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Abstract

The paper presents a proof of 2nd order pointwise convergence for a new finite difference
scheme for elliptic problems with discontinuous coefficients (so called interface problems).
Cell-centred grid is exploited, i.e., the computational domain is divided into grid cells, and
the values of the unknown function are related to the cell centers. It is assumed that the
diffusivity coefficient is a constant within any grid cell, and that interfaces are aligned with
the boundaries of the grid cells. The 2nd order pointwise convergence is proved under the
assumption that the normal components of the fluxes of the solution are smooth enough
at the midpoints of the finite volumes sides. Numerical experiments, confirming 2nd order
pointwise convergence for the new scheme, are presented.

1 INTRODUCTION

There exist several approaches for discretizing interface problems. Let us briefly discuss finite
difference and finite volume discretizations (existing finite element discretizations will be only
mentioned).

The first schemes, suggested for solving interface problems, were based on some averaging of
the discontinuous diffusivity coefficient. For a long time, arithmetic averaging was extensively
used. However, it was shown (see, for example, (10, 14]) that harmonic averaging leads to
more accurate numerical solution. Standard schemes, based on averaging for the diffusivity
coefficient, usually exploit minimal stencil - 3 points in 1D case, 5 points in 2D case, 7 |)()i||(’3
in 3D case. Advantages of this approach are the minimal stencil, the good properties of the
grid operator (it is symmetric, positive definite). A lower accuracy (which is even unsatisfactory
in the case of arithmetic averaging) can be listed as a disadvantage for this approach. Note,
that roughly speaking, standard FE discretization corresponds to arithmetic averaging of the
diffusivity coefficient, while non-conforming FE approach corresponds to harmonic averaging.

Some schemes on extended stencils were proposed recently. Generally situated interfaces were
considered in [6], while the great part of the papers in the field deal with interfaces, aligned with
grid cells boundaries, or with grid nodes. Higher accuracy is main advantage of this approach.
However, it may lead to scheme which does not satisfy maximum principle. Another scheme on
extended stencil for 2D problems is suggested in ([5]), however there are some restrictions on the

spatial grid steps there.
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Another approach is based on splitting the multidimensional interface problem into two sub-
problems. The first one concerns the solution of a dense problem in a space of a lower dimension
aiming at computing the solution on the interface. The second one is to compute the solution in
remaining grid points using already computed values on the interface. For details about this ap-
proach see, for example, [9, 7]). This approach is accurate, and the maximum principle is satisfied
here. However, it is efficient when only one (or a very few) interfaces exist in the computational
domain.

Recently an improvement to the harmonic averaging based scheme was presented in [3, 4].
The improved scheme is based on conjugate discretization for the normal components of the flux
through the opposite finite volumes sides. The scheme demonstrates high accuracy in numerical
experiments. In particular, second order pointwise converegence is observed in numerical experi-
ments for problems where the normal components of the flux are smooth. However, only second
order convergenece in W} is theoretically proven.

Here we present a new finite difference scheme for a class of interface problems. It is very close
to the scheme from [3, 4], but now we are able to prove 2ud order pointwise convergence. We
restrict our consideration to the problems with diffusivity coefficient being a constant within any
subdomain. We also suppose, that interfaces are aligned with grid cells boundaries. However, we
can consider as many interfaces as cells boundaries. Our scheme is modification of the harmonic
averaging (HA) based scheme, and we will refer to it further as to MHA scheme. It has the
same operator as HA, but the right hand side is modified. Thus, the operator of our scheme is
symmetric, positive definite. The modification of the right hand side allows 2ud order pointwise
convergence to be proved in the multidimensional case, and it also increases the accuracy of the
numerical solution. '

The reminder of the paper is organized as follows. The modified scheme (MHA) for 1D prob-
lems is presented in the next section, together with a proof of 2nd order pointwise cohvcrgence.
The 2D case is discussed in the third section. The fourth section is devoted to results from
numerical experiments. Finally, some conclusions are formulated.

