemma 2 and Theorem 4 of [16].
This completes the proof of Theorem 1.

Proof of Theorem 2:

We shall choose 1 € L? such that:
supp 7 C {z : |z| < R}

Hence for solutions of (1) we have:
supp ¥(t,.) C {z:|z| < t + R}

Multiplying the equation (1) with —4°% and integrating over = we ob-
tain:

] lealE= [ Gl

|=|<t+R

Taking into account the requirements for G' and via lolder inequality, one
obtains:

d 2
- >
7 /R [¥(t, 2)[*dx >

[ o 2 e R7S[ (e, 2)Pde)?
|z|<t+R R3
Further we set:
y(t):/ [W(t, z)|%dz
RS

Hence we have that:

y, 2 _c_.:l_/..aﬁ.__,
(t+ R)3/?
0 < y(0) = yo.

(13)

10



Integrating the inequality (13) we obtain:

c 1 C i

Hence if 2 < c*yy then y(t) goes to infinity in finite time. We can choose
n € L? such that |5|,2 = € and supp n C {z : |z| < c*y}. A direct
computation shows that we can set:

we) = (),

where 2 < k < 3, and:
¢ e C5, supp & C {x:|z| < 1}).

This completes the proof of Theorem 2.

3 Proof of Theorem 3 and Theorem 4

Proof of Theorem 3:
Proof of part (a):
As in the proof of Theorem 1 we define a map:

L:v— w
For any v we define w as a solution of the following linear wave equation:

(02 — Ayw = |u,|”
w(0,z) = f(z)
wt(Oa"l") — g('L)

We have the following relations between the elements of T and 92 — A:

[0 - A,Q,,]) =[0? - A,0,] =0,
[0 - A, L) = 0% - A,
0< v < 3.

Hence we have the following form of the classical energy estimate:
Lemma 3 If u(t,z) is such that:
(07 = A)u = (L, z),

then for any m > 0 one has:

t
Ivu(t)ll‘,m.'z & ‘?(IVU(OHI‘,m,z +/0 IF(S)II‘,deS)'



Using lemma 2 and lemma 3 like in the proof of Theorem 1 one can obtain:

IVLoll2,2 < e(e +[[Vll3,2)- . (14)
Moreover for any v, v € Y5 we have:

V(Lo — Lo)liz2 < ai]|V(v = 0)|1,2 (15)

V(Lo = L)z < a1V = 322 + [I9(0 - D3, (16)

where 0 < ¢ < 1,0 < ¢y < 1, providing & sufliciently small.
Further we take uy to be the solution of the homogencous problem. We
consider the iteration:

Um+1 = Ly,

Taking into account (14) we see that w41 € Ys, when u,, € Ys for ¢,6
sufficiently small. Considering (15) and (16) one obtains:

”v(um+] = “1:1)”2.2 + ”V( U1 — um)”‘l,;z2 <
1 _
E(Hv(“m = Uy~ )”2,2 + ”V( Uy — Um—1 )”lll,’22)w

providing ¢; and ¢, sufliciently small(i.e. 8 ).
Hence:

IV (g = )22 —-0, (17)

when m,p — occ.
In fact u,, converges to solution of (3) because via Newton formula for every
T >0andte€[0,7) one has:
|(u'm+1 = “m)(’)l'),? _<_ CT sup Iv(“m-{-l = um)(T)|2,2-
0<r<T
Therefore, from (17), for any 7' > 0, we see that u,, converges with respect
to norm:
sup | o (7)]22
0<r<T
to the solution of (3).
This completes the proof of part (a).
Proof of part (b):
To prove part (b) we need the following two lemmas:

Lemma 4 (sece [12])

If [ is a continuous function and r := |x|,then:
L W
/ f(lyl)dS, = 27r—/ AS(A)dA.
|ly—z|=t T Jir-t|

Lemma 5 Ifn > 2, then:

/l’ ds > b—a
e (c+8)" = (c+a)Ye+b)
where b > a > 0, and ¢ > 0.



Proof: We have that:
/b - 1 /" B b—a
a (c+s)" = (e+a)2Ja (c+3)?  (c+a)Hc+d)
This completes the proof of the lemma 5.

