ИНСТИТУТ ПО МАТЕМАТИКА С ИЗЧИСЛИТЕЛЕН ЦЕНТЪР INSTITUTE OF MATHEMATICS WITH COMPUTER CENTER

Weighted limit
of the Caratheodory metric
in a h-extendible boundary point

Nikolai Nikolov

Preprint
No 10

November 1996

Department of Complex Analysis

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES

Weighted limit of the Caratheodory metric in a h-extendible boundary point of a smooth bounded pseudoconvex domain in Cⁿ

NIKOLAI NIKOLOV

1 Introduction

I. Graham [8] obtained weighted boundary limits of the Caratheodory and the Kobayashi metrics for strongly pseudoconvex domains. Later on, D. Ma [12] refined Graham's results.

The sharp bounds in terms of small/large constants for these metrics of smooth bounded pseudoconvex domains of finite type in \mathbb{C}^2 , smooth bounded convex domains of finite type in \mathbb{C}^n and decoupled domains in \mathbb{C}^n were obtained by D. Catlin [4], J.-H. Chen [5] and G. Herbort [9], respectively. Particular cases of of these results are contained in the papers [1] of E. Bedford and J. E. Fornaess and [13] of M. R. Range. In this paper we study the nontangencial limit of the Caratheodory metric $C_D(z,X)$ in a h-extendible boundary point z_0 of a smooth bounded pseudoconvex domain D in \mathbb{C}^n . A boundary point is said to be h-extendible [14] (or semiregular [7]), if Catlin's multitype [3] coincides with D'Angelo's type [6]. This class of points includes points of finite type in \mathbb{C}^n and decoupled points in \mathbb{C}^n .

Our main result is in the spirit of the Yu results [15] for the generalized Kobayashi-Royden metrics and the Boas-Straube-Yu ones [2] for the Bergman kernel, metric and curvature. We associate to D and z_0 a model domain E. We prove that, when $z \to z_0$ in a nontangencial cone in D with vertex at z_0 , the ratio $C_D(z,X)/C_E(\hat{z}_0,\hat{X}) \to 1$, where \hat{z}_0 is a fixed interior point of E and the vector X depends on X and $\operatorname{dist}(z,\partial D)$.

It is shown in Lemma 4 that the model E is c-hyperbolic. As consequences we obtain sharp lower and upper nontangencial bounds for the Caratheodory metric of D near z_0 and of small perturbations of E, which recover the aforementioned results in [4, 5, 9], when $z \to z_0$ in a cone.

We also compute the Caratheodory metric of a class of models. As a consequence we get a precise weighted limit of this metric in a strongly pseudoconvex boundary point of a C^{∞} -smooth weakly pseudoconvex domain. D. Ma [12] obtained a similar result for strongly pseudoconvex domains of class C^2 (using the Henkin-Ovrelid L^{∞} estimates for ∂).

To prove our main result, we associate to each closed to z_0 point $z \in D$ domains $E_{\pm z}$ and a neigbourhood U_z of z_0 with $E_{+z} \cap U_z \subset D \cap U_z \subset E_{-z}$ (more precisely, we consider biholomorphic images of D instead of D itself). Applying a scaling method, we obtain in Lemma 2 the stability results $\lim_{z\to z_0} C_{E\pm z} \cap U_z(z,X)/C_E(\hat{z}_0,\hat{X}) = 1$. Using, in addition, $\bar{\partial}$ -technique, Kohn's global regularity and a certain bumping property equivalent to h-extendibility, we get in Lemma 3 the following localization result: $\lim_{z\to z_0} \inf C_D(z,X)/C_{E-z} \cap U_z(z,X) \geq 1$. (Thus we overcome the difficulty that L^{∞} estimates for $\bar{\partial}$ do not exist in general.) These facts and the inequality $C_D(z,X) \leq C_{E+z} \cap U_z(z,X)$ prove our main result.

The method, described above, can be also applied to the generalized Kobayashi-Royden metrics, the Bergman and another invariants.

2 Definitions and statement of the main result

Let D be a domain in C^n , $z \in D$ and $X \in \mathbb{C}^n$. Denote by H(D) the space of holomorphic functions on D. The Caratheodory metric is defined by

$$C_D(z, X) = \sup\{|Xf| : f \in H(D), \sup_D |f| \le 1 \text{ and } f(z) = 0\}.$$

Note that the condition f(z) = 0 is superfluous.

Let z_0 be a smooth boundary point of D. The Catlin multitype [3] of z_0 is a certain biholomorphically invariant n-tuple of rational numbers (m_1, m_2, \ldots, m_n) with $1 = m_1$ and $2 \le m_2 \le m_3 \le \ldots \le m_n \le \infty$. It follows from the main theorem of [3] that $m_{n+1-k} \le \Delta_k$ for each $1 \le k \le n$, where Δ_k denotes the D'Angelo k-type [6] of z_0 (roughly speaking the maximal order of contact of k-dimensional varieties with the boundary of D at z_0).

The point z_0 is said to be h-extendible [14] (or semiregular [7]) if $m_{n+1-k} = \Delta_k < \infty$ for each $1 \le k \le n$.

