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1 Introduction

[. Graham (8] obtained weighted boundary limits of the Caratheodory and the Kobayashi metrics for
strongly pseudoconvex domains. Later on, D. Ma (12] refined Graham’s results.

The sharp bounds in terms of small/large constants for these metrics of smooth bounded pseudoconvex
domains of finite type in C?, smooth bounded convex domains of finite type in C" and decoupled domains
in C" were obtained by D. Catlin [4], J.-H. Chen [5] and G. Herbort [9], respectively. Particular cases of
of these results are contained in the papers (1] of E. Bedford and J. E. Fornaess and [13] of M. R. Range.
In this paper we study the nontangencial limit of the Caratheodory metric Cp(z, X) in a h-extendible
boundary point zg of a smooth bounded pseudoconvex domain D in C". A boundary point is said to be
h-extendible [14] (or semiregular [7]), if (atlm s multitype (3] coincides with D'Angelo’s type [6]. This
class of points includes points of finite type in C~, convex points of finite type in C"
in C".

Our main result is in the spirit of the Yu results [15] for the generalized Kobayashi-Royden metrics
and the Boas-Straube-Yu ones [2] for the Bergman kernel, metric and curvature. We associate to D and
zo a model domain E. We prove that, when z — zo in a nontangencial cone in D with vertex at zg, the
ratio Cp(z, X)/CEg(%0,X) = 1, where Zg is a fixed interior point of E and the vector .\' depends on X
and dist(z,9D).

[t is shown in Lemma 4 that the model E'is c-hyperbolic. As consequences we obtain sharp lower
and upper nontangencial bounds for the Caratheodory metric of D near zp and of small perturbations of
E, which recover the aforementioned results in (4, 5, 9], when z — 2o in a cone.

We also compute the Caratheodory metric of a class of models. As a consequence we get a precise
weighted limit of this metric in a strongly pseudoconvex boundary point of a (*-smooth weakly pseu-
doconvex domain. D. Ma [12] obtained a similar result for strongly pseudoconvex domains of class (2
(using the Henkin-Ovrelid L™ estimates for ).

To prove our main result, we associate to each closed to zo point z € D domains E4. and a neig-
bourhood U, of zo with E4. NU. C DNU. C E-; (more precisely , we consider biholomorphic images
of D instead of D itself). Applymg a scaling method, we obtain in Lemuma 2 the stability results
lim Cgy.nu, (2, X)/CE(20, X) = 1. Using, in addition, d-technique, Kohn's global regularity and a cer-

220
tain bumping property equivalent to h-extendibility, we get in Lemma 3 the following localization result:

lunlnfCD(-, )/CE..av, (2,X) > 1. (Thus we overcome the difficulty that L™ estimates for d do not

and decoupled points

e\lz,t in general.) These facts and the inequality Cp(z, X) < Cgy,nv, (z,.X) prove our main result.
The method, described above, can be also applied to the generalized Kobayashi-Royden metrics, the

Bergman and another invariants.



2 Definitions and statement of the main result

Let D be a domain in C*, z € D and X € C". Denote by H(D) the space of holomorphic functions on
D. The Caratheodory metric is defined by

Cp(z,X) = sup{|X[| : f € H(D),supp|f| < 1 and f(z) = 0}.

Note that the condition f(z) = 0 is superfluous.

Let zo be a smooth boundary point of D. The Catlin multitype [3] of 2o is a certain biholomorphically
invariant n-tuple of rational numbers (my,ma,...,my) with 1 =mjand 2< my <mz < ... <m, < oo.
It follows from the main theorem of [3] that m, 41—k < Ak for each 1 < k < n, where Ay denotes the
D’Angelo k-type [6] of zo (roughly speaking the maximal order of contact of k-dimensional varieties with
the boundary of D at zg).

The point zo is said to be h-extendible [14] (or semiregular [7]) if mu41-x = Ax < oo for each
1<k <n.

