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CONTINUITY AND BOUNDARY BEHAVIOUR OF
THE CARATHEODORY METRICS

NIKOLAI NIKOLOV

ABsTrRACT. The main purpose of this paper is to study the bound-
ary behaviour of the higher order Caratheodory metrics, the sin-
gular Caratheodory metric and the Azukawa metric near an h-
extendible boundary point of a smooth bounded pseudoconvex do-
main in C".

’ |. INTRODUCTION

|

In this paper we study the continuity and the boundary behaviour of
the higher order Carahtheodory the metries, the singular Caratheodory
metric and the Azukawa metric of domains in C".

It is well-known that the higher order Caratheodory metrics (except
of the usual one) are upper semicontinuous but not continuous in gen-
eral (cf. [4]). M. Jarnicki and P. Pflug [4] have proved that for bounded
domains these metrics are continuous. In the present paper we gen-
eralize this result (Theorem 1) and prove the continuity ol the higher
order Caratheodory metrics ol an arbitrary domain in €™ at the points
where the usnal Caratheodory metric is positive.

In Theorems 2 and 3 we establish stability and continuity results
for the singular Caratheodory metric of strictly hyperconvex domains
(7] and model domains [9], respectively. These theorems and a result
of St. Nivoche [7] imply that the singular Caratheodory metric and
the Azukawa metric coinside on such domains (Corollaries 2 and 3).
Note that the continuity of the Azukawa metric for a class ol domains,
including the hyperconvex domain, has been recently proved by WI.
Zwonek [10]. :

Using Theorems | and 3, we obtain (Theorem 4) the precise non-
tangential limits of the higher order Caratheodury metrics, the singu-
lar Caratheodory metric and the Azukawa metric at an h-extendible
boundary point of a simooth bounded psendoconvex domain in €*. The
case of the usual Caratheodory metric has been studied in [6].
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2. DEFINITIONS AND STATEMENTS OF THE RESULTS

Let D be a domain in C". Denote by Hol(D,A) the space of all
holomorphic mappings from D into the unit disc A in C. For cach
k € N, we define the k-th Caratheodory metric as follows (cf. [4]):

CU (2, X) = sup{| S (2)X] : [ € Hol(D,A),ord. [ > k},

I
where fi)(2)N = Z — D" [(z) N and ord. [ stands for the order of
pq—k‘“
vanishing of [ at z. Clearly C'}) )(

metric. It is casy Lo see that

(CHU = X)NHCP(z X)) < (CHH(, X)) vk, len,

X)) s just the usual Caratheodory
y J h
|

Thus the following limit exists:

hm(W(Aw:cm;X)

k=00

and it is called singular Carathcodory metrie.
The Green function and the Azukawa metric are delined by

gp(z,w) = sup{u(w) : wis negative psh function on D such that

u(v) <loglv—z|+ O,(1)},

i . Xpg(z,z 4+ AX
Ap(z;X) = lnnsup( Pz, 2 + )
A= 0,\£0 BY

Let us note that these two functions are upper semicontinuous on D x D
and D x €, respectively [5]. Morcover, the following inequalities hold:
CHN X) <Oz, X) < Ap(z, X).

A domain D is said to be strictly hyperconvex il there exist another
domain D" DD D and a psh [unction ¢ on D' xn(h that lnn 99(*) =)

==
and D={:z€ D" :p(z) <0}.

Theorem 1. Let D be a domain in " and let the poinl zo € D be
such that CH)(z9, X) > 0 VX € "\ {0}. Then for cach k € N there
exist a conslant C' > 0 and a neighbourhood U C D of zy such that

ok , « , >

ICHY (2, X) = CHw, ) < CUIX = Y[+ (X + 1Y Iz = wll)

Vz,we U,YN,Y € C".

Note that for an arbitrary domain D the function ('}(z,+) is con-
tinudus and log-psh on €" but the function CF(+, ) is not continnous

(k> 2).

An immediate consequence of Theorem | is the following
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Corollary 1. Under the hypothesis of Theorem | the singular Cara-

7 N

theodory melrie Cpy(z,.X) 1s lower semiconlinuous on [/ x

Theorem 2. Let D be a striclly hyperconver domain in C". Lel
{D;}72, be a scquence of domains such that lim h(0D;,dD) = 0, where

J= ]300
h denotes the Hausdor[ distance. If D; x C* 3 (z;,X;) = (2,X) €
D x C", then

7 lim € (z;,X)) = CF (2, X).

Corollary 2. The singular Carathcodory metric of a stictly hyper-
conver domain in C" is continuous and coinsides with ils Azukawa
meltric. ;

Movreover, under the hypotheses of Theorem 2 we have

lim .'\/),(:j,.\i,') = /\1)(,‘:,.\').

J—Ho0

To state the next results, we lirst recall the notation of an h-extendible
point [9] (or, a semiregular points in the terminology of [2]). Let p he a
smooth, finite-type pseudoconvex boundary point of a domain D in "

with Catlin's multitype M o= (o my, o0 o) and D?Angelo’s g-type
A, Then pois said to bhe an h-extendible point il A, = 40—, for
I <q<n.

By [9] we may choose local holomorphic coordinates z = (z;,2') in

which p = 0 and such that near p the domain D is defined by the
equation r < 0 with ‘

r(z) = Rezy + P(2') = Ra(2) + Ra(2).

Here P is a psh polynomial that is weighted homogencous with respect
to (ma,...,my) and

0< Ri(2) < CImz) [ Ra(2)] € C(a ()
for (') = Z |z;]"™ and some positive constants C' and ~.
=2
IFor each ¢ € I set

E,={z€C": Rez; + P(z') + ea(z') < 0}.

The unbounded domain 19 := 15 is said to be a model for D at p. It
has been proved independently in [9] and [2] that a boundary point p of
D is h-extendible il the corresponding model /7 is a finite type domain
(i.e. all its hboundary points are of finite type).

Set Sp =r{s-€ € Vo= 1= st Hao () <) dor Rizi0;
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Theorem 3. Let E be a finile type model domain and let R(c) :
R — RY U {400} be a function such that li_l'la R(¢) = +oo. Let I, =

E. N Sp(e), (26, Xe) € FexC" and li_r)rg(zz,_ () =(2,X) € ExC". Then
12)13 Cg(z, X)) = Cg (2, X).

Corollary 3. The singular Caratheodory melric of a finile type
model domain is conlinuous and coinsides with its Azukawa metric.
Moreover, under the hypotheses of Theorem 3 we have

11_13(} AF}'(:’:MX() = AE(‘:?‘)\’)'
{

Theorem 4. Let D be a smooth bounded pseudoconvexr domain in
C™ and let E be a model domain of D at an h-extendible boundary point
p € dD. Let S denotes any of the higher order Caratheodory melrics
or the singular Caratheodory metric or the Azukawa metric. If X is a

(1,0) vector field and A is a nontangential cone in D with vertex at p,
then

('g{)(‘:, X:) -

uniformly in X.
Here e = (=1,0') and
X(2) = ((—r(2)) " (Xo)1s (=r(2)) V™ (Xo)ay - - o (=7 (2)) 7M™ (Xe)a),

where (.X.); is the j-th component of X, in the local coordinates de-
scribed above.

The limit in Theorem 4 makes sense, since the model domain 9 is
hyperbolic with respect to the usual Caratheodory metric [6].

3. PROOFS OF THE RESULTS

Proof of Theorem 1. Since CD (z,X) is a continuous function, which
1s homogencous in the second variable, it follows from the hypotesis of
the theorem that there exist a constant €'y > 0 and a neighbourhood
U CC D of z such that C3)(z, X) > C4||X|| Vz € U,¥X € C". Then
Vz,we U,YXN,Y € C" we have
(1) G4, X) —CR adi¥) |<

(CE = X)) = (CH(w, YDEC m

Thus, to prove the theorem it suffices to ebtunate separ ately

I(CH (w, X))F = (CR (w, Y))*| and|(CH(w, X))* = (CH (2, X))*|.

1- I
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We may suppose that ('( )(m,,\') > ('“)(m Y). By normal family

ke e g
arguments we can find an extremal function [ for (75,)(m, ). Then by
the Cauchy inequalities we obtain

(2) 0<(CH(w, X))k - (("”(u,,,y'))"g|f(,,,(w)..\’|—|_/'(k.,(w)y'| <
dist™ (U,dD)Co||X = Y||(||X 1D,

where C3 > 0 is a constant which only depends on n aml k.

Now we shall estimate |(C' “)( , X))k — (C})k)(w-, Y))H.

Denote by C'Vp(z) the Caratheodory-Eisenman.volume of D at a
point z € D, i.e. C'Vp(z) = supdet |JI(z)]|, where the supremum is
taken over all holomorhic mappings /" from 1) into the unit polydise in

Al
C* with F'(z)=0and JIF = (——)—‘); 1is the complex Jacobi matrix of /17
e

As it is mentioned in [8] C'Vip(z) > 0l ('“)( 29X )0 YA€ €2\ {0}).
Since C'Vp(z) is a continuous function then C'Vp(z) > Cy > 0 Vz € U,

Let = € 7 and [’ be an extremal mapping for C'V(z). For each
LeN1 <l <nset (Miye.. s ) = (0,...,0,1,0,...,0)(JI(2))"

[—th place

and’g. = L Ay I The fanetion g.p has the following properties

.)~ )
(‘;1-.1(:): I—‘L—l( gl e
)z =

Moreover, since |det JI'(z)] > ('3 > 0 and the components of JI'(z)
are uniformly bounded on (7 (by the Cauchy inequalities), we have
sup [g:a] K Cy Vel 1 <l <.

D

Let now z,w € U, X € C",C}(w,.XN) > Ch(z,X) and let [ be an

!/:.l(:) = 0~

extremal function for C'f(w, .X). For cach multi-index a = (ay,... ,a,)
l ”ﬂ X . :
seb hoo = — Y (f-0)"". Deline the following sequence of holomorphic
(@]
Sl =)

[unctions on D :

Jo= [l =1i= 22 :\—'/u DU L(2).

|ov]=)

Since D*h,o(2z) = 1 and DPh.,(2) = 0 VB # a,|B| < «a, it follows by
induction that ord. f; > j. On the other hand, |D f(z) — D [(w)]| <
Csl|lz — w|| Vz,w € U in view of the Rolle theorem and the Cauchy
inequalities. We also have D [(w) = 0 and |h.,| < Cs V]o| < k,Vz €
U7, Then, using again the Rolle theorem, the Cauchy inequalitios and
inductive arguments, Vz,w € 1,7 < k we get |D°f;(2)] < Cq]]z -
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w|| V]a| < &, |D [;(z)= D f(w)| £ Ci||z—w|| V]a| = k and supp | [;] <
1 -+ (77“: — Il)”.

Henee, according to the definition of Cfy(w,.X), we have
(14Csllz==wl)(Ch(z, X)* 2 [(Jiy(2)X| 2 [firy () X |=Cr|| X[*]|z=w]].
“!1(2,0D) and f is extremal for

Therefore, since CD' (z2,X) <
C(Dk)(w,X), we obtain that

(3) 0L (CH(w, X)) = (CH (2, X)) < CelIX|[¥||2 = w]l.

The inequalities (1), (2) apd (3) complete the proof of Theorem 1.

Proof of Theorem 2. Using a nonsingular linear mapping (if it is
necessary ), we may suppose that the components of the vector X are
not equal to 0 and hence the components of the vectors X; — X are not

z:)X
equal to 0, too. Consider the linear mappings V;(w) = (IL_X_J_)__ + 2
j
and set G = W;(D;). We have
(1) Chi(5, X;) = C& (2, X).

Sinee D s astrictly hyperconvex domain, there exist another domain
D" 2D D and a psh function ¢ on D’ such that llm @(z) = 0 and

= {2z € D': ¢(z) < 0}. Let ¢ > 0 be such that Lhe open set {w €
D’ : p(w) < —¢€} contains the point z. Denote by D, the connected
component of this set, which contains z. Let 2 > 0 be such that the
ball B(0, R) DD D aud let D_, be the connected component of the
open set B(z,R) N {w € D' : ¢(w) < ¢}, which contains D. Since
D, cCc D cCc D_(, Y7 > 1 we may find domains G, and G_, such
that:D; CC G, C G5iC:Glip CE Daganitli Gy G- D G G = Hence

() Cel (5,X) £ Cg (5, X) < Cg (5, X),
(6) ‘6. (2, X) < Cp (5, X) < Cg (2, X).

We shall prove that
(7), llm(C’( (2,X)-C¢&_(2,X)) =0.

which together with (4), (5) and (6) will complete the proofl of Theorem
2

Denote by g-, the Green function of D_.. Let y be a C"*-smooth
function such that \ = 1 on D, and_supp x C G,. Let m € N and [,
be an extremal function for C (m)( z,X). Since g_(z,+) is a psh function

and g_.(z,w) > —o0, z # w (because D_, is bounded) we may solve
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the d-problem dh,, = J(\ [.,) on the bounded pseudoconvex domain
D_. (0 < ¢ < 1) with the L* estimate [3]:

1 exp(—=2(m +n)g-(z,w)) .,
/'1712 e IV (w) <
®) /Lﬂ’l (1 -+ [Jw]])? dV(w) =
2 / 1O\ )P exp(=2(m 4 n)g-.(z,w0))dV (w).
It is clear that ,, = \ /[ — hm is a holomorphic function on D_,.

The convergence of the first integral and the inequality g_.(z,w) <
|[w — =] : i .
log —————— [4] imply that ord,h,, > m + 1. Then, using that
E’(/1@/(" gL ] P g = &

x=1lon D, >z wegel
(()) (Im)(m)( )\ = (.[7"-)(111)(:)‘\"

Now we shall estimate sup |1,,]. By the mean value inequality we deduee

Lha‘t l
(10) Vol B(O, I)(dist(Gy, D)) sup |2 < [ [t <

Gee o l)—-c

2 /,) (I\'_[Ml'2 ‘*‘ I/’,,,l'z) S 2( "'.()l(", + [) I/’m|2)'

As g_. is negalive on D_, we obtain from (8) that

(11) / [ <2014 1%)2 mmax  exp(=2(m+n)g_.(z,w0)) /I()\l“’
JI weEsuppy .
On the other hand, since D_, C B(0,R), we have that (cf. [5])

: WM ”2. :
e (:,'u') & sup(/"(up(u') — () for w out of a neigh-
eld
bourhood U ()f =, where the constant (/ (l( pends only on diam U and

R. Since supp dx C G, \ D, € D_,\ D,, it follows that
max_ exp(—=2(m + n)g_.(z,w)) < b(¢,m),

wesuppiy
where b(e,m) = inf exp(200n + n)(2ke + L;i)) This together with
(10) and (11) slnnf\il ll,lml. '/
(12) sup ltl £ C.(1 4+ ble,m)

for some constant ,, which does not depend on e € 19,
Since fo, is an extremal [unction for C¢F (=, X'), we conlude, in view

of the definition of Ce (z,X), (9)-and (12), that

Co (5, X) > Co (2, X)(C1 4+ b(e,m)))on.
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Letting consequently m — oo, ¢ = 04,k = co_and using (6) we get
(0. |

Proof of Corollary 2. By a result of St. Nivoche [7], for each point
z € D, we have Cjy(z,X) = Ap(z, X) for almost all X" € €". On the
other hand, Ap(z,-) is a log-psh [unction on €* [1]. The contiuous
function C'py(z,-) is log-psh, too, as the supremum of the sequence
of log-psh functions {CF(z,-)}52,. It is well-known that if two psh
functions coinsides almosr everywhere, then they coinside everywhere.
Therefore C¥(z, X) = Ap(z,X) on D x C".

From this and the inequality Ap(z;, ;) = CF (25, N;) it follows that

(13) liminf Ap(z;..X;) 2. Ap(z, N).

)N ' b
Let the sequence of domains {172 he such that ¢/ C Gy N D and
U2, G = D. Since the Azukawa metric is upper semicontinuous [5],
we get

(14) limsup Ap,(z;, X;) < limsup A, (25, X;) < Ag,(z, X)

J—0 J—00
VI € M. On the other hand, llin! A, (2, X) = Ap(z,X) [1], which to-

gether with (13) and (14) shows lim Ap(z;, N;) = Ap(=z,.N).
J=Heo : y

Proof of Theorecm 3. The proofl of Theorem 3 is similar to that of
Theorem 2.

By results in [9, 2], the model 235 a finite type domain il there exists
a smooth positive weighted homogeneous (with the same weights as for
P) function @ on ©"~" such that P — ca is strictly plurisubharmonic on
C" ' for 0 < e <2 Let ¢ <1. Set

(18) G ={ze€C":r_(z):= Rez; + P(z') — (1 + a(z")) < 0}.

Since Iy = [, N Sk (¢ < 1) is a strictly hyperconvex domain, it
suflices to prove, in view of Theorem 2, that
(16) lim (Ci  (2..X) = CE(2, X)) =0

=0} = ef 3

uniformly on the compact subsets of 2 x €.
Denote by g_, the Green function of (_,. Since the algebra of hounded
holomorphic functions on (', separates the points of G/, [9], we have

(17) J-.(z,w) > =00, =z # w.
On the other hand, (',(',.l_)l(.:'. X) > 0¥ € (1'_.|‘.'\’ € C" [6]. Henee, if

A ; A : (1 : e g
J s an extremal function for (‘((,._)‘(:‘.\ ), then the Levi form of |[]?

is positive near (z,X). It follows by compact argunments that for cach
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compact subset A" of (G_; there is a smooth bounded psh function on
G-y, which is strictly psh on K.

Let A be a compact subset of £2 and H, = [ 0 Sp(ys2. For 0 <
¢. &1 . we haver l{.CCi H, CC FiCC G g2 CCiG-4Let ¥ be.a
smooth function such that v = 1on H, and supp x C F,. Let (2, X) €
KN xC* m € N, and let f,, be an extremal function for C(’")( X).
As we already I\now there is a smooth psh function s on G4, whxch s
strictly psh on supp x. and —1 < s < 0. Denote by ¢ the minimum of
the eigenvalues of the Levi, form of s on {supp x}. In view of (17), we
may solve J-problem Oh,, = J(Xfm) on the pseudoconvex domain G/,
with the L? estimate [3]:

/ [ |? exp(=2(m 4+ n)g_(z,w) — s)dV(w) <
Gc

¢! / [O(X S )P exp(=2(m + n)g_c(z, w) — s)dV (w).
4 e B
Then &, = xS =l is a Imlmnmphi( function on G/_.. It is not diflicult
to see that |P(z'468)— P(=")] < C|8|(1+a(2")) V4, |8] < 1, which ipmlies
that ([7:'5[((1'_,/2,()(1_‘) > 0.
As in the proof of Theorem 2 we get

([771)(711)(‘:)‘\’ = (fru)(m)(:)-x

and

sup L] S C (1 + sup  exp(=2(m +n)g-.(z,w)))
e wEF\H.

50, to obtain (16) it suffices to prove that

(18) Jim il (exp goi(z,w)) M0 = 0

uniformly in z € A,
Since there is a psh function ¢ on Gy D G, which is strictly psh
on A and —1 < ¢ < 0, we have (cf. [4]) g-c(z,w) > Csup(kr_(w) +

kel
g(w) . : sk
1. ). for w out of an neighbourhood of A" 3 z. By the definitions of
I7 (cf. Section 2) and G'_, (cf. (15)) we obtain
(19)

- 1 - -~ 1 Al
g-(z,w) 2 =C inrl"'(/.:(( | +u(w’))+]—) Vzehc B,welG.\H.DF\H;.
kel ;
Let ¢ denotes the Green function of the domain G = {z € C" : Rez; +
P(z") = a(z") < 0}. Since g_ (=, w) > g(z = 1,w), the equality (18) will
be a consequence of (19) if

(20) lim  g(z,w)=0

’ weG w—o0
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holds uniformly in =z € GGV S(11), where 12 > 0 is an arbitrary mumber.
To prove (20) we shall use that there is a pickfunction of ¢ at the
boundary point 0 [9], i.c. a holomorphic function p on G, which is
continuos on & and such that p(0) = 1 and |p(¢)] < 1 on G\ {0}.
Set m(C) = (/_‘Cla/—l/m?(b-” ’/——l/m.,(”)’ t >0, "'ur(() i 7'(nn(m)(c))a
wwl(() = log | L2 Letd)
I =0 (2)ru(C)

is a pickfunction of G at 0, u, is a negative psh function on G with
logarithmic pole at w. By the definition of Sp (¢l Section 2) it follows

that lim w(z,w) = 0. This implies (20), which completes the
a(z)<Ryw-300

prool of Theorem 3.

|. Since m, is an antomorphism of (¢ and p

Corollary s a consequence of ‘Theorem 3, Corollary 2 and the fact
that the domains £ N Sy are strictly hyperconves.

Proof of Theorcm {. The case ol the usual Caratheodory metric is
proved in [6].

Since the model domain £ is hyperbolic with respect to the usual
Caratheodory metric [6], it follows from Theorem 1 that the higher
order Caratheodory metrics are continuous on 9 x €. Then the same
arguments as in [6] give Theorem 4 for any of these metrics.

[ence |

Indeed, suppose the contrary. Then we may find a vector field N and
. P e Sadiia L LS ) N(z;) ;
a sequence of points A 3 {z;}52, = psuch that lim —m—= =)

A3z = ||\(-;)” "

and

lhiminfl _\’W,_____ 3l 5

Since C32 is a continuous lunction (Clorollary 3), we conclude that

hiady| -ri 455
liminl ~~I—)( 3I~l-—-~-"'—2 < Crles))

A3z, H

Hence
() .
BT ETER o ,.

i el i ka2 2 r',(;')(r. Y

Adz,—p H\ (.‘_))H :
Vi > 1, which is contradiction. -

Since Oy < Ap and (' = Ap (Corollary 3), to complete the proof
of Theorem 4, it suflices to show thednequality
AplziNy)

(21) limsup ————-=

As:ap Aple, (=) T
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Let ¢ > 0 be arbitrary. By the definition of I, and Ss (cf. Section 2)
there is a number § = §(¢) > 0 such that 5, N.Ss C D. Since m_, () is
an automorphism of 2 and N (z) = m_,(5(N:), it lollows that

(22) Ap(z, X2) € Ap, (e(2), X(2)),

)
where e(z) = 7.(2) and I, = L,NU_g/,(z). It is clear that hn; - ( —
p (2

+oo and lim e(z) = (=1,0") = e. Then Theorem 3 gives

A3z—=p
(93) Vo Ar ( '(:)7‘\’(3))
€,

Adz—p /\[”( A

(24) o Al
(

Now (21) follows by (22), (23) and
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