Let the multitype of z_0 be finity, i.e. $m_n < \infty$ and let r = r(z) be a local defining function for D near z_0 . By the definition of Catlin's multitype there are local coordinates $w = \Phi(z)$ near z_0 such that $\Phi(z_0) = 0$ and

$$r(w) = r_0 \Phi^{-1}(w) = Rew_1 + P(w) + O(\sigma^{1+\alpha}(w))$$

for some positive constant α . Here $w = (w_2, \dots, w_n)$, $\sigma(w) = |w_1| + |w_2|^{m_2} + \dots + |w_n|^{m_n}$ and $P = P_{r,\Phi}$ is a $(1/m_2, \dots, 1/m_n)$ -homogeneous polynomial with no pluriharmonic therms, i.e. $P \circ \pi_t(w) = tP(w)$ for each t > 0 and $w \in \mathbb{C}^n$, where $\pi_t(w) = (tw_1, t^{1/m_2}w_2, \dots, t^{1/m_n}w_n)$.

If D is pseudoconvex near z_0 , then P must be plurusubharmonic (hence each m_k , $2 \le k \le n$, is even). Then the definition of h-extendible point is equivalent to each of the following two conditions [14, 7]:

I: There is a $(1/m_2, ..., 1/m_n)$ -homogeneous, strictly plurisubharmonic, C^{∞} -smooth function \tilde{P} on $\mathbb{C}^{n-1} \setminus \{0\}$ such that $\tilde{P} < P$ on $\mathbb{C}^{n-1} \setminus \{0\}$.

II: The boundary point 0 of the domain $E = E_{r,\Phi} = \{w : Rew_1 + P('w) < 0\}$ is of finite type, i.e. $\Delta_1 < \infty$ (hence each boundary point of E is of finite type).

The function $P - \tilde{P}$ is called a bumping and the domain E - a model of D at z_0 .

We shall prove the following result.

Theorem: Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^n , and let $E = E_{r,\Phi}$ be a model of D at a h-extendible boundary point z_0 . If Λ is a cone with vertex at z_0 and axis the interior normal to ∂D at z_0 , then

$$\lim_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_E(\hat{z}_0, \hat{X})} = 1$$

uniformly in all vector fields X, where $\hat{z}_0 = (-1, 0)$ and $\hat{X} = (\pi_{1/r(z)} \cdot \Phi_* X$.

Note that, since ∂D is smooth, there is a neighbourhood V of z_0 that $\Lambda \cap V \subset D$. So, the above limit makes sense.

The nontangencial approaching can not be removed in general. It is essentional even in the simplest case, when D is a ball [8].

It is not a priori obvious that $C_E(\hat{z}_0, \hat{X}) \neq 0$. In Lemma 4 we prove an estimate for C_E , which implies that E is c-hyperbolic.

3 Proof of the main result by several lemmas

Proof: We shall use [15] that there exist a holomorphic polynomial Q('w) and a real-valued polynomial S('w) such that $Q('w) = O(|'w|^2)$, S('w) = 0 and, if $v = \Psi(w) = (w_1 + Q('w), w')$, r'(w) = r(w)(1 + S(w)), then

$$r'(v) = r' \circ \Psi^{-1}(u) = Rev_1 + P(v) + O(|v_1|^2 + \sigma^{1+2\gamma}(v))$$

for some positive constant γ .

Let us perform the change of variables $u = \Psi_{\pm}(v) = (v_1 \pm Av_1^2, v)$. Set

$$r'_{\pm}(v) = r(v)(1 \pm 2A(Rev_1 - P('v)), r_{\pm}(u) = r'_{\pm} \circ \Psi_{\pm}^{-1}(u), \Phi_{\pm} = \Psi_{\pm} \circ \Psi \circ \Phi, U_{\epsilon,\delta} = \{u : |u_1| < \delta, \sigma('u) < \epsilon\}.$$

We may choose a positive constants a and A such that $\Phi_{\pm}(D \cap \Phi_{\pm}^{-1}(U_{a,a})) = \{u \in U_{a,a} : r_{\pm}(u) < 0\},$ where

$$r_{\pm}(u) = Reu_1 + P('u) + R_{\pm}(u),$$

$$R_{-}(u) \le (\sigma^{1+\gamma}('u) - A|u_1|^2)/2$$
 and $R_{+}(u) \ge (A|u_1|^2 - \sigma^{1+\gamma}('u)/2$ in $U_{a,a}$. Set

$$E_{\pm\epsilon} = \{u : Reu_1 + P('u) \pm \epsilon^{\gamma} \sigma('u) < 0\}$$
 and

$$F_{-\epsilon} = \{ u : Reu_1 + P('u) + A|u_1|^2/3 - \epsilon^{\gamma} \sigma('u) < 0 \}.$$

Note that for each $0 < \epsilon \le a$ and $0 < \delta \le a$ we have

$$\Phi_+(D \cap \Phi_+^{-1}(U_{\epsilon,\delta})) \subset F_{-\epsilon} \subset E_{-\epsilon} \text{ and } \Phi_-(D \cap \Phi_-^{-1}(U_{\epsilon,\delta})) \supset E_{+\epsilon} \cap U_{\epsilon,\delta}.$$

We need of the following lemmas.