Let the multitype of zo be finity, i.e. m, < oo and let r = r(z) be a local definig function for D
near zo. By the definition of Catlin’s multitype there are local coordinates w = ®(z) near zp such that
®(z9) = 0 and

r(w) = re® ! (w) = Rew, + P('w) 4+ O(c'+*(w))

for some positive constant a. Here 'w = (ws, ..., wy), o(w) = |wy|+ |w2|™* + ...+ |w,|™" and P = P g
is a (1/ma,...,1/my,)- homogeneous polynomial with no pluriharmonic therms, i.e. Pom('w) = tP('w)
for each t > 0 and 'w € C", where m(w) = (twl,tl/""wg, ...,t’/""‘w,,). :

If D is pseudoconvex near zg, then P must be plurusubharmonic (hence each my,2 < k < n, is even).
Then the definition of h-extendible point is equivalent to each of the following two conditions (14, 7]:

I: There is a (1/mn,...,1/my)-homogencous, strictly plurisubharmonic, C'*-smooth function P on
C"~!\ {0} such that P < P on C"~1\ {0}.

II: The boundary point 0 of the domain £ = E, ¢ = {w : Rew; + P('w) < 0} is of finite type, i.c.
Ay < oo (hence each boundary point of £ is of finite type).

The function P = P is called a bumping and the domain E - a model of D at z;.

We shall prove the following result.

Theorem: Let D be a smooth bounded pseudoconvex domain in C". and let E = E, g be a model of
D at a h-extendible boundary point zo. If A 1s a cone with verter at zo and azis the interior normal to
oD at zg, then
Cp(z,X) _
2—20,2€A CE(-':'O,X')

uniformly in all vector fields X, where 39 = (=1,'0) and X = (Ty/r(z)e @ X.

Note that, since dD is smooth, there is a neigbourhood V of zo that ANV C D. So, the above limit
makes sense.

The nontangencial approaching can not be removed in general. It is essentional even in the simplest
case, wnen D is a ball [8]. :

It is not a priori obvious that Cg(3o, X) # 0. In Lemma 4 we prove an estimate for Cz, which implies
that F is c-hyperbolic.



3 Proof of the main result by several lemmas

Proof: We shall use [15] that there exist a holomorphic polynomial Q('w) and a real-valued polynomial
S("w) such that Q('w) = O(|'w|?)),S('w) = 0 and, if v = ¥(w) = (w; + Q('w),/ w), r'(w) = r(w)(1+
S(w)), then

r(v) =1 o U™ (u) = Revy + P('v) + O(|v1|? + o' t?7("v))

for some positive constant =.
Let us perform the change of variables u = W4 (v) = (v £ Avy 2, v). Set

e (v) = r(v)(1£2A(Revy — P('v)), re(u) = rho Wi (u), @4 = WioVod, Ues = {u: |uy| < 6,0('u) < ¢}.

We may choose a positive constants a and A such that @4 (D N ®Z'(Usa)) = {u € Uaya : 7+(u) < 0},
where

re(u) = Reuy + P("u) + Ry (u),

R_(u) < ("7 ("u) — Aluy|*)/2 and Ry (u) > (Alug)? = 0?7 ("u)/2 in Ug a:
Set
Eye = {u: Reuy + P('u) £ "o('u) < 0} and

F_¢={u: Reuy + P('u) + Alu,|*/3 = "o ('u) < 0).
Note that for each 0 < ¢ < a and 0 < J < a we have
D4 (DN®TH(Ues)) C F- C E—¢and @_(DN®Z}(Ue,5)) D E4e NUes.
We need of the following lemmas.

Lemma 1: If f and g are positive functions with lin}) f(u)/g(u) =1, then
u—

i C[;(fo,ﬂ’g.\l’i.‘]/.Y) iy
u—0 Cg(fo,ﬂ']_y) B

uniformly in all' Y € C".

Lemma 2: If u — 0 such that Reuy < 0 and o("u)/Reuy — 0, and ¢ = ¢(u) is such that o('u) < ¢
and !*7/Reuy — 0, then all sufficiently small u € E_, N U, and

i Ci_.aU. (1, Y)
liminf ——== >
u—0 C[;(Zo,(?‘l’-]/ncu,)-y) g

uniformly in all vector fields Y.

If, in addition, Reuy/e¢ = 0 and § = 6(u) is such that |[Imu,y| < § and Reu, /(8§ — |Imuy|) — 0, then
all sufficiently small v € 4, N U, s and

. C"E nU (ui)’)
lim su e <1
,,_,op Ce(Z0, (T=1/Reu,)sY) —

uniformly in all vector fields Y.

