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Abstract

We prove that Clarke-Ledyaev multidirectional mean value inequal-
ity holds for lower semicontinuous function on smooth Banach space. As
application we establish a formula for the Clarke-Rockafellar directional

derivative of lower semicontinuous function.

1 Introduction

The aim of this paper is to extend Clarke-Ledyaev inequality (see [5]) to the
setting of smooth Banach spaces. We relax the assumption of boundedness below
of the function. As application we establish a formula for the Clarke-Rockafellar
directional derivative of lower semicontinnous function on Fréchet smooth space
generalizing that of Borwein and Priess [3].

Before stating the results we fix some notations. A bornology 8 on the
Banach space X is family of bounded subsets of X together with the properties:
{z} € B for arbitrary x € X;if A € Jand B C Athen B € 8. It is clear that the
bornology G of all singletons is contained in any bornology and the bornology F

of all bounded sets contains any other bornology.
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We denote by By the closed unit ball of the Banach space X, while B%
is the open unit ball. For arbitrary A C X we put ||A|| = sup||a||; A denotes
aEA

the norm closure and for ¢ > 0 put A, = A + eB%, as v, = {v},. We set
[A, B] = co{A, B} for A, B C X (co stands for the convex hull).

Let us recall that a Banach space X is said to be f-smooth with respect
to certain bornology A if there exists a Lipschitz differentiable bump (i.e. with
non empty bounded support) function b € C4(X) = {f : X — IR; f is Gateaux
differentiable and the derivative is a continuous mapping_from X to the dual
space X*, equipped with the topology of uniform convergence on the members of

the bornology #}.
Our essential tool is the Smooth Variational Principle of Deville, Godefroy

and Zizler.

Theorem 1.1 ([7]) Let X be a 3-smooth Banach space. Then for each proper
lower semicontinuous and bounded below function f : X — IRU {400} and every
€ > 0, there ezists a function g € Ci(X) such that f + g attains its minimum on
X and ||g||e = sup{lg(z)|;x € X} < ¢ and ||¢']|~ < ¢.

If A is some bornology on X and f : X' — IR U {400} is proper and lower
semicontinuous then the f-smooth subdifferential of f at z is

Dj f(z) = {u'(z): u€ CyX)and f - u has a local minimum at z}

if z €domf and Dj f(z) = 0if f(x) = co. Asusual,dom [ = {zr € X; f(z) € IR}).

2 Main results

We now state the Clarke-Ledyaev inequality.

Theorem 2.1 Let X be a B-smooth Banach space, " C X be closed, conver and
bounded set: the lower semicontinuous function [ : X — MRU {400} be bounded
below on [a,C] + eBx for some ¢ > 0 and a € dom f. Given real number r so

that
r< I'i::'l inf [(C,) = fla)

and arbitrary § > 0, one can find x € [a,C]| + §Bx and p € Dj f(z) such that
r < inf p(C — a) and f(z) < inf [([a,C]) + |r| + 6.



This theorem is proved by Clarke and Ledyaev in the case when X is Hilbert
space (see [5]). Aussel, Corvellec and Lasonde in [2] extended it for the abstract
subdifferential defined by them in [1] which includes the g-smooth subdifferential
but they imposed an additional requirement on the set C'. The proof works for
general C only if X possesses an equivalent norm such that the square of the
distance to any convex set is J-smooth function (in particular if the dual norm is
locally #-uniformly rotund). The case of Fréchet smooth Banach space is solved
by Corvellec in [6].

Next we show that the assumption ”f bounded below on [a,C),” is re-
dundant (although, by careful examination of the proof one can estimate ||p|| by
the lower bound of f or the modulus of continuity of f. Such estimates could
sometimes be useful as shown in [9]).