Lemma 1: If f and g are positive functions with $\lim_{u\to 0} f(u)/g(u) = 1$, then

$$\lim_{u \to 0} \frac{C_E(\hat{z}_0, \pi_{g_*} \Psi_{\pm_*} \Psi_{\bullet} Y)}{C_E(\hat{z}_0, \pi_{f_*} Y)} = 1$$

uniformly in all $Y \in \mathbb{C}^n$.

Lemma 2: If $u \to 0$ such that $Reu_1 < 0$ and $\sigma('u)/Reu_1 \to 0$, and $\epsilon = \epsilon(u)$ is such that $\sigma('u) < \epsilon$ and $\epsilon^{1+\gamma}/Reu_1 \to 0$, then all sufficiently small $u \in E_{-\epsilon} \cap U_{\epsilon,\infty}$ and

$$\liminf_{u\to 0} \frac{C_{E_{-\epsilon}\cap U_{\epsilon,\infty}}(u,Y)}{C_E(\hat{z}_0,(\pi_{-1/Reu_1})_*Y)} \ge 1$$

uniformly in all vector fields Y.

If, in addition, $Reu_1/\epsilon \to 0$ and $\delta = \delta(u)$ is such that $|Imu_1| < \delta$ and $Reu_1/(\delta - |Imu_1|) \to 0$, then all sufficiently small $u \in E_{+\epsilon} \cap U_{\epsilon,\delta}$ and

$$\limsup_{u \to 0} \frac{C_{E_{+\epsilon} \cap U_{\epsilon,\delta}}(u,Y)}{C_{E}(z_0,(\pi_{-1/Reu_1})_*Y)} \le 1$$

uniformly in all vector fields Y.

Lemma 3: If $u \to 0$ and $\epsilon = \epsilon(u)$ is such that $\sigma_{\ln \epsilon/\epsilon}('u) \to 0$, $Reu_1 \ln \epsilon/\epsilon \to 0$ and $u \in F_{-\epsilon} \cap W_{\epsilon}$, then $\Phi_+^{-1}(u) \in D$ for all sufficiently small u, and

$$\liminf_{u \to 0} \frac{C_D(\Phi_+^{-1}(u), \Phi_+^{-1}, Y)}{C_{F_- \epsilon_0 W_{\epsilon}}(u, Y)} \ge 1$$

uniformly in all vector field Y, where $W_{\epsilon} = U_{\sqrt{\epsilon},\epsilon}$.

Lemma 4: There exists a positive constant c such that for any sufficiently small ϵ it holds

$$C_{E_{-\epsilon}}(u,Y) \geq c||(\pi_{1/\sigma(Reu_1,'u)})_*Y||$$

for all $u \in E_{-\epsilon}$ and $Y \in \mathbb{C}^n$.

Consequently, if $b\sigma(u) \max_{\sigma(t')=1} P(t') \leq -Reu_1$ (b>1), there exist a positive constant c' and C such that

$$c' \leq C_{E_{-\epsilon}}(u, Y) || (\pi_{-1/Reu_1})_* Y || \leq C$$

for all $u \in E_{-\epsilon}$ and $Y \in \mathbb{C}^n$. (Since $P \neq 0$ is plurisubharmonic, the maximum is positive, hence, $u \in E$ and $Reu_1 < 0.$

Now we ready to prove the theorem. Note that there is a neighbourhood V of z_0 and a cone Γ $\{u: Reu_1 + b||u|| < 0\}\ (0 < b < 1)$ such that $\Lambda \cap V \subset D$ and $\Phi_{\pm}(\Lambda \cap V) \subset \Gamma$. Let $z \in \Lambda \cap V$. Set $\delta = a, u^{\pm} = \Phi_{\pm}(z)$ and $\epsilon = (-Reu_1^{\pm})^{1-\gamma/2}$. We may assume $\gamma < 2$. Then, since $u^{\pm} \to 0$ and $u^{\pm} \in \Gamma$, the conditions of the Lemmas 2 and 3 satisfied. Using that $\lim_{u^{\pm} \to 0} r \circ \Phi_{\pm}^{-1}(u^{\pm})/r_{\pm}(u^{\pm}) = 1$ and

 $\lim_{u^{\pm}\to 0, u^{\pm}\in\Gamma} r_{\pm}(u^{\pm})/Reu_{1}^{\pm}=1, \text{ we obtain}$

$$\lim_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_E(\hat{z}_0, \hat{X})} = \lim_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_E(\hat{z}_0, (\pi_{-1/Reu_1^+})_* \Phi_{+_*} X)} \text{ by Lemma 1}$$

$$\geq \lim_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_{E_{-\epsilon} \cap U_{\epsilon, \delta}}(u_+, \Phi_{+_*} X)} \text{ by Lemma 2}$$

$$\geq 1 \text{ by } F_{-\epsilon} \subset E_{-\epsilon} \text{ and Lemma 3.}$$

Similarly,

$$\limsup_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_E(\hat{z}_0, \hat{X})} = \limsup_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_E(\hat{z}_0, (\pi_{-1/Reu_1^-})_* \Phi_{-*} X)} \text{ by Lemma}$$

$$\leq \limsup_{z \to z_0, z \in \Lambda} \frac{C_D(z, X)}{C_{E_{+\epsilon} \cap U_{\epsilon, \delta}}(u_-, \Phi_{-*} X)} \text{ by Lemma 2}$$

$$\leq 1 \text{ since } \Phi_{-}^{-1}(E_{+\epsilon} \cap U_{\epsilon, \delta}) \subset D.$$