Lemma 3: Ifu — 0 and ¢ = ¢(u) is such that 01, ¢yc('u) = 0, ReuyIne/e = 0 and v € F_ N W,
then ¢;1(u) € D for all sufficiently small u, and

Cp (7' (u), ®3'Y
liminf D(, + (u) L ) il
=0 Cr_,nw,(u,Y) =



uniformly in all vector field Y, where W, = Usee:

Lemma 4: There exists a positive constant ¢ such that for any sufficiently small € it holds

Ce..(u, Y) 2> Cll("'l/a(Reux,'u))-Y”

forallue E_. and Y € C".
Consequently, if bo('u) r(ne)xle('-) < —Reuy (b > 1), there exist a positive constant ¢’ and C such
a(')=
that
¢ < Cp_ (u, Y)(7=1/Reu,)- Y| < C

forallue E_, and Y € C". (Since P # 0 is plurisubharmonic, the mazimum is positive, hence, u € E
and Reu;, <0.)

Now we ready to prove the theorem. Note that there is a neigbourhood V of 2y and a cone I' =

{u : Reuy + b|Ju|] < 0} (0 < b < 1) such that ANV C D and ®4(ANV) CT. Let z € ANV.

Set § = a,u* = ®4(z) and € = (—Reuf)!=7/2. We may assume y < 2. Then, since u¥ — 0 and

* €T, the conditions of the Lemmas 2 and 3 satisfied. Using that l_-imor o®7'(u*)/re(u¥) =1 and
Ut =p

lim r:t(u*)/Reuli = 1, we obtain

ut—0,uxel
liminf —C—DL_E’—IL-)— = liminf Cp(z,X) by Lemma 1
z—20,2€A CE(:-'O,X) z—20,2€EA CE( ( —l/Reu ) ¢+_X)
CD( !X)
>
it zl—lbrz]:,lznefl\ CE QUL 5(U+,¢+‘X) by e g
>1by F_.C E_. and Lemma 3.
Similarly,

: Cp(z,X) : Cp(z,X)
limsup ————— = limsup - — by Lemma 1
z—29,2€EA CE(L'o,,\) 2—20,2€EA CE(:O’ (W—I/Rcu;)‘q’—-"\) y

< limsup Cp(z,X) by Lemma 2

2—20,2€EA CE+¢1’\U¢ a(u—’ P \)
< 1since ®-'(E4 N U, s) C D.

The theorem is proved.

4 Proof of the lemmas

Proof of Lemma 1: Let Y = Zngal?( 0): Then:Yi(u) =7 Y= Zfl/m’ u)y; -8—( 0) and Ya(u) =
uj

T Ve V.Y = g(u)(l+0(1) 0) + Zg”"" ( ). Since the Caratheodory pseudometric is
o

homogenic, subaditive, continuous and h_vperbollc on E (Lemma 4), the lemma follows from the equality
limy—0(Y1(u) = Ya(u))/||Y1(u)|| = 0.



Proof of Lemma 2: The inclusions are obviously.
Fix for a moment the point u. Since 7, (¢ > 0) is an automorphism of Exi., we have m_1/geu,(E+e N
Ues) = Exe N U, where Ue s = T_1/Reu, (Ue,s5). Set

' Ese = {v: Revy + P('v) F ¢!*7/Reu; < 0}.
Using that E_. N (75,00 c E_. and I:J'+¢ N ﬁ,,a C E4¢, we obtain
Ce_.n U“m(u,Y) 2 CE'_,(ﬂ!?) and CE+¢” U."(U,Y) < CE'.,,,nU._,(ﬁ!?):

where @ = m_y/peu, (u) = (-1 — iImuy /Reuy, ©_1Reu, ('u)) and Y = (F—1/Reuy)eY - A
Since Q4.(v) = (vy + (iImu; Fe!*7)/Reuy,’ v) is a biholomorphic mapping from E_, to E, it follows
that
Cg_ (4, ) CE(Z_(,Y) and CE.,..nU,_,(ﬁ’Y) = Cenv.s(2+e,Y),