2 ONE - DIMENSIONAL INTERFACE PROBLEMS

2.1 FORMULATION OF THE PROBLEM
lu order to illustrate our approach we consider the following 1-D problem: find u(z) such that

W : d
%;=,(,), W= —k()z=, 0<z <1, u(0)=uo, u(l)=u. (1)

Here k = k(x) is the known diffusion coeflicient, W(x) is the flux dependent variable, and f(x) is
the given source term. If the diffusion coefficient is discontinuous at a certain point £, (we call it
interface point), then conditions for continuity of the function and of the flux through interface
are added:

[u] = [W] =0, for z =§, (2)
where [u] denotes the dilerence of the right and left limits of u at the point of discontinuity. It
is supposed that there are at most a finite number of interface points. :

We introduce a cell-centered uniform grid 2o = 0,0y = h/2,2; = 2y 4h, i = 2,3, Nany, =

I with a step-size h = 1/N. Non-uniform grid can be treated in a similar way. The values of
a function f defined on the grid are denoted by fi. We define a finite volume V; = (z,_ 1 24)

corresponding to the node z,, where x,,3 = 2, + %[.' 2oy =i~ %h.
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Further we assume that there are interfaces at the boundaries of any grid cell, i.e., at any
point like z,,;. We will consider a discretization for the above problem given by

_ 1hg Ba<Y, Y- Ye SR T STk, ki
L).s-"[k.'f—-ﬂ——-—k.'f _—_']= o mdint =i Mifio — ko fi _ g
: h L h / 4 ki + ki & ETk. @ (3)
where Y stands for the discrete solution, and coefficients kﬂ j are given by:
1 ol o
“d T \B " 4

lemark. It is easy to see that the above scheme can be viewed as a finite volume one, if the
following definition for discretization of the flux through interfaces is given:

) Y=Y | 1kifin —kinli
W ~ k" +1 A +1 +1Js
00’ c{i h + 4 k‘ + k‘+‘ .

2.2 POINTWISE 2ND ORDER CONVERGENCE

To prove the 2nd order pointwise convergence for the scheme (3) to the solution of the above
interface problem (1), we use a technique which is often used in FEM. That is, we construct
v(x), a piecewise quadratic approximant to the solution u of the differential problem. Further,
we show that ||u — v|lc = O(h?) in grid points. Next, we show that ||Y — v|lc = O(/?) and
thus the proof is completed. Weiser and Wheeler [15] used similar technique to prove 2ud order
pointwise convergence of finite volume discretization to Poisson equation on non-uniform grids.

2.2.1 Piecewise quadratic approximant
We construct v(z) in three stages.

A. Constructing piecewise linear interpolant.

At this stage we construct v¥, a piecewise linear interpolant to the solution, satisfying interface
conditions. More precisely, v* is constructed under the following conditions:

v,“ = vL(r.) = Uy, l’.-';g = "L(T-H) = Ui

X Py, Migeo
”.0}-0 o UOO‘W' k' 8: 5 k‘f' ax

Note, that such an interpolant is constructed in explicit form, for example, in [10], [14]. We
{o not use the explicit form, and because of this we do not list it here. We will need further the

»bvious fact that

'r'.l;*-o =Uyi-0 + O(hz) (5)

We presented above the construction of the piecewise linear interpolant on (i, 2,41). The
siecewise linear interpolant in all domain (0, 1) is constructed in a straightforward way.

B. Constructing an auzdiary quadratic interpolant.
Denote R(x) = u(x) - v¥(z). Further we construct "q(f)wl‘ € (0,1) under the conditions
hat any its piece v9°(x), r € V,, satislies the following three relations:



.Q.;w - U (zt-}"’o) s R--’ = u|—§ — val-‘-i
”.q-u =v '(I,,*-o) = R,,’ = Uy - v,’;*
d [, w2 d [, ou
-5 (8%05) =5 (v32) =4

(. Constructing piecewise quadratic approrimant.

Now we consider piecewise quadratic approximant, v(z),
o(z) = v¥(x) + v9z)

By constructing, this piecewise quadratic approximant satisfies the following relations:

v"}=u.l;’+03§=v£§+u,,§-—vl'§=u.*i, Vie} = U4 (6)
: d Bv.~ 2 d (‘)u.
’Z’T("o_) " '5;( a;) 5 (7)

It follows from here that the approximant is continuous on the interfaces, i.e. [v(z)] =
0 for r = 2,44, T = T} Also, it is obvious, that —% (k,%ﬂ) = f; for any z € V,, and that the
third derivative is zero inside any grid cell V.

Lemma 1 Let the solution u(x) be sufficiently smooth within any cell V;. Then the fluz of the
approrimant v approrimates the flur of the solution u on the interfaces with second order. More
precisely, the following relations hold

0"..’-0 43 ,.Lg—— ..i—o 0"0—"0’0 U “au._iw-— =
& dr e dr k' +O(R'), K Jr e, Ox k'__—L+O("3]

Proof. Consider the piece of the approximant v'(z) in a general form: v'(:) =a'r?+qr+r
The proof of the above relation is based on direct calculation of coefficients a', ¢*, r* . Substituting

v'(£) in (6,7), we obtain
0(:"’) = '(.t."" )2+Q(1‘.+ )+r = u.’§
"‘(:--Q) = a'(:o’ ey :2')1 + Q‘(I.‘ - ‘ﬁ) + r'= U}

o (0w
—2k.a——o( ) ki

The last equation implies a' = 5{- ‘;‘; (L M? Substituting this in the first and the second
equation, and subtracting the second equation from the first one, we obtain

B du,
hgi = tyyg = Uiy = ”‘"zk dx (‘ az)
Thus, the flux of the approximant is given by

k‘Ut;;it) = k,?a'x +k'ql - (: _:.)08: ( allc) +k‘——j—.—_—i ‘8:
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Consider now the value of this flux at z,,4 _o. Expanding u,_; in a series around z,,y, and after

d’
that expanding 7‘1 in a series around r,, we obtain:

00' _ , 0 i
kil . R IS AANEN B Ui
Or (.r.-{v2 I').t(ka) L__L__’.

h o d i 22
_a29 (k. u ) + 1 ( iy} = "§+hauui h*d u,, §+h363 +h O(h‘)) %

29z \Foz ) T 5% 8, .2 022 © 6 8
=k,?%;i——4—k‘—5—'?- ———‘ii +O(h®) =
= kf%}-i - ]}‘ 9-:—)—;’- + O(h®)

Thus the first estimate from Lemma 1 is proved. The second one is proved in the same way, and
the proof of the Lemma 1 is completed. :

2.2.2 An estimate for the error of the approximant
" Iu this subsection we prove the following Lemma:

Lemma 2 The approzimant v(z) approrimates the solution u(zx) with second order in any grid
poinl x;.

Proof To prove this, let us consider
L

lui = vi] = Jui = vf = | = |ui = w; — 0] = | = o7

That is, we have to prove that v? = O(h?). Let write the piece of the auxiliary approximant
v9(r) belonging to V; in a general form:

vq.‘(‘r) - “.‘rl + bd: + c" & e ('rcf’v'r'{})

Now consider

; 2t 'l i h i
v (2,y) = a'(xi + 5)" + B(ni 4 5) + ¢ = Riziy) = O(R?) (9)
) gl kil ; h ;
t.,,Q- (2.-3) = a'(zi - ;2-)' +b'(x; - -2-) +c =Rz, )= O(h?*) (10)
-~2k;a' = f; (11)
From third equation above we have
e __f:.
ool

and the summation of the first and the second equutnons gives us

: h? ; ;
2a'x! + ’.’.u'-}- + 2b'x; + 2¢' = O(h*).

It is seen from here that

vV (r,) = n'.rf +br, 4+ = {-

A"‘

1
- + O(h?) = O(h?), (12)

and the Lemma 2 is proved.



2.2.3  An estimate for the difference between the discrete solution and the approx-
imant

We prove here the following lemma:

Lemma 3 Let the flur W be smooth enough within cells and on interfaces. Then |jv=Y|| < M h?
in all grid pomts. e

Proof To prove this lemma, we will demonstrate that Lyv; = ®; + O(h?). It will follow from
this that Ly(v —=Y) = O(h?), and from the stability of the above operator equation with respect
to the right hand side, the required estimate will follow. So, consider the difference operator

from the scheme (3). Substitute v(x) there and expand each value in a series around the nearest
|

interface:
L v-=—-- K ':;: v —H v} — vj7;
el S W < e vt e
r ’l t+l 2 41 d 2924 i
=——k” _l._. [l+l "’ h "’ i h v"’-o hzav""o
i p2 i ot 2 Or 8 dx? "5'0 2 Or +_8— dz? &

[ Ul‘. 2 i)) ,‘ -1 2. .1+1 :
+k"’-l- v_i140t !"'—-——L—'.- g !L——i—(" a4y sl PR hov, o . ot el Viei -0

A |\ T2 o T8 or s B "
Further, we use the fact that the approximant is continuous on the interface, and Lemma 1 which

gives us an approximation for the flux of the approximant. We also use the fact that the second
derivative of the approximant is known. Let us continue with the expression for discretization

of the flux through z,,:

KH Gn—% kK lat"i_" h v ::lﬁ’" + lav«i -0 hazv.‘oi-o
¢ RO ki+ kigy |2 O 8 or? 290 = 8 dxt -

1 é)v:fiﬂ L/ ::' Py,
kknu—(.')’x +kv'+lk-"—"'—ax +Z -kau———t— 1 -+|k'—:;—'-.§:—] =

k + kwl
i Ju, 0 h? Pu
BE semememencos—— P k. —-—:L— - ~ ————::-’-2
ki + ks ‘( b Oe ) “("‘“rz X )*
du,, -0 I Puy o h h
+kisy (k.—af"‘) - ks (‘n‘l‘j—a;;—') + :""-f-‘ﬂ s chuf.'] + O(h*) =

2 ')] LA B
= "'-“""'.' (ki + Kiar )k ——1—"’ - (ki + k..,.)—-—k _5—3—0 + :"(k-f-u —kunfc‘)] +0(h*) =
ks

oy Otgen ﬁ-—k Puyy-0 ” h kifisr = ki i o)

Ay, ™ 12 dx? 4  ki+ ki 4

The condition for the continuity of the flux through interfaces, as well as our assumption that

the flux is smooth enough through interfaces, were essentially used in the manipulations above.

More precisely, we mumed that the flux is twice continuously differentiable through interfaces,
e, "
ie. ;’,’{1 k, 32 “) = Iy (L,,._li'_’) The assumption that the diffusivity coellicient is a

constant within any cell, was also used,




With similar manipulations we obtain

) kiau“i‘“’ o ﬁki(')au,_*w e hkifioy = kiza fi
oz 12 oz 4 ki+ ki,

+ O(h?*)

Now we are ready to finalize evaluating of L,v;. Using the obtained above expressions for the
fluxes, and expanding them around the grid point r,, we obtain:

&u, Lkifisr = kisrfi | Vkifioy = kica fi
= __k._____ h? 2 Mt i+1J1 2 MJi=1 -1J N _ & :
. ox? Raatis 1 4 ki+kin 4 k+k- +O(h) = %1 Oh)

So, we showed that Ly(v —Y) = O(h?*). It follows from here that |[v — Y|| = O(h?), and thus
the Lemma 3 is proved.

The following theorem is valid:

Theorem 1 If the fluz is sufficiently smooth within cells and on the interfaces, then the discrete
solution approrimates the exact one with the second order in grid points:

Hu—=Yllc < M A

Proof. The second order of accuracy in grid points follows from ||u — Y|| < |lu — v|| + ||v = Y]],
and from Lemma 2 and Lemma 3.

3 TWwO - DIMENSIONAL INTERFACE PROBLEMS

3.1 FORMULATION OF THE PROBLEM
Consider now 2D elliptic equation:
Lu = div W = —div (k gradu)) — j(z:,,xg), (Ihx,) I G‘ (13)

u(zy,z2) = glx1,22), (21,22) € 9G (14)

where: W stands for the flux W = —k(xy,r;)gradu, the unknown function is denoted by u,
k = k{x,,x;) stands for the discontinuous disflusivity coefficient. The domain G is assumed to
be a rectangular. Conditions for continuity of the solution and the normal component of the flux
through the interface are added:
du
lu]:u‘ [k‘.—)—] =00 (I',I))e l (15)

n

The region under consideration is divided into N, x N; finite volumes. Dimensions of a volume
0 1y, &y are hy, hy, respectively. For simplicity, we suppose through this paper that hy = h, = h.
The values of the unknown function are related to the volumes’ centers. Additionally, values of
the unknown function on the boundary are considered to account for the boundary counditions.
T'hus, after discretization of the equation and the boundary conditions we have (N, 42) x (N;+2)
unknowns . The following notations are used below: vp = vy, vg = vy, tw = vy, vy =
Digety US = Uig-ly Ve = Viejar Yo = Uijiy Us = Vings Vs = Yipofr Une = Viadurdr Yaw =
Viefueds Voo ™ Vijumgs Vow = Vicgy-je

In this paper we consider multidimensional problems that can be discretized in a coordinate-
wise way. We consider only interfaces aligned with finite volumes surfaces. Thus discretization



of a 2D problem is obtained as tensor product discretization of two 1D problems (like one
investigated in the preceding section). A diflerence scheme approximating 2D interface problem,
and converging pointwise with second order to its solution, is written as

hg hl hg h h h B h -
I TS Y Bygh  Bagn, Mgk Bual. Mg, o Mg
E ] ys h] w y”’“"-(hz s + h‘k. + hlkc + hzk- yP h‘ke yE hzkn yN igeg hlh2¢l'\ (16)

where k* stands for harmonic averaging of kp and kg, etc., and

1 (krfs - kg fp % kpfw = kwfr) 7 1 (krfN - knfp i kpfs — ks/r)

CSp=Jp+ <
p=Jr 1 kp + kg kp + kw 1 kp + kn kp + ks

It is obvious that the finite difference operator corresponding to the above scheme is symmetric
positive definite one. Difference scheme (16) is used in numerical experiments below.

3.2 POINTWISE 2ND ORDER CONVERGENCE

We present here generalization to the 2D case of the proof from the preceding section.

3.2.1 Piecewise biquadratic approximant
We construct v(z,y), a piecewise biquadratic approximant to the solution, in three stages.

A. Constructing piecewise bilinear interpolant.
In 2D case we do this in three substages.

Al First, we construct an auxliliary 1D linear interpolant vi¥(z), satisfying the interface
conditions at point ., and the following interpolation conditions:

LX, LX,
vp e up, vg;\ o ug

As in 1D case, it is obvious that
U,L‘\" = u' + O(hz). (l?)

In a similar way we construct v¥*(x), v!¥"(y), v***(y), and-in all cases the interpolants ap-
proximate the exact solution with second order on the interface, as it is in (17). This procedure

is repeated for all grid cells.

A2. Second, having values v2%*, v2X* and similar values in negbouring cells, we interpolate

vur. & value in the corner of the grid cell. We repeat this for all corners.

Ad. Finally, we construct a bilienar interpolant in any quadrant of any cell. Let us denote
by vb**(z,y) the bilinear interpolant in the top right quadrant of the cell around the node P.
It is constructed by the following condition:

Lo At hXe Ll LY | %
vp = up, Yy e » Uy =v, .‘0 "u" = Upes

The piecewise bilinear interpolant v (x,y) over all computational domain is obtained by
sbove described pieces. We will need further the fact that

b uk e = o + O(RY),  vEg = tag + O(K?), ete. (18)
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B. Constructing an awziliary piecewise bi-quadratic inlerpolant.

2t

Denote R(z,y) = u(x,y)—vE(z,y). Further we construct v@(z,y), 2 € G under the conditions
that any its piece v (x,y), (v,y) € Vp, satisfies the following relations:

v8+l; = Ry =ty — vE, ve_‘g = R, = u, — v (19)
0 i sy 9 (, Oup 9 (, Oup
E g B i = —— [ k —_— ] = 5 — ik F 2
Ox ( P 0x 9z \"" 0z i ay " dy (20)
'P |
U,?.H) — Rn —-Un-== ,0711,’ vs—g o RS = Uy = Vs (21)
J @l J Jdup J Ju
i ST R TETAE PiT, .
dy ( i dy dy 5 dy Jpt oz \"F 0z L)
C. Constructing piecewise bi-quadralic approximant.
Now we consider piecewise bi-quadratic approximant, v(x,y),
; v(a,y) = vh(z,y) + v%(a,y) (23)
By constructing, it satisfies the following relations:
Ve = vf o U? 3 vf + Ue — veL =Uey Vy = Uyy Up=1Up, Vg=Ug (24)

—
0o
(W}

~—

0 a'Up (? (?u,: ‘ ; 0 aup
——kp— | =—% |k = — | kp—==
8:1:<lb 8.7;) Ow(Paw) P+(’)y(kP0y)

({) () vp () (? up 3 0 (?u P
— e k —_— = e—— k ] = » — ) [ ——
(')y(P(')y) (‘)y(l(')y) jl+0;z:(kpc')a:>

It follows from here that the approximant is continuous in the midpoints of interfaces.

—

26)

Lemma 4 Let the solution u(x,y) be sufficiently smooth within any cell Vp. Then the Jollowing
relations hold

dv -0 0“5—0 /12 (.).3([(_0 ; 3 0”w+u (’)uw+u h') 0311, :
‘D = = K ————-—-—-A.‘.) - ()I - A‘) :Aj, ——kp w+0 3 P,
ki Jdx e 1277 a3 3! (" Lyt dw P O 12/1 da3 +0O(h7) (27)

JVn—o Quno h?, uno, 3 Vg0 Quspo A, Pu,yo ;
e = fop——is, -—;—‘-—'+()/ y k : = kp ; by = Ly L )28
ks 5 kp 3 5 oy (h°), kp Dy I By lzkr By +O0(h”) (28)

Proof. The proof of the above relation is based on direct calculation of coefficients of the
piecewise bi-quadratic approximant from the equations (24),(25),(26). This is done in two stages:
in 2— direction, and in y— direction, and calculations in any direction repeat the calculations
for the 1D case, presented in the preceding section.
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3.2.2 The estimate for the error of the approximant

In this subsection we prove the following Lemma:

Lemma 5 v(z,y) approrimates the solution in point P with second order.

Proof. To prove this, let us consider
lup —vp| = |up — vh — 02| = |up — up — | = | - v

That is, we have to prove that vg = O(h?). Let write the piece of the auxiliary approximant
v9(z) on Vp in a general form: |

v¥P(@) = aP2? + bPay + Py + dPe + Py + 6", 2 eV

Now consider

h )} 2 5 )

v P(z,) = a® (2 + 5)2 + b (2 + §)yj + 'y} +d"(zi + é‘) +efy; + 9" = R(z.) = O(k?)
09P(2,) = aP (@i = ) + 0 (s = 2y + Sy + &P (i = ) ey + o = R '
)= =g ALY Lt B (‘Fi—§)+€3/j+g = R(z,) = O(h*)

i ll 5 ll ‘ ] /
v@P(z,) = aPaf + 0 iy + 5) (s + )"+ d i+ Py + %) +9¢" = R(z,) = O(h?)

h ; s > |
v@P(z,) = aPa? + b 2i(y; — o) Ui 5)2 +d z; +€"(y; — %) +9" = R(z,) = O(h?)

From the last equation above we have

pop gL in/r
1 = - ‘
a“=c T (29)
After summation of the first, second, third, and fourth equations we obtain
5 I fph? ,
QB o st ikl 2\ 2
AL e oTramdi el Y

and the Lemma 5 is proved.

3.2.3 An estimf\te for the difference between the discrete solution and the approx-

imant

We prove here the following lemma:

Lemma 6 . Let the normal components W&, WW of the flux W = —gradu be smooth enough
within cells and on interfaces. Then ||[v — Y|| < Mh? in grid points.
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Proof. To prove this lemma, we will demonstrate that Lyvp = ®p+O(h?). 1t will follow [rom
this that Ly(v —Y) = O(h?), and from stability of the above operator equation with respect to
the right hand side, the required estimate will follow. So, consider the difference operator from
the scheme (16), substitute v(x;,z2) there and expand it arround interfaces:

Il

LT o iy ) of — oW | N _.P P_ .S

o . .HYE P I 2 / Uy — 0 Up — 0

Lyop = = [ YE TPy Yotoe = vy [Ty Uil ) oF —v3
h | h h h iy h ’ h

Pl e h vk h* 9*vE h ovf h? 9*oF
k” E 1 .e+U (+U P ol Ve_o 1 vc 0
2 |Vt 375, PR TE ) We0Tg 9, g Th
—k” 1 [( l’ QUU&-U h () Uu+0) (UW 5 QUU::/_O T /1,2 0203 0
=l 9O 8 Ox? )5

M R R AT 1 8 Oa?
A 1 L h ()n”+U ﬁ(’)'zv,’,\’w) 45 h ovF dvi_y , K23,
npz |0 T 97, 8 1 0x? N0 Vi@ (A8 Oz )

)
(Us 05

1 h ovP h? 0*vF h Ov? h2 §%S
kH P Nt 540 540 YY-0 _’_ Vs_o
kK, h? [(vs+0 £l 2 Oz 8 Ox? Le 2 Or g 8 2 )

Further, we use the fact that the approximant is continuous on the interface, and Lemma 4 which
gives us an approximation for the normal components of the flux of the approximant. We also
use the fact that the normal derivatives of the normal components of the flux of the approximant
are known from (25),(26). So, let us continue with the expression for the discretization of the
flux through x.:

2 dr 8 Ox? 2 0z 8 Jux?

Sl BT O S R o O L 2., E 32, E X Y
2kpkp vi —vp . 2kphkp l_()l’f+o /_’dzv£+o ldvf-o o ’_”)2”5-0 o
kp+ke h kp + kg )

/\TP-:'/CE [/»[)AE()()({ 10 +k1A,)()‘d’ -0 _,w kg };.!;u ke ’—’kbkp‘); '; ] )
e L R b R A
+il—l/€P (fE = 5% kL%L—E)) = Q—I/L (fp = <Al,odllj ))] + O =

= kp 41~ kg [(kp sl 02:0 ST ) kP ‘);“eso f(kl’fE — kg fp)-

h J Jug J Jdup
FLEb i e Gy BOCHRI R o : 3y _
y (/w 3y ( g ) '3y (/»1 3y ))] + O(h°) =

()lte 0 /L2 03u6+0 h A‘p fE - kEfP
sl EEsess ST SN 3
oL RS O B T P e ol U

/I | () ()ll 40 /l ()2 ()ll
S Skl i i L k l e c+0
11/;,,-{-/;3[ ()J( dy )+ dady (k dy )

9] Oue_g h U du
—kg— | k —kg Mitac o oms
Ef)y ( B oyt dy ) 3 2 E(?a:()y (kl dy )]

The above expression can be further simplified if the solution is twice continuously differentiable
within any cell, and if the &, component of the flux is twice continuously differentiable in w,




direction within any cell. The condition for continuity of solution on the lutelfacc u(a Ty htos 2) =
w(,4 10, 22) will imply under the above assumptions that

0 [ Oueto o4k -Ou. o
kpk =k k <
4 Ea.l'g ( 81112 ) g Pd'lxz ( dLQ )

and the condition for continuity of the normal component of the flux kgd—“f—*—" lgp“f;—':ﬁ will
Jduy
0? iz OUeto ' 0? I Ole_g
Jz3 dry | 922\ " 0z,

2kpkg Uij & 'U,l: S Jue—g /_l/v'l’fb' T /ﬂl«;‘fl’ /L_ d“‘lte 0 k aque 0
kp+ kg h R 0T, Anitkpit ke 127 922~ 8 T oy0x

imply

Thus, we obtain

+ O(h®)

With similar manipulations we obtain

LHUP T OW Ouwio  hkpfw —kwfp h*  Puyye h—l\:p() Uy40

i) Oy?0z

= i3 3
h fipz 4 kp+kw 127 03 +0(h)

Similar expressions can be obtained for normal components of the fluxes through nord and south
boundaries of the cells. Substituting the expressions for normal components of the fluxes in the
difference scheme, we obtain

Lyvp = Op + O(/lQ)
So, we showed that Ly(v —Y) = O(h?). It follows from here that |[v — Y|| = O(h?), and thus
the Lemma 6 is proved.

The following theorem is valid:

Theorem 2 If the normal components of the flux are sufficiently smooth within cells and on the
inlerfaces, then

* llu=Y|lc < M h?

Proof. The second order of accuracy in g,ud points follows from [[u = Y|| < |ju — v|| + |jv = ¥ 1],
and from Lemma 5 and Lemma 6.

4 NUMERICAL EXPERIMENTS

A 2-D interface problem with different coefficient in 4 subregions and with known analytical
solution 1s bOlVGd. Results from computations are presented in Tables 1 and 2 for two diflerent
sets of diffusivity coeflicients, respectively. Relative C' norm stands for %ﬁ:lrl—l where max
is taken over all grid nodes. Relative L, norm has similar meaning.

Table 1. Relative C norm and relative L, norm of the error u — Y, and their ratios. Harmonic
averaging (HA) based scheme and modlhcd HA scheme (Mll/\) 4 subregions.

sin("—;-) (r— -) (J'— ‘) (1+2*+y%), k={10',10-1,10%3,1}

er

Ed

u
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RELATIVE C' NORM RELATIVE Ly NORM
Nodes HA scheme | MHA scheme || HA scheme | MHA scheme
12x12 | 2.32d-3 - 4.79d-4 - 4.52d-4 - 1.09d-4 -
22x22 || 7.72d-4  3.00 | 7.38d-5 6.49 | 1.26d-4 3.59 | 1.85d-5H 5.89
42x42 || 2.33d-4  3.31 | 1.87d-5 3.93 | 3.31d-5 3.81| 4.56d-6 4.05 '
82x82 6.50d-5 3.58 | 4.83d-6 3.60 || 8.44d-6 3.92|1.27d-6 3.59
162x162 || 1.74d-5 3.74 | 1.34d-6 32.83 | 2.13d-6 3.96 | 3.39d-7 3.75

Table 2. Relative C' norm and relative L; norm of the error u — Y, and their ratios. Harmonic

averaging (HA) based scheme and modified HA scheme (MHA). 4 subregions.
i %sin‘(%) (1: - %) (y - %) (Liska*+yd), ek =3107361,10734,1018)

RELATIVE C' NORM RELATIVE L, NORM
Nodes; || HA scheme | MHA scheme || HA scheme | MHA scheme
12x12 1.75d-2 - 1.74d-3 - 3.07d-3 4.12d-4

22x22 | 5.97d-3 2.93 | 2.56d-4 6.80 | 8.38d-4 3.82|6.03d-5 6.80
42x42 || 1.80d-3 3.32 | 3.54d-5 7.23 |[ 2.14d-4 8.92|9.13d-6 7.23
82x82 | 5.03d-4  3.58 | 5.49d-6 0.45 | 5.40d-5 3.96 | 1.63d-6 6.45
162x162 || 1.35d-4  3.73 | 1.33d-6 /.13 i.35d-5 4.00 | 3.42d-7  4.13

The numerical results confirm the proved second order pointwise convergence for considered
here scheme. They also demonstrate the advantage of new scheme with respect to harmonic

averaging based scheme.
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