Proof of the lemmas

Proof of Lemma 1: Let $Y = \sum_{i=1}^n y_i \frac{\partial}{\partial u_i}(0)$. Then $Y_1(u) = \pi_{f_*}Y = \sum_{i=1}^n f^{1/m_i}(u)y_i \frac{\partial}{\partial u_i}(0)$ and $Y_2(u) = \sum_{i=1}^n f^{1/m_i}(u)y_i \frac{\partial}{\partial u_i}(0)$ $\pi_{g_*}\Psi_{\pm_*}\Psi_*Y = g(u)(1+o(1))y_1\frac{\partial}{\partial u_1}(0) + \sum_{i=2}^n g^{1/m_i}(u)y_i\frac{\partial}{\partial u_i}(0)$. Since the Caratheodory pseudometric is homogenic, subaditive, continuous and hyperbolic on E (Lemma 4), the lemma follows from the equality $\lim_{u\to 0} (Y_1(u) - Y_2(u)) / ||Y_1(u)|| = 0.$

Proof of Lemma 2: The inclusions are obviously.

Fix for a moment the point u. Since π_t (t > 0) is an automorphism of $E_{\pm \epsilon}$, we have $\pi_{-1/Reu_1}(E_{\pm \epsilon} \cap U_{\epsilon,\delta}) = E_{\pm \epsilon} \cap \tilde{U}_{\epsilon,\delta}$, where $\tilde{U}_{\epsilon,\delta} = \pi_{-1/Reu_1}(U_{\epsilon,\delta})$. Set

$$\tilde{E}_{\pm\epsilon} = \{v : Rev_1 + P(v) \mp \epsilon^{1+\gamma} / Reu_1 < 0\}.$$

Using that $E_{-\epsilon} \cap \tilde{U}_{\epsilon,\infty} \subset \tilde{E}_{-\epsilon}$ and $\tilde{E}_{+\epsilon} \cap \tilde{U}_{\epsilon,\delta} \subset E_{+\epsilon}$, we obtain

$$C_{E_{-\epsilon} \cap U_{\epsilon,\infty}}(u,Y) \geq C_{\tilde{E}_{-\epsilon}}(\tilde{u},\tilde{Y}) \text{ and } C_{E_{+\epsilon} \cap U_{\epsilon,\delta}}(u,Y) \leq C_{\tilde{E}_{+\epsilon} \cap \tilde{U}_{\epsilon,\delta}}(\tilde{u},\tilde{Y}),$$

where $\tilde{u} = \pi_{-1/Reu_1}(u) = (-1 - iImu_1/Reu_1, \pi_{-1/Reu_1}(u))$ and $\tilde{Y} = (\pi_{-1/Reu_1})_*Y$.

Since $\Omega_{\pm \epsilon}(v) = (v_1 + (iImu_1 \mp \epsilon^{1+\gamma})/Reu_1, v)$ is a biholomorphic mapping from $\tilde{E}_{-\epsilon}$ to E, it follows that

$$C_{\tilde{E}_{-\epsilon}}(\tilde{u}, \tilde{Y}) = C_E(\hat{z}_{-\epsilon}, \tilde{Y}) \text{ and } C_{\tilde{E}_{+\epsilon} \cap \tilde{U}_{\epsilon, \delta}}(\tilde{u}, \tilde{Y}) = C_{E \cap V_{\epsilon, \delta}}(\hat{z}_{+\epsilon}, \tilde{Y}),$$

where $V_{\epsilon,\delta} = \Omega_{\epsilon}(\tilde{U}_{\epsilon,\delta}) = \{v : |v_1 + iImu_1/Reu_1| < -\delta/Reu_1, \sigma('v) < -\epsilon/Reu_1\}$ and $\hat{z}_{\pm\epsilon} = \Omega_{\pm\epsilon}(\tilde{u}) = (-1 \pm \epsilon^{1+\gamma}/Reu_1, \tilde{u}).$

Since $\sigma(\tilde{u}) = -\sigma(\tilde{u})/Reu_1 \to 0$ and $\epsilon^{1+\gamma}/Reu_1 \to 0$, we have $\hat{z}_{\pm\epsilon} \to \hat{z}_0$. Then

$$C_E(\hat{z}_{-\epsilon}, ilde{Y})
ightarrow C_E(\hat{z}_0, ilde{Y})$$

by the continuity of the Carathedory metric. This prove the first inequality of the lemma.