-c

where V“; =:Q} U“; = {v : |v1 + iImu;/Reu| < —§/Reuy,o('v) < —€/Reuy} and Zi, = Qui(@) =
(- 1:}:61+"/Reu1, ).
Since o('t) = —o('u)/Reuy; = 0 and €'+7/Reu; — 0, we have 24, — Z;. Then

Cg(2-¢,Y) = Cg(%,Y)

by the continuity of the Carathedory metric. This prove the first inequality of the lemma.
To obtain the second inequality, note that V, 5 C {v : |v1]| < (|Imu,| = §)/Reuy,o('v) < —¢/Reu,}.
Then it is not difficult to prove by normal familly arguments that

CEth 6(z+¢l ) = CE( 0, Y’)
under the assumptions of the lemma. This completes its proof.

Proof of Lemma 3: The inclusion is obviously.

We shall use the existence of a holomorhic function g on C*~! with ¢(’0) = 1 and |¢("u)| < C} exp(P('u)
—10("'u)) for some positive constants Cy and v; [14, 15]. (Its construction is given in the proof of Lemma
4.) It is shown in Lemma 5.3 [7] (see also Theorem 3.4 [14]) that there exist a real number s, 0 < s < 1,
such that the function p= (1 — s) Y7 5" (exp(1)q)omax is peak for E_, at the point 0 (€7 < v,).

Let € < ¢ := min(1/2, (71/2)!/7,a%). Let f be an arbitrary holomorphic function on F_, 0 W, with
supp_.aw, |fl < 1. Let x be a C*°-smooth function on 2 such that Yy =0 on Wij2 and x =1 on Wyya.
Set \e( = x( ul/\/_ miye('u 1)), Pe(t) = PoT—min E/,( u) (the posmve number m we shall choose later) and
ge = fpeOxe.

Set Ge = @4 (D n@‘l(We/o) \ W¢/3. Since G CC F-N W, we may extend trivially g = g, o @, as
a C*°- smooth J-closed (0, 1)-form on the whole D.

By Kohn'’s global regularity [11] and Sobolev’s Lemma, there is a C*°-smooth function h, on D with
dhe = je and llhellcr(py < Calldellcn+1(py for some positive constant C, which depends only on D. Here
l|hllck(py = maxsupp 'Dh, where maximum is taken on all differentiation D in z and Z of order at most
k and Hﬁllck(D) denotes the greatest of the norms of the coefficients of 7.

It is not difficult to see that

HFellen+r(py < (n+1) '||.’Ie||c"+l(c)1<k< +1||‘I’||¢..+1 (@7 (Waya))”

Using the Leibniz formula, we obtain

H!]e”CnH(G‘) < 2"+1”Pe“Cn+l(G,)iIé,\"ellcn-i-l(H’,,,) < 2n+l”pc“C‘(Gc)“6_2“5,\':“(:-‘4'1(([:")‘



The Cauchy inequalities show that

Ipellenti(a.y < (n+ 1)!dist™" "} (Ge, 8(F=c \ Wes4)) sup  [pe|.

-t "c/-(

It follows from the definitons of G, F-. and W4 that there is a positive constant C3 such that
list(Ge, O(F-c \ Wepa)) > Cae'+7,
On other hand, ‘

sup |p) < C1 sup exp((mo('u) = P('u) = Reuy)mlinc/e)
Fo\W.,4 F-\W./4

<C, sup exp(((m1 —€")o("u) + Alus|?/3)mIne/2¢) < CHePon,
C"\Ww.
where 4C4 = min(y,/2, A/3).
Now it is clear that we may choose sufficiently large m such that |h¢|cy(p) < € for each ¢ < ¢o.

Set fe = (fpexe) © @4 — h.. We have that f, is a holomorphic function on D and supp [f| < 1+ ¢
Moreover, if u € W3 and f(u) = 0 then

93 Y fel = Ipe(w)Yof = @3 Yhe| < [pe(u)] - VeS| = [IDRT () ||n*2]]Y [|e.

Here HD(I);l(u)H denotes the greatest of the partial derivatives of lb_;x in the point u. Since f is arbitrary,
we conclude that

Ipe(W)|Cr_.aw. (1, Y) < (1 + €)Cp (@3} (u), ®3.Y) + [|DDT* (u) [|[n®/?||Y||e.