Using the representation formula for the solution of the wave equation we
see that for every solution u(¢,z) of (3) we have:

i t—s

| A :
wha) = wta)+ - [ ([ (s ulds,is,

where uo(t x) is the solution of the homogeneous problem with initial data

(/5 9)-

We have the following estimate for the linear equation due to Pecher (see
[12]):
c
olte 2N S T - e

Using lemma 2 and lemma 4 one obtains:

L |
[ == s, )lds, s <
ot—s ly—z|=t—s

t
ClIV"H’z’.z/ ol s [y (1 + |s = |yll)™*/?dS, )ds =
|ly—z|=

rt—s Ad)
B! // ds.
ellvellzz -~ r=ts] (14 s+ A)Y(1+ |s — |A|])*/2

It is easy to be seen that:
[r=t|<s+ A<+t
when:

s € [0,t],
AE(|lr—t+s|,r+t— s

Therefore by changing variables:
a=s+ANpf=s5-A

one can obtain via lemma 5:

|ue(s,y)|"dSy)ds| <

ly—z|=t-s
r4t
clIullg 7! [ / TR T R
r+t da
vullt ., r-t / —_—
C“ u”?,? U Lat (1+a)u—l
v _."'l' 7‘+{—|T_t|
C”V‘lt“zz T (l ol t)(l ¥ l.’. L tl)u-—? =
cl[Vullz

(L+t+z)(1+ |t = |z|])~?

13



since 7+ ¢ — |r —t| < 2.
Ience:
c

o) S T D + 1= el

Combining the last estimate with lemma 2 completes the prove of part (b).
This completes the proof of Theorem 3.

Remark: Oune has difliculty to use the idea of proving theorem 3 for
the general space dimensions, since Sobolev inequality costs losses of deriva-
tives. One may try to overcome the difficulty by estimates similar to these
obtained in Georgiev [3]. One also may try to use some generalised form of
Strihartz inequality (see [8]). Another approach is this developed by Ruis
and Vega (sce [13]). The idea is to estimate more refined mean values of
fractional derivatives of the solution of the equation (3).

Proof of Theorem 4:
To prove Theorem 4 we need the following lemma:

Lemma 6 (a) If f,g € C§° then the following inequality holds for m > 0
integer:

If.(/(,‘)"Zm.'Z S "(If(")lm.ool.’/(,)I'.?m.Z + If(”lyn.?l!](")l?rn.co)-

(b) If f € C§” and m > 0 is an inleger then the following inequality holds:

|f”(0|2m,2 < le(l)lﬁiﬂlolf(!)lzm.'z-

Proof:
Obviously (b) is a direct consequence of (a). To prove (a) we should notice
that for any multiindex a such that [a] < 2m we have:

[P fg) <e Do st

o+ fi=a

where the sum is taken over all pairs (a;, ;) such that a;+/3; = a. Obviously
a; < mor ff; < m. Now it remains to use Holder inequality:

labl 2 < lalp~]b|z,

as many times as it is necessary in order to derive the desired estimate. This
completes the proof of lemma 6.
As in the proof of Theorem 3 we consider the map:

M :vw—=w= Muv,
where w is the solution of the linear equation:

(0 = A)w = |u|",
w(0,2) = f(x),
wy(0,2) = g(x).

B!



For m > % one has via lemma 2, lemma 3 and lemma 6 :
¢
[V0(Olzmz < IV0(O)ana+ [ [(7)lamadr) <
t .
(Vo (Olamz + [ [Vo(r)lam 2l V() liedr) <

t e
(| V0(Olama + [ Vollgma [ (147)7*FCDar). (18)

For the converges of the last integral we need:

n+ 1
n—1

n-—-

1
5 v=1)>1=v>

For n > 4, v = 2,3,4,... fulfiled the inequality v > ﬁ—'_t}-
Hence we obtained:

IV Mvllam,2 < el + [[V0]|30,2),

providing f and g sufficiently small. Now it remains to use the same argu-
ments like in the proof of Theorem 3 to complete the proof of Theorem 4.

Remark: In a view of (18) one may conjecture that for v > 2£% (3) has
global solution.

Acknowledgment: The author is grateful to Vladimir Georgiev for the
support during the preparation of the work.
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