To obtain the second inequality, note that $V_{\epsilon,\delta} \subset \{v : |v_1| < (|Imu_1| - \delta)/Reu_1, \sigma(v) < -\epsilon/Reu_1\}$. Then it is not difficult to prove by normal family arguments that

$$C_{E \cap V_{\epsilon,\delta}}(\hat{z}_{+\epsilon}, \tilde{Y}) \to C_E(\hat{z}_0, \tilde{Y})$$

under the assumptions of the lemma. This completes its proof.

Proof of Lemma 3: The inclusion is obviously.

We shall use the existence of a holomorhic function q on \mathbb{C}^{n-1} with q(0) = 1 and $|q(u)| \leq C_1 \exp(P(u) - \gamma_1 \sigma(u))$ for some positive constants C_1 and γ_1 [14, 15]. (Its construction is given in the proof of Lemma 4.) It is shown in Lemma 5.3 [7] (see also Theorem 3.4 [14]) that there exist a real number s, 0 < s < 1, such that the function $p = (1 - s) \sum_{k=0}^{\infty} s^k (\exp(\cdot_1)q)_0 \pi_{2^k}$ is peak for $E_{-\epsilon}$ at the point $0 \in \mathbb{C} = \min(1/2, (\gamma_1/2)^{1/\gamma}, a^2)$. Let f be an arbitrary holomorphic function on $F_{-\epsilon} \cap W_{\epsilon}$ with

Let $\epsilon \leq \epsilon_0 := \min(1/2, (\gamma_1/2)^{1/\gamma}, a^2)$. Let f be an arbitrary holomorphic function on $F_{-\epsilon} \cap W_{\epsilon}$ with $\sup_{F_{-\epsilon} \cap W_{\epsilon}} |f| \leq 1$. Let χ be a C^{∞} -smooth function on \mathbb{C}^n such that $\chi \equiv 0$ on $W_{1/2}$ and $\chi \equiv 1$ on $W_{1/3}$. Set $\chi_{\epsilon}(u) = \chi(u_1/\sqrt{\epsilon}, \pi_{1/\epsilon}(u)), p_{\epsilon}(u) = p_0 \pi_{-m \ln \epsilon/\epsilon}(u)$ (the positive number m we shall choose later) and $g_{\epsilon} = f p_{\epsilon} \bar{\partial} \chi_{\epsilon}$.

Set $G_{\epsilon} = \Phi_{+}(D \cap \Phi_{+}^{-1}(W_{\epsilon/2}) \setminus W_{\epsilon/3}$. Since $G_{\epsilon} \subset \subset F_{-\epsilon} \cap W_{\epsilon}$, we may extend trivially $\tilde{g}_{\epsilon} = g_{\epsilon} \circ \Phi_{+}$ as a C^{∞} - smooth $\bar{\partial}$ -closed (0, 1)-form on the whole \bar{D} .

By Kohn's global regularity [11] and Sobolev's Lemma, there is a C^{∞} -smooth function h_{ϵ} on D with $\bar{\partial}h_{\epsilon} = \tilde{g}_{\epsilon}$ and $||h_{\epsilon}||_{C^{1}(D)} \leq C_{2}||\tilde{g}_{\epsilon}||_{C^{n+1}(D)}$ for some positive constant C_{2} , which depends only on D. Here $||h||_{C^{k}(D)} = \max\sup_{D} \mathcal{D}h$, where maximum is taken on all differentiation \mathcal{D} in z and \bar{z} of order at most k and $||\tilde{g}||_{C^{k}(D)}$ denotes the greatest of the norms of the coefficients of \tilde{g} .

It is not difficult to see that

$$||\tilde{g}_{\epsilon}||_{C^{n+1}(D)} \le (n+1)!||g_{\epsilon}||_{C^{n+1}(G_{\epsilon})} \max_{1 \le k \le n+1} ||\Psi||_{C^{n+1}(\Phi_{+}^{-1}(W_{\epsilon/2}))}^{k}.$$

Using the Leibniz formula, we obtain

$$||g_{\epsilon}||_{C^{n+1}(G_{\epsilon})} \leq 2^{n+1}||p_{\epsilon}||_{C^{n+1}(G_{\epsilon})}||\bar{\partial}\chi_{\epsilon}||_{C^{n+1}(W_{\epsilon/2})} \leq 2^{n+1}||p_{\epsilon}||_{C^{4}(G_{\epsilon})}||\epsilon^{-2}||\bar{\partial}\chi_{\epsilon}||_{C^{n+1}(\mathbb{C}^{n})}.$$

The Cauchy inequalities show that

$$||p_{\epsilon}||_{C^{n+1}(G_{\epsilon})} \leq (n+1)! \mathrm{dist}^{-n-1}(G_{\epsilon}, \partial(F_{-\epsilon} \setminus W_{\epsilon/4})) \sup_{F_{-\epsilon} \setminus W_{\epsilon/4}} |p_{\epsilon}|.$$

It follows from the definitons of G_{ϵ} , $F_{-\epsilon}$ and $W_{\epsilon/4}$ that there is a positive constant C_3 such that $\operatorname{dist}(G_{\epsilon}, \partial(F_{-\epsilon} \setminus W_{\epsilon/4})) \geq C_3 \epsilon^{1+\gamma}$.