It follows from the hypothesis of the lemma that |p.(u)| = 1. Using Lemma 4, we obtain that Iin}J Y1)/
u—
Cr_,(u,Y) = 0. Now we get the needfull inequality letting u — 0.

Proof of Lemma 4: Since 7 (u) and T} (u) = (u; +ir, u) (r is an real number) are automorhisms of
I_., it suffices to provc that Cg_ (v, Y) > c on the set {(u,Y):o(u)=1,||Y|| =1} and Cp(u,Y) < C
on the set {(u,Y) :u; = —1,ba(’ u) mz)w P( () < L||IY]|l =1}

Since the second set is a compact subset of £' x C", the second inequality follows from the continuity
of the Caratheodory metric.

Now we shall prove the first inequality. Set g('u) = exp(Y_p_, ux¥k) + 231 — 1. Let \ be a C*-
smooth function on C*~! with x('u) = 0 if ||'u|| > 3/4 and x(‘u) = 1if |)'u|| < 1/2. Since the function
¢ =P+ 2n+2)In|ulis plurlsubharmomc there is a C*-smooth function “f with df = d(xg) and

Ry 2e=2¢(1 + ['u|?)"2% < 2/ 1d(x9)|%e™2? [9]. It can be shown in the same way as in the

proof of Theorem 3.4 [14] (see also Theorem 3.11 [la] ), that |f|> < Cyexp(P — 110’) for some positive
constants Cy and 7,. Morcover, it follows from the convergence of the integral that f('0) = df('0) =
Set h(u) = exp(Reuy/2)(f = xg)("u). Then h is a holomorhic function on C", |Yh(0)] = ||Y]||* and,
if €7 < 71, supp_, |h] < Ca for some constant Ca. By continuity there is a positivc constant a such
that |Yh(u)| > HY|| /2 if o(u) < a. Set hy = h o myq/Cy. Then hy is a holomorhic function on C",
supg_, |h1| < 1 and |Y hy(u)| > a|[Y||2/2C) if o(u) < 1. This ends the proof of Lemma 4.



5 Corollaries and explicit formulas

We obtain immediately from c-hyperbolicity of £ and the continuity of the Caratheodory metric the
following sharp bounds for Cp(z, X) (in terms of small/large constans).

Corollarry 1: Under the assumption of the theorem, there exist positive constants ¢ and C such that

c< hmmf Cp(z, X)/I1X|| < limsup Cp(z, X)/||X|| < C

2=20,2 2—20,2€

uniformly in all vector fields X.
If the vector field X is nontangencial to dD at zg, the following refinement of the theorem holds.

Corollary 2: Under the assumptions of the theorem, we have

(i) lim_ Gz, X)r(2)/Celé0, i) = 2/1Br(z0)]|

uniformly in all vector fields X, for which ||X|| < c||Xal] (0 < ¢ < 1); here X, denotes the normal
component of X at zo and Yy = ([|X 05 0):

(i) lim__Cp(z, X)r(z)/I1X]| = 2/|9r(z0)l|CE (20, Y1 (20)) /11X (z0)l

z—29,2€EA

for each vector field X, for which X, /||X|| is continuos in z.

Proof: It is not difficult to see that (¥.X); = 2||0r(20)||Xn +0(1)X. Then Y = Xr(:)/2||5r(zo)|| =
Y1 + o(1)X. Since the Caratheodory pseudometric is homogenic subaditive, continuous and hyperbolic
on E, (i) and (ii) follow from the equalities ,li.n,‘ (Y(2) = Yi(2))/IlY1(2)]| = 0 and llm Y()/IIX(2)| =

Y1(20)/11X (20) ]|, respectively.
We can also compute Cg(Zg, X) explicitly for certain class of models.

Proposition: Let a domain E in C" has the form E = {w : Rewy + P('w) < 0}, where P is a
(@2, ...an)-homogenous, conver, circular function (i.e. P(('z) = P('z) for all’z € C*~! and ¢ with
IC] = 1). Assume that the boundary point 0 of E has finite multitype (my,...,m,). Then

(i) P is a polynomial and oy = my = Apy1-x for each 1 < k < n, where ay = 1; in particular,
0 € OF is a h-extendible point.