Theorem 2.2 Let X be a 3-smooth Banach space, C C X be closed, conver

and bounded set. Given a lower semicontinuous function f X = RU {+0o0},
a € dom f, real number r so that

r< l:llg inf f(C,) — f(a)

and arbitrary § > 0, one can find x € [a,C] + 6Bx and p € Dj f(x) such that
r <infp(C — a) and f(z) < f(a) + |r| + 9.
In [3] Borwein and Preiss proved that for Lipschitz function f on a space
with #-smooth norm holds f°(x,h) = limsup(Dj f(y), k). This formula is no
y—r

longer valid for general lower semicontinuous function (see the example in section
3).
Recall that if x € dom f, v € X then

f(z,v)=sup  limsup inf Sy +tve) - f(y)’

10, py(r.y)—0 t

where py(z,y) = |l - yll + |f(x) = f(y)l, if x, y € dom [ and py(z,y) = 400, if
not and by definition v, = v 4 £B%. The above formula is due to Rockafellar who
use it as the right generalization of Clarke directional derivative to the setting of

lower semicontinuous functions (see [4]). Deline for r € dom f and v € X

[(z,v)= s:;gi%sup{infp(v.): p € Dify), pylz,y) < 6}

for all € dom f and v € X.

Proposition 2.3 Let X be a F-smooth cparc and the function f : X — RuU
{+00) be lower semicontinuous. Then [*(x,v) = [*(x,v).

.!
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3 Proofs of Theorems 2.1, 2.2

Proof of Theorem 2.1. We may assume that @ = 0 and f(0) = 0 by considering
instead of f the function fi(x) = f(x + a) — f(a). Also, by eventually taking
smaller § € (0,¢) we may assume that r < inf f(Cs).

Since the space X is f-smooth there exists Leduc type function ¢ € C}(X) such
that ¢(0) = ¥’'(0) = 0 and ¥(.) > ||.|I%, in particular one takes ¥(.) = ||.||? if the
norm is S-smooth (cf. Proposition 11.5.1 from [7]).

Set D =[0,C), E = Dy and let M € IR be such that f(E) > M (by the choice of
§ we have that E C [0,C],). Take ry € (r,inf f(Cs)) and ry < r+27'6. Consider
the following bounded below lower semicontinuous functions f, : X x X x IR —

RU {+0}:

_J @) +nglty—x)-nt , z€E, yeC, te|0,1]
Iz, y,1) = { +00 , otherwise

It is trivial that the product of -smooth spaces is f-smooth (the product of bump
functions is again bump). Apply the Smooth Variational Principle of Deville,
Godefroy and Zizler to obtain g, € C}(X x X x R), z, € E, y, € C and
tn € [0,1], so that max{||gall, llgill} < 27" and the function h, := f, + g,
attains its minimum at (2., ¥, ts).

Claim. For all large enough n € IN we have that ||z, — tay.|| < § and

b ks
Proof of the claim. It is clear that

Ja(Za, Uniln) S inf fu(E,C, [0, l]) + 2||gnlloe < fa(0,0,0) + 2" = 21_-.’

e 217" > f(za) + n¥(tayn — 20) = ity > M = |1y + nf|t,y. — 2.2, so tayn —
z.ll el 0.

If we assume that the set N := {n € IN; t, = 1} is infinite, then for
all n € N it will hold that 2'™" > [ (xu,un, 1) = f(20) + n¥(yn — 2,) = 1y >
f(z,) = ry. But, as mentioned above |{y, — x,|| < & for all large enough n € N, 3:,
z. € Cs and f(x,) > inf f(Cs). From the last computation we have that
inf f(Cs) < vy + 2" for all n € N and consequently inf f(Cs) < ry, which
is a contradiction. The claim is proved.