On other hand,

$$\sup_{F_{-\epsilon}\setminus W_{\epsilon/4}} |p_{\epsilon}| \le C_1 \sup_{F_{-\epsilon}\setminus W_{\epsilon/4}} \exp((\gamma_1 \sigma(u) - P(u) - Reu_1) m \ln \epsilon/\epsilon)$$

$$\leq C_1 \sup_{\mathbb{C}^n \setminus W_{\epsilon/4}} \exp(((\gamma_1 - \epsilon^{\gamma})\sigma(u) + A|u_1|^2/3)m \ln \epsilon/2\epsilon) \leq C_1 \epsilon^{mC_4},$$

where $4C_4 = \min(\gamma_1/2, A/3)$.

Now it is clear that we may choose sufficiently large m such that $|h_{\epsilon}|_{C^1(D)} \leq \epsilon$ for each $\epsilon \leq \epsilon_0$. Set $f_{\epsilon} = (fp_{\epsilon}\chi_{\epsilon}) \circ \Phi_+ - h_{\epsilon}$. We have that f_{ϵ} is a holomorphic function on D and $\sup_{D} |f_{\epsilon}| \leq 1 + \epsilon$. Moreover, if $u \in W_{\epsilon/3}$ and f(u) = 0 then

$$|\Phi_{+}^{-1}Yf_{\epsilon}| = |p_{\epsilon}(u)Y_{\bullet}f - \Phi_{+}^{-1}Yh_{\epsilon}| \le |p_{\epsilon}(u)| \cdot |Y_{\bullet}f| - ||\mathcal{D}\Phi_{+}^{-1}(u)||n^{3/2}||Y||\epsilon.$$

Here $||\mathcal{D}\Phi_{+}^{-1}(u)||$ denotes the greatest of the partial derivatives of Φ_{+}^{-1} in the point u. Since f is arbitrary, we conclude that

$$|p_{\epsilon}(u)|C_{F_{-\epsilon}\cap W_{\epsilon}}(u,Y) \le (1+\epsilon)C_{D}(\Phi_{+}^{-1}(u),\Phi_{+}^{-1}Y) + ||D\Phi_{+}^{-1}(u)||n^{3/2}||Y||\epsilon.$$

It follows from the hypothesis of the lemma that $|p_{\epsilon}(u)| \to 1$. Using Lemma 4, we obtain that $\lim_{u \to 0} ||Y|| / C_{F_{-\epsilon}}(u, Y) = 0$. Now we get the needfull inequality letting $u \to 0$.

Proof of Lemma 4: Since $\pi_t(u)$ and $T_r(u) = (u_1 + ir, 'u)$ (r is an real number) are automorphisms of $E_{-\epsilon}$, it suffices to prove that $C_{E_{-\epsilon}}(u, Y) \geq c$ on the set $\{(u, Y) : \sigma(u) = 1, ||Y|| = 1\}$ and $C_E(u, Y) \leq C$ on the set $\{(u, Y) : u_1 = -1, b\sigma('u) \max_{\sigma('\cdot)=1} P('\cdot) \leq 1, ||Y|| = 1\}$.

Since the second set is a compact subset of $E \times \mathbb{C}^n$, the second inequality follows from the continuity of the Caratheodory metric.

Now we shall prove the first inequality. Set $g('u) = \exp(\sum_{k=2}^n u_k \bar{y}_k) + 2\bar{y}_1 - 1$. Let χ be a C^{∞} -smooth function on \mathbb{C}^{n-1} with $\chi('u) = 0$ if $||'u|| \geq 3/4$ and $\chi('u) = 1$ if $||'u|| \leq 1/2$. Since the function $\varphi = \tilde{P} + (2n+2) \ln |'u|$ is plurisubharmonic, there is a C^{∞} -smooth function f with $\bar{\partial} f = \bar{\partial}(\chi g)$ and $\int_{\mathbb{C}^{n-1}} |f|^2 e^{-2\varphi} (1+|'u|^2)^{-2} \leq 2 \int_{\mathbb{C}^{n-1}} |\bar{\partial}(\chi g)|^2 e^{-2\varphi}$ [9]. It can be shown in the same way as in the proof of Theorem 3.4 [14] (see also Theorem 3.11 [15]), that $|f|^2 \leq C_1 \exp(P-\gamma_1\sigma')$ for some positive constants C_1 and γ_1 . Moreover, it follows from the convergence of the integral that $f('0) = \partial f('0) = 0$. Set $h(u) = \exp(Reu_1/2)(f-\chi g)('u)$. Then h is a holomorphic function on \mathbb{C}^n , $|Yh(0)| = ||Y||^2$ and, if $\epsilon^{\gamma} < \gamma_1$, $\sup_{E_{-\epsilon}} |h| \leq C_2$ for some constant C_2 . By continuity there is a positive constant a such that $|Yh(u)| \geq ||Y||^2/2$ if $\sigma(u) \leq a$. Set $h_1 = h \circ \pi_{1/a}/C_1$. Then h_1 is a holomorphic function on \mathbb{C}^n , $\sup_{E_{-\epsilon}} |h_1| \leq 1$ and $|Yh_1(u)| \geq a||Y||^2/2C_1$ if $\sigma(u) \leq 1$. This ends the proof of Lemma 4.