Let X € C". Then

(ii) Ci(Z0, X1) = [|X:]1/2:

(iii) if X # 0 the equation |[AX1/2|* + P(N'X) = 1 has a unique positive solution A\(X); if X = 0, we
set AM(X) = oo;

(iv) Ce(%, X) = A~1('X)

(v) if, in addition, P is circular in each variables,

Ce(z57.X) = A7 {X).

Proof. The equalities mj = A, +1_x follow from Propostion 5. [16]. In particular, the point 0 € E
has finite type. Hence P(0,...,0,wy,0,...,0) Z 0 for each 2 < k < n. Then it is easy to see that ay = my
and, hence, P is a polynomial.

Now, since the Caratheodory metric of a convex domain coincides with its IKobayashi-Royden metric
by Lempert’s theorem, we obtain the remain of the proposition, using similar arguments as in the proofs
of Corollary 5.4. [14] and the corollary in [2].

-~



Remarks.

1. If we replace the assumptions for convexity and circularity of P with the weaker ones - pseudocon-
vexity and positivity, then (i) and (ii) also hold (since P/2 is a bumping function and #(F) C E C F,
where F = {z: Rez; < 0} and n(z) = (21,'0)).

2. If E is a model of a domain D at a point zo € 8D of finite multitype, then

(a) the multitypes of zp € 9D and 0 € JE coincide;

(b) when D is pseudoconvex near zg, z9 € D is h-extendible iff 0 € OF is so.

(c) when D is convex near zg, £ is convex (see the proof of Proposition 2. [16]).

As a consequence of Proposition (v) and the theorem we obtain the following

Corollary 3: Let zg be a strongly pseudoconver point of a smooth bounded pseudoconver domain D
in C". If r = r(z) is a defining function of D near zg, A is a cone with vertexr at zo and axis the interior
normal to D at zq, then

lim  Cp*(z X)(=Lr(z0,-Xe)/r(2) +

z—20;2€A

.
i n

or(20)[1/r%(2)) = 1
uniformly in all vector fields X. Here L,(z9,.X) 1s the Levi form of r at zo and X 1s splited into its normal

and tangencial components X,, and X, at zg

Proof: Note that there exists a unitary transformation A such that

n
ro®7'(v) = Revy + L:(0;! v) + E bijviv; + o(|v1] + |’t{|"’),

1,j=2

where ®(z) = 2||9r(z0)||A(z = 20) and L,(0,v) = L,(z0,®7'v). Let ®a(v) = (v; + Z?,Fg bijvivj,'v)
and ¢ = (I>-_> o ®y. Then '

ro® Y (w) = Rew, + L, (0, w) + o(|wy| + |'w]|?),
which shows that the complex ellipsoid
E = {w: Rew; + L. (0, w) < 0)

is a model of D at z5. Applying the theorem, we obtain

i Gz, X)(=Le 0, (8 5 X)0)/r() + 1@ # Xl PG (z0) 2 /r2(2)) =
since C%(%,Y) = i (0 ¥y) + |[¥a]|?/4 by Proposition (v). Now the corollary follows [rom the equalities
Lr(0, (@.X):) = Lo(0, X0), (82 X)n = 20r(z0)[[(Xn +0(1z)X) and_lim " of(zl)/r(2) =

Now we shall consider the case, when z approaches a strongly pseudoconvex point zq in arbitrary way.
Note that the Levi form is continuous. In particular, it is strictly positive near zg. Then, checking the
proofs of Corollary 3 and the theorem, it is easily to see that, if the aperture of the cone A is fixed, the
approaching is uniformly in zo. Observe that, if = € D is close to 2o, then z lies in the cone Ay ;) with

vertex the projection 7(z) of = at dD. Thus we obtain the following result, which is more precise than
Colorarry 2.

Corollary 3’ Let D, zy and r be as in Colorarry 3. Then
lim C5%(z, X)(=Le (w(2), Xe(7(2))/r(2) + I Xa(m ()P NOr(x(2))|*/7%(2)) =

Ak 4
uniformly in all vector fields X. Here L, (7.'(:) X) is the Levi form of r at w(z) and X 1s splited into its
normal and tangencial components X, (7(z)) and X¢(7(z)) at =(z).
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