Let us continue with the proofl of the theorem. Since t,y, € D, from the
claim we have that z,, € Dg and that the function k(- yu. 1) = f(-) + n¢(t,y, —
)4 Gu (s Uns ta) attains its local minimum at x,. By definition for all large enough
n we have p, := n¥'(tayn = 2u) = (9a)3(Tn, Un ta) € Dy [(2).
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We shall show that inf p,,(C) > r for all large n € INV. Fix y € C. Since C
is convex yn + $(y — yn) € C for all s € [0,1]. Therefore

hu('tlu Yn + S(y o yu)' tn) 2 Il,,(.l',., ynv‘n)v

1.e.
nYP(ta(yn + S(¥y — yn)) — Ta) — n¥(layn — x,) 2

In(Tny Uny tn) = Gn(Tny Yn + (Y — )\ tn) 2 _2-"_3".'1 - yall,
where the last inequality holds because the function g, is 27"-Lipschitz.

Let K := diamC. Since ¢ is at least Gateaux differentiable at t,y, — z,,
we divide by s > 0 and take a limit as s — 0 to obtain that

=27"K < (n'(tuyn — 20) ¥ — Yn)
for arbitrary y € C. But ||p, — n¢'(L,y — xa)|| < llgnllc < 27", s0
(3.1) inf pu(C — ya) 2 =2'""K.

For fixed large n and small enough s > 0 we have according to the claim that

t.+s<l1,so
ho(Zn, Yuytn +8) 2 Ru(Zws Ynr i)

e, n¢!((l. + 3)”. Bl 1.) 5 "d'(luyn % :n) 2 sry — 27"s. Since ) is Giteaux
differentiable at f,y, — z., when dividing by s > 0 and taking s — 0 we obtain
n-2"< ("wl(‘uyll = Zn)sYn)- As [[pu — ' (tayn — za)ll < 27" and yn € C, we
have :
(3.2) Palyn) > 1 = (JIC]l + 1)27".
From (3.1) and (3.2) we conclude that inf p,(C) > r+0(27"), so for n € IV large
enough inf p,(C) > r.

To estimate f(x,) we note that for arbitrary x € D, such that z = ty,
where y € C and t € [0,1], we can write [u(za,yn,ta) < inf fo(E,C,[0,1]) +
Ugalle £ falzyt) + 2V = [f(x) = try + 2!, since $(0) = 0.
Then f(za) = tar1 € fa(Zu,¥n.ta) £ f(x) = try +2'"" and f(z,) < f(z) +
|ry] + 2!, since |t — ty] < 1. Take the infimum over x € D and recall that
ry € (r,r 4 2718) to see that for n large enough f(zo) S inf (D) +|r|+6. =

Proof of Theorem 2.2: We set again a = 0, f(0) = 0. It is clear that, if
0 € C, then we can apply Theorem 2.1. Hence we need to consider only the case
when 0 & C. Of course, without loss of generality, we may assume that 0 ¢
(recall that C is closed) and r < inf J(Cs). Set D = [0,C].
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Choose ry € (ryinf [(Cs)), vy < r+27%8 and lix £ € (0,27") so small that

€< 27%; 7 jkIIC.II <8 (1 —¢)'C, C Dsand ry < (1 —&) "inf f(Cs) in the
case when inf f(Cs) < 0.

For any y € X define the set

Aly) ={(t,x) € [0,¢] x Cy; [f(y + tx) < f(y) + nit}.

Remark that for every y € X the set A(y) is non-empty, since (0,z) € A(y)
for any z € C,. Define the function s(y) = sup{||tz||;(t,z) € A(y)}. From the
definitions it is clear that for every y € X it is fulfilled that 0 < s(y) < ¢||C.]l.
Consider sequences {y.}72o C X, {z.}3%, C C, and {1}, C [0,¢]
such t.'l‘xat vo = 0and for n 2 1 (1,,x,) € A(yu—1) and 1 ]lx.|| 2> 27 s(yn-y);

Yn = 3_ tizi. Such sequences exist by induction.

o~
We claim that zt.‘ < 1 —¢£. To this end assume that there exists n € IV

=1
n
such that 1 —¢ < Zt.- and take the smallest n € IV with this property. Then
=]
n
1-e<) i<l
=1 - @
Put z = (Z l;)-‘zt;.!',‘. It is clear that = € (., since the latter is
=1 =1
" - " e
convex. ||z —y.ll = |l -(X ) 'IIZ‘N‘& < P c"y"“ wherefore |y || — ||z]| <
=1 =1
£ 1= k=2 s £
—fynll and vl € Tl € T NG Then 2= 3nll € -l <

§ that is y, € Cs. By our construction we have

(W) € f(Yum1) Ftar1 S ... S J(0) 41y f:l.- < <infl f(Cs) < f(yn),

=1
which yields a contradiction.
Since the sequence {z,}3%, is bounded (||z.]| < [|C.]|) the sum ¥ t;z,

=1
e <
absolutely converges. Put y = ) tix; = Jim y,. From the convexity of C, it
=1
11 " n
is clear that the points z, = (3_6:)™7' Y tixi = (3_t) 'y € C.. Evidently

=l =1 =1
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I (Z t:i)"'y,soy € Z':‘ﬁ g S Fa
=] i=1
Now, assume that we can find € (0,¢] and = € C, such that f(y +
tr) < fly) +nt. Put I3 = = + t™'(y — y.) and note that 7 — z € Gy
Since C, is ope;n set we have ¥, € C, for sufficiently large n. .O—b:erve that
flya +133) = f(y + tx) < f(y) + rt and the lower semicontinuity of f at y
gives f(yn + tT3) < f(yn) + rit for sufficiently large n. Thus (4, 737) € A(y,)

and :ﬁ_l_p;s(y.) > .ihgt"i:" = t|jz]l > 0, sincex € C, C Cs F0and t > 0.
But from the definition of (1,,,) we have that s(y,-1) < 2t,]lz.)l — 0, which
yields a contradiction. Therefore, for arbitrary ¢ € (0,¢] and = e'é:it follows
that f(y +tx) 2 f(y) + rit. By the lower semicontinuity of [ at y it is bounded
below on the set y + 26, Bx C Djs for some §; € (0,27'§). Choose t € (0,€]
so small that tC C § By, that is possible for the boundedness of C. We will
apply Theorem 2.1 to the point y and the set y + {C' with §;. To this end we
see that f(y) < lim f(ya) < Ir| 3 ti € (1 —¢)lr|. Also, [ is bounded below
=1
on [y,y + tC) + 8, Bx by the choice of §; and liwinfj(y +1C +9Bx) - f(y) >
- ik
inf f(y + tCe) = f(y) 2 mit > rt by our previous consideration. According to
Theorem 2.1 there are z € [y,y + {C]+ 8 Bx C Ds and p € Dj f(x) such that
inf p(tC) > rt, i.e. inf p(C) > r and f(x) < f(y) + |l + & < (1 —€)|ry| + |r|e +
271§ < |r| + & because of the choice of ry, é; and &.
The proof is completed. .

Remark: Obviously, if the set ' is compact or the function f is uniformly
continuous then u}g inf f(C,) = inf f(C) and one can simply take the latter in
L

Theorems 2.1, 2.2. It is natural to ask whether such replacement can be done in
oo
general and the answer is no. Consider X' = 2= {{1‘..}:“ "o C IR; Z 2 < oo}

n=0
and the subspace Y of the vectors {r,};%, with xo = 0. In [8] it is constructed
a continuous function f : X — IR such that Vy € By NY = f(y) = 0, but
Vr € X,p € Dif(z) = infp(Bx NY) < =271,



4 Formula for Clarke-Rockafellar
directional derivative

Proof of Proposition 2.3. Without loss of generality we take £ = 0 € dom/.

Fixv e X.
Let r < f°(0,v). There is ¢ > 0 such that r < i%sup{infp(u,), p €

Drf(y), ps(0,y) < 8}. Hence we can choose x, s 0 (this means by definition
that ps(z,,0) L 0), pu € Dgf(x,) with inf p,(ve) > r for all n € IV.
By definition f(xn+h) 2 f(xn) +pu(h)+an(h).||k]], where ay(h) — 0.
§hi—0

Thus
o J(za + tve) — [(24)

: 2 inf pu(ve) + inf a,(tv,)]|ve]l.

Choose t, > 0 so small that ¢, < 27" and inf a,(t.]|v.]|Bx) > — (this is

; Ilvell
possible, since a,(h) reps 0).
f(-"u + ‘n:’c) - f(xa) el

- 27" and

Then inf

R 7% ol Sy +tve) - f(y) ST it J(n + tave) = J(za) o
t]0, py(0.y)—0 n n—00 i -

hence f°(0,v) 2 f°(0,v).
From the other side, let r < f°(0,v). Fix £ > 0 so small that

j(.‘l+l"l) Eer I(!I) Sy

b ]

limsup inf

10, py(y0)—0 t
Find sequences z,, e 0, t,, 1 0 such that
- l" g i
inf J(xn t tave) = J () >r, ¥Yne€ .

Ly

Take ¢, < € and put C* =z, + 1,,7;,. Then l‘iw inf f((C")s) > tur + f(x,). We
apply Theorem 2.2 to z,, and C" to get y,, € [2,,C"]y-, pu € D f(y4) so that

Pu(C" = 2,) > rlyy, &= p(T) > r



and f(yn) < [(xn) + [rlt + 27" It is clear that g, — 0 and E](y,,) <
;[E] (zs) = f(0), since z,, —7 0. So lim f(ya) = 0 by lower semicontinuity of

f. We have found Un T 0, pu € Dgf(yn) such that p,(v,,) > r. It is easy to
see that for every § > 0

sup{infp(ve,) : p € Dpfly), ps(y,0) < 6} 2 Tim inf pa(v,) > 7.

So f°(0,v) 2 r.
Finally f°(0,v) = f°(0,v). M

Example: Consider the continuous function f : I#? — It

b=yt iyl <2, 220
J(z.y) = { 0 , otherwise.

It is easy to compute that D¢ f(x,y) = (0,0) if r < 0, or x> 0and ly] > =%;
Dif(z,y) = (@'« 4,3 dsguy) if y # 0, ly] < 2}, 2 > o
Dif(z,y) = {a(27'z74, =37y~ ¥sguy) : a € [0,1]}if0 # |y| = 23; Df f(z,y) =
0ify=0,2>0.

Therefore, limsup (D f(x,y),(1,0)) 2 Ii::l.?p(l);-j(;l;, ;-:3)'(1‘0)) %

(x.y)—(0.0)
_Ing 2-'n} = oo and nevertheless /°((0,0),(1,0)) = 0.

To see the last equality note that obviously f°((0,0),(1,0)) > 0 and as-
sume that there is r > 0 such that f°((0,0),(1,0)) > r. According to Propo-
sition 2.3 £°((0,0),(1,0)) > r. By definition there exist £ > 0 and sequences
(Zny¥n) et (0,0), (an,b.) € Dgf(r..ya) such that inf{(a,,b,),(1,0)2.) > r.

Since (1,%¢) € (1,0)2, we have in particular that

(4.1) a, — &lb,| > r.

It is easy to see that for all n € IV we have that », > 0 and |y,| < .1:2,
since otherwise we would have (a,,b,) = (0,0). From the shape of the sub-
differential we derive that for all n € IV there exists a, € [0,1] such that

(anyBa) = an(27'za T s }qgny.) From (4.1) it follows that 0 < r <
(22 U - 37 yal~ ). In partlrular a, >0 and 27 Pt S vel"Y. Then

_3..,! < |y.|i < z.,i.e .r! > T > 0, but #,, = 0, which yields a contradiction.

" -
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