5 Corollaries and explicit formulas

We obtain immediately from c-hyperbolicity of E and the continuity of the Caratheodory metric the following sharp bounds for $C_D(z, X)$ (in terms of small/large constans).

Corollarry 1: Under the assumption of the theorem, there exist positive constants c and C such that

$$c \leq \liminf_{z \to z_0, z \in \Lambda} C_D(z, X) / ||\hat{X}|| \leq \limsup_{z \to z_0, z \in \Lambda} C_D(z, X) / ||\hat{X}|| \leq C$$

uniformly in all vector fields X.

If the vector field X is nontangencial to ∂D at z_0 , the following refinement of the theorem holds.

Corollary 2: Under the assumptions of the theorem, we have

(i)
$$\lim_{z \to z_0, z \in \Lambda} C_D(z, X) r(z) / C_E(\hat{z}_0, Y_1) = 2||\bar{\partial}r(z_0)||$$

uniformly in all vector fields X, for which $||X|| \le c||X_n||$ (0 < c \le 1); here X_n denotes the normal component of X at z_0 and $Y_1 = (||X_n||, 0, ..., 0)$;

(ii)
$$\lim_{z \to z_0, z \in \Lambda} C_D(z, X) r(z) / ||X|| = 2||\bar{\partial} r(z_0)||C_E(\hat{z}_0, Y_1(z_0)) / ||X(z_0)||$$

for each vector field X, for which $X_n/||X||$ is continuos in z_0 .

Proof: It is not difficult to see that $(\Psi_*X)_1 = 2||\bar{\partial}r(z_0)||X_n + o(1)X$. Then $Y = \hat{X}r(z)/2||\bar{\partial}r(z_0)|| = Y_1 + o(1)X$. Since the Caratheodory pseudometric is homogenic, subaditive, continuous and hyperbolic on E, (i) and (ii) follow from the equalities $\lim_{z \to z_0} (Y(z) - Y_1(z))/||Y_1(z)|| = 0$ and $\lim_{z \to z_0} Y(z)/||X(z)|| = Y_1(z_0)/||X(z_0)||$, respectively.

We can also compute $C_E(\hat{z}_0, X)$ explicitly for certain class of models.

Proposition: Let a domain E in \mathbb{C}^n has the form $E = \{w : Rew_1 + P('w) < 0\}$, where P is a $(\alpha_2, \ldots \alpha_n)$ -homogenous, convex, circular function (i.e. $P(\zeta'z) = P('z)$ for all $'z \in \mathbb{C}^{n-1}$ and ζ with $|\zeta| = 1$). Assume that the boundary point 0 of E has finite multitype (m_1, \ldots, m_n) . Then

(i) P is a polynomial and $\alpha_k = m_k = \Delta_{n+1-k}$ for each $1 \le k \le n$, where $\alpha_1 = 1$; in particular, $0 \in \partial E$ is a h-extendible point.

Let $X \in \mathbb{C}^n$. Then

(ii) $C_E(\hat{z}_0, X_1) = ||X_1||/2;$

(iii) if $X \neq 0$, the equation $|\lambda X_1/2|^2 + P(\lambda'X) = 1$ has a unique positive solution $\lambda(X)$; if X = 0, we set $\lambda(X) = \infty$;

(iv) $C_E(\hat{z}_0, 'X) = \lambda^{-1}('X)$

(v) if, in addition, P is circular in each variables, $C_E(\hat{z}_0, X) = \lambda^{-1}(X)$.

Proof. The equalities $m_k = \Delta_{n+1-k}$ follow from Propostion 5. [16]. In particular, the point $0 \in \partial E$ has finite type. Hence $P(0, \ldots, 0, w_k, 0, \ldots, 0) \not\equiv 0$ for each $2 \leq k \leq n$. Then it is easy to see that $\alpha_k = m_k$ and, hence, P is a polynomial.

Now, since the Caratheodory metric of a convex domain coincides with its Kobayashi-Royden metric by Lempert's theorem, we obtain the remain of the proposition, using similar arguments as in the proofs of Corollary 5.4. [14] and the corollary in [2].

Remarks.

- 1. If we replace the assumptions for convexity and circularity of P with the weaker ones pseudoconvexity and positivity, then (i) and (ii) also hold (since P/2 is a bumping function and $\pi(F) \subset E \subset F$, where $F = \{z : Rez_1 < 0\}$ and $\pi(z) = (z_1, 0)$.
 - 2. If E is a model of a domain D at a point $z_0 \in \partial D$ of finite multitype, then
 - (a) the multitypes of $z_0 \in \partial D$ and $0 \in \partial E$ coincide;
 - (b) when D is pseudoconvex near $z_0, z_0 \in \partial D$ is h-extendible iff $0 \in \partial E$ is so.
 - (c) when D is convex near z_0 , E is convex (see the proof of Proposition 2. [16]).

As a consequence of Proposition (v) and the theorem we obtain the following

Corollary 3: Let z_0 be a strongly pseudoconvex point of a smooth bounded pseudoconvex domain D in \mathbb{C}^n . If r = r(z) is a defining function of D near z_0 , Λ is a cone with vertex at z_0 and axis the interior normal to ∂D at z_0 , then

$$\lim_{z \to z_0; z \in \Lambda} C_D^{-2}(z, X) \left(-L_r(z_0, X_t) / r(z) + ||X_n||^2 ||\bar{\partial}r(z_0)||^2 / r^2(z)\right) = 1$$

uniformly in all vector fields X. Here $L_r(z_0, X)$ is the Levi form of r at z_0 and X is splited into its normal and tangencial components X_n and X_t at z_0

Proof: Note that there exists a unitary transformation A such that

$$r \circ \Phi_1^{-1}(v) = Rev_1 + \tilde{L}_r(0, v) + \sum_{i,j=2}^n b_{ij} v_i v_j + o(|v_1| + |v|^2),$$

where $\Phi_1(z) = 2||\bar{\partial}r(z_0)||A(z-z_0)$ and $\tilde{L}_r(0,v) = L_r(z_0,\Phi_1^{-1}v)$. Let $\Phi_2(v) = (v_1 + \sum_{i,j=2}^n b_{ij}v_iv_j,'v)$ and $\Phi = \Phi_2 \circ \Phi_1$. Then

$$r \circ \Phi^{-1}(w) = Rew_1 + \tilde{L}_r(0, w) + o(|w_1| + |w|^2),$$

which shows that the complex ellipsoid

$$E = \{w : Rew_1 + \tilde{L}_r(0, 'w) < 0\}$$

is a model of D at z_0 . Applying the theorem, we obtain

$$\lim_{z \to z_0; z \in \Lambda} C_D^2(z, X) \left(-\tilde{L}_r(0, (\Phi * X)_t) / r(z) + ||(\Phi * X)_n||^2 ||\bar{\partial}r(z_0)||^2 / r^2(z)\right) = 1,$$

since $C_E^2(\hat{z}_0, Y) = \tilde{L}_r(0, Y_t) + ||Y_n||^2/4$ by Proposition (v). Now the corollary follows from the equalities $\tilde{L}_r(0, (\Phi_*X)_t) = L_r(0, X_t), (\Phi_*X)_n = 2||\bar{\partial}r(z_0)||(X_n + o(|z|)X_t)$ and $\lim_{z \to z_0; z \in \Lambda} o(|z|)/r(z) = 0$.

Now we shall consider the case, when z approaches a strongly pseudoconvex point z_0 in arbitrary way. Note that the Levi form is continuous. In particular, it is strictly positive near z_0 . Then, checking the proofs of Corollary 3 and the theorem, it is easily to see that, if the aperture of the cone Λ is fixed, the approaching is uniformly in z_0 . Observe that, if $z \in D$ is close to z_0 , then z lies in the cone $\Lambda_{\pi(z)}$ with vertex the projection $\pi(z)$ of z at ∂D . Thus we obtain the following result, which is more precise than Colorarry 2.

Corollary 3': Let D, zo and r be as in Colorarry 3. Then

$$\lim_{z \to z_0} C_D^{-2}(z, X) \left(-L_r(\pi(z), X_t(\pi(z))/r(z) + ||X_n(\pi(z))||^2||\bar{\partial}r(\pi(z))||^2/r^2(z)\right) = 1$$

uniformly in all vector fields X. Here $L_r(\pi(z), X)$ is the Levi form of r at $\pi(z)$ and X is splitted into its normal and tangencial components $X_n(\pi(z))$ and $X_t(\pi(z))$ at $\pi(z)$.

References

- [1] E. Bedford, J. E. Fornaess, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1979), 711-719.
- [2] H. Boas, E. Straube, J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449-461.
- [3] D. Catlin, Boundary invariants of pseudoconvex domains, Ann of Math. 120 (1984) (1984), 529-586.
- [4] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466.
- [5] J.-H. Chen, Estimates of the invariant metrics on convex domain, Thesis Purdue Univ. (1989).
- [6] J. D'Angelo, Real hypersurfaces, order of contact, and aplications, Ann of Math. 115 (1982), 615-637.
- [7] K. Diederich, G. Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis (H. Skoda and J. M. Trepreau, eds.), Aspects of Math., E26, pp. 127-162, Vieweg, Braunschweig, 1994.
- [8] I. Graham, Boundary behavior of the Carathedory and Kobayashi metrics on strongly pseudoconvex domains in \mathbb{C}^n with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240.
- [9] G. Herbort, Invariant metrics and peak functions on pseudoconvex domain of homogeneous finite diagonal type, Math. Z. 209 (1992), 223-243.
- [10] L. Hörmander, L^2 estimates and existence theorems for $\overline{\partial}$ operator, Acta Math. 113 (1965), 89-152
- [11] J. J. Kohn, Global regularity for $\overline{\partial}$ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. (1973), 273-292.
- [12] D. Ma, Boundary behaviour of invariant metrics and volume forms on strongly pseudoconve domains, Duke Math. J. 633 (1991), 673-698.
- [13] R. M. Range, The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78 (1978), 173-198.
- [14] J. Yu, Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), 1271-1295.
- [15] J. Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), 587-614.
- [16] J. Yu, Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992), 837-849.

Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria