ИНСТИТУТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

INSTITUTE OF MATHEMATICS AND INFORMATICS

Секция Комплексен анализ

Section Complex Analysis

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES Някои класове от функции с отрицателни коефициенти

Донка Пашкулева

Certain Classes of Functions with Negative Coefficients

Donka Pashkouleva

PREPRINT № 2/2009

Sofia April 2009

Certain Classes of Functions with Negative Coefficients

Donka Pashkouleva

Abstract

The aim of this paper is to obtain coefficient estimates, distortion theorem, extreme points and radii of close-to-convexity, starlikeness and convexity for functions belonging to the subclass $TS_{\lambda}(u, \alpha, \beta)$ with negative coefficients.

1 Introduction

Let S denote the class of functions of the form:

$$(1.1) f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic and univalent in the open unit disk $U = \{z : |z| < 1\}$. Let S^* and C be subclasses of S that are, respectively, starlike and convex.

A function

$$(1.2) f(z) \in \widetilde{C} \Leftrightarrow \Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|, z \in U.$$

Let S_p be a class of starlike functions related to \widetilde{C} defined as

(1.3)
$$f(z) \in S_p \Leftrightarrow \Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \left|\frac{zf'(z)}{f(z)} - 1\right|, \quad z \in U.$$

Note that

$$(1.4) f \in \widetilde{C} \Leftrightarrow zf'(z) \in S_p.$$

A function f of the form (1.1) is in $S_p(\alpha)$ if it satisfies the analytic characterization:

(1.5)
$$\Re\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} \ge \left|\frac{zf'(z)}{f(z)} - 1\right|, \ -1 \le \alpha < 1, \ z \in U.$$

The function $f \in \widetilde{C}(\alpha)$ if and only if $zf'(z) \in S_p(\alpha)$.

By \widetilde{C}_{β} , $0 \leq \beta < \infty$ we denote the class of all β -convex functions introduced by Kanas and Wisniowska [1]. It is known that [1] that $f \in \widetilde{C}_{\beta}$ if and only if it satisfies the following condition:

(1.6)
$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \beta \left|\frac{zf'(z)}{f'(z)}\right|, \ z \in U, \ \beta \ge 0.$$

We consider the class S_{β}^* , $0 \leq \beta < \infty$, of β -starlike functions [2], which are associated with the class \tilde{C}_{β} by the relation

$$(1.7) f \in C_{\beta}^* \Leftrightarrow zf'(z) \in S_{\beta}^*.$$

Thus, the class S_p^* is the subclass of S, consisting of functions that satisfy

(1.8)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right|, \ z \in U, \ \beta \ge 0.$$

For a function $f \in S$, we define

(1.9)
$$D_{\lambda}^{0}f(z) = f(z)$$

$$D_{\lambda}^{1}f(z) = (1 - \lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z)$$

$$D_{\lambda}^{n}f(z) = D_{\lambda}(D_{\lambda}^{n-1}f(z))$$

$$\lambda > 0, \ n \in N = \{1, 2, \ldots\}$$

This operator was introduced by Al-Oboudi [3], and when $\lambda = 1$, we get the Salagean operator [4].

It can be easily seen that

$$(1.10) \quad D_{\lambda}^{n} f(z) = z + \sum_{j=1}^{\infty} [1 + \lambda(k-1)]^{n} a_{k} z^{k} \quad (n \in N_{0} = N \cup \{0\}).$$

For $p \geq 0$, $-1 \leq \alpha < 1$, $n \in N_0$ and $\lambda > 0$ we let $S_{\lambda}(n, \alpha, \beta)$ denote the subclass of S consisting of functions f of the form (1.1) and satisfying the analytic condition

(1.11)
$$\Re\left\{\frac{z\left(D_{\lambda}^{n}f(z)\right)'}{D_{\lambda}^{n}f(z)} - \alpha\right\} > \beta \left|\frac{z\left(D_{\lambda}^{n}f(z)\right)'}{D_{\lambda}^{n}f(z)} - 1\right|.$$

We denote by T the subclass of S consisting of functions of the form

(1.12)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \ a_k \ge 0.$$

Further, we define the class $TS_{\lambda}(n, \alpha, \beta)$ by

(1.13)
$$TS_{\lambda}(n, \alpha, \beta) = S_{\lambda}(n, \alpha, \beta) \cap T.$$

We note that $TS_1(n, \alpha, \beta) = TS(n, \alpha, \beta)$ [5], $TS_0(0, \alpha, 1) = TS^0(\alpha, 1)$ and $TS_1(1, \alpha, 1) = \widetilde{C}(\alpha)$ $(0 \le \alpha < 1)$ [6].

2 Coefficient estimates

Theorem 1 A necessary and sufficient condition for the function f(z) of the form (1.12) to be in the class $TS_{\lambda}(n, \alpha, \beta)$ is that

(2.1)
$$\sum_{k=2}^{\infty} [k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n a_k \le 1-\alpha$$

where $-1 \le \alpha < 1$, $\beta \ge 0$, $\lambda \ge 0$ and $n \in N_0$.

Proof. Let (2.1) holds true, then we have

$$\beta \left| \frac{z \left(D_{\lambda}^{n} f(z) \right)'}{D_{\lambda}^{n} f(z)} - 1 \right| - \Re \left\{ \frac{z \left(D_{\lambda}^{n} f(z) \right)'}{D_{\lambda}^{n} f(z)} - 1 \right\} \leq \left(1 + \beta \right) \left| \frac{z \left(D_{\lambda}^{n} f(z) \right)'}{D_{\lambda}^{n} f(z)} - 1 \right| \leq$$

$$\leq \frac{(1+\beta)\sum_{k=2}^{\infty}(k-1)[1+\lambda(k-1)]^n|a_k|}{1-\sum_{k=2}^{\infty}[1+\lambda(k-1)]^n|a_k|} \leq 1-\alpha.$$

Then $f(z) \in TS_{\lambda}(n, \alpha, \beta)$.

Conversely, let $f(z) \in TS_{\lambda}(n, \alpha, \beta)$ and z be real, then

$$\frac{1 - \sum_{k=2}^{\infty} k[1 + \lambda(k-1)]^n a_k z^{k-1}}{1 - \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^n a_k z^{k-1}} - \alpha \ge$$

$$\geq \beta \left| \frac{\sum_{k=2}^{\infty} (k-1)[1+\lambda(k-1)]^n a_k z^{k-1}}{1-\sum_{k=2}^{\infty} [1+\lambda(k-1)]^n a_k z^{k-1}} \right|.$$

Letting $z \to 1^-$ along the real axis, we obtain the desired inequality

$$\sum_{k=2}^{\infty} [k(1+\beta) - (\alpha+\beta)][1 + \lambda(k-1)]^n a_k \le 1 - \alpha.$$

Remark 1 If $f(z) \in S_{\lambda}(n, \alpha, \beta)$ the condition (2.1) is only sufficient.

Corollary 1 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then

(2.2)
$$a_k \le \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\lambda(k-1)]^n}, \ k \ge 2.$$

The result is sharp for the function

(2.3)
$$f(z) = z - \frac{1 - \alpha}{[k(1 + \alpha) - (\alpha + \beta)][1 + \lambda(k - 1)]^n} z^k.$$

3 Growth and distortion theorem

Theorem 2 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then

(3.1)
$$|D_{\lambda}^{i} f(z)| \ge |z| - \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \lambda)^{n-i}} |z|^{2}$$

and

(3.1)
$$|D_{\lambda}^{i}f(z)| \leq |z| + \frac{1-\alpha}{(2-\alpha+\beta)(1+\lambda)^{n-i}}|z|^{2}$$

for $z \in U$, where $0 \le i \le n$. The equalities in (3.1) and (3.2) are attained for the function f(z) given by

(3.3)
$$f(z) = z - \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \lambda)^n} z^2 \quad (z \in U).$$

Proof. Note that $f(z) \in TS_{\lambda}(n, \alpha, \beta)$ if and only if $D_{\lambda}^{i} f \in TS_{\lambda}(n, \alpha, \beta)$ and that

(3.4)
$$D_{\lambda}^{i}f(z) = z - \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^{i} a_{k} z^{k}$$

Using Theorem 1, we know that

(3.5)
$$(2 - \alpha + \beta)(1 + \lambda)^{n-i} \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^i a_k \le 1 - \alpha,$$

that is, that

(3.6)
$$\sum_{k=2}^{\infty} [1 + \lambda(k-1)]^i a_k \le \frac{1-\alpha}{(2-\alpha+\beta)(1+\lambda)^{n-i}}.$$

It follows from (3.4) and (3.6) that

(3.7)
$$|D_{\lambda}^{i}f(z)| \geq |z| - |z|^{2} \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^{i} a_{k} \geq |z| - \frac{1-\alpha}{(2-\alpha+\beta)(1+\lambda)^{n-i}} |z|^{2}$$

and

(3.8)
$$|D_{\lambda}^{i}f(z)| \leq |z| + |z|^{2} \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^{i} a_{k} \leq |z| + \frac{1-\alpha}{(2-\alpha+\beta)(1+\lambda)^{n-i}} |z|^{2}$$

Finally, we note that the bounds in (3.1) are attained for the function f(z) defined by

(3.9)
$$D_{\lambda}^{i}f(z) = z - \frac{1-\alpha}{(2-\alpha+\beta)(1+\lambda)^{n-i}}z^{2}, \ z \in U.$$

This completes the proof of Theorem 2.

Corollary 2 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then

(3.10)
$$|z| - \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \lambda)^n} |z|^2 \le |f(z)|$$

$$\le |z| + \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \lambda)^n} |z|^2.$$

The equalities in (3.10) are attained for the function f(z) given by (3.3).

Proof. Taking i = 0 in Theorem 2, we immediately obtain (3.10).

4 Extreme points

From Theorem 1, we see that $TS_1(n, \alpha, \beta)$ is closed under convex linear combination which enables us to determine the extreme points for this class.

Theorem 3 Let

$$(4.1) f_1(z) = z$$

and

(4.2)
$$f_k(z) = z - \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n} z^k, \ k \ge 2.$$

Then $f(z) \in TS_{\lambda}(n, \alpha, \beta)$ if and only if it can be expressed in the form

(4.3)
$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z)$$

where $\mu_k \geq 0 \ (k \geq 1)$ and $\sum_{k=1}^{\infty} \mu_k = 1$.

Proof. Suppose that

(4.4)
$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z)$$

$$= z - \sum_{k=2}^{\infty} \frac{1 - \alpha}{[k(1+\beta) - (\alpha+\beta)][1 + \lambda(k-1)]^n} \mu_k z_k.$$

Then it follows that

$$\sum_{k=2}^{\infty} \frac{[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n}{1-\alpha} \times \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n} \mu_k = \sum_{k=2}^{\infty} \mu_k = 1 - \mu_1 \le 1.$$

Therefore, by Theorem 1, $f(z) \in TS_{\lambda}(n, \alpha, \beta)$.

Conversely, assume that the function f(z) defined by (1.12) belongs to the class $TS_{\lambda}(n, \alpha, \beta)$. Then

(4.6)
$$a_k \le \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\lambda(k-1)]^n}, \ k \ge 2.$$

Setting

(4.7)
$$\mu_k = \frac{[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n}{1-\alpha}, \ k \ge 2$$

and

(4.8)
$$\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k$$

we see that f(z) can be expressed in the form (4.3). This completes the proof of Theorem 3.

Corollary 3 The extreme points of the class $TS_{\lambda}(n, \alpha, \beta)$ are the functions $f_1(z) = z$ and

$$f_k(z) = z - \frac{1 - \alpha}{[k(1+\beta) - (\alpha+\beta)][1 + \lambda(k-1)]^n} z^k, \ k \ge 2.$$

5 Radii of close-to-convexity, starlikeness and convexity

A function $f(z) \in T$ is said to be close-to-convex of order ρ if it satisfies

(5.1)
$$\Re f'(z) > \rho, \ 0 \le \rho < 1, \ z \in U.$$

Theorem 4 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then f(z) is close-to-convex of order ρ $(0 \le \rho < 1)$ in $|z| < r_1$ where

(5.2)
$$r_1 = r_1(n, \alpha, \beta, \lambda, \rho) =$$

$$= \inf_{k} \left\{ \frac{(1-\rho)[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n}{k(1-\alpha)} \right\}^{\frac{1}{k-1}}.$$

The result is sharp, with extremal f(z) given by (2.3).

Proof. We must show that

$$|f'(z) - 1| \le 1 - \rho$$
 for $|z| < r_1(n, \alpha, \beta, \lambda, \rho)$

where $r_1(n, \alpha, \beta, \lambda, \rho)$ is given by (5.2). Indeed we find from (1.12) that

$$|f'(z) - 1| \le \sum_{k=2}^{\infty} k a_k |z|^{k-1}.$$

Thus

$$|f'(z) - 1| \le 1 - \rho$$

if

(5.3)
$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

But, by Theorem 1, (5.3) will be true if

$$\left(\frac{k}{1-\rho}\right)|z|^{k-1} \le \frac{k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n}{1-\alpha},$$

that is, if

$$(5.4) |z| \le \left\{ \frac{(1-\rho)[k(1+\beta) - (\alpha+\beta)][1-\lambda(k-1)^n]}{k(1-\alpha)} \right\}^{\frac{1}{k-1}}, k \ge 2.$$

Theorem 4 follows easily from (5.4).

Theorem 5 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then the function f(z) is starlike of order ρ ($0 \le \rho < 1$) in $|z| < r_2$, where

(5.5)
$$r_{2} = r_{2}(n, \alpha, \beta, \lambda, \rho)$$

$$= \inf_{k} \left\{ \frac{(1-\rho)[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^{n}}{(k-\rho)(1-\alpha)} \right\}^{\frac{1}{k-1}},$$

$$k \geq 2.$$

The result is sharp, with the extreme function f(z) given by (2.3).

Proof. It is sufficient to show that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho \text{ for } |z| < r_2(n, \alpha, \beta, \lambda, \rho)$$

where $r_2(n, \alpha, \beta, \lambda, \rho)$ is given by (5.5). Indeed we find again from (1.12) that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{\sum_{k=2}^{\infty} (k-1)a_k |z|^{k-1}}{1 - \sum_{k=2}^{\infty} a_k z^{k-1}}.$$

Thus

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho$$

if

(5.6)
$$\sum_{k=j+1}^{\infty} \left(\frac{k-\rho}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

But, by Theorem 1, (5.6) will be true if

$$\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \le \frac{[k(1+\beta)-(\alpha+\beta)][1+\lambda(k-1)]^n}{1-\alpha},$$

that is, if

(5.7)
$$|z| \le \left\{ \frac{(1-\rho)[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^n}{(k-\rho)(1-\alpha)} \right\}^{\frac{1}{k-1}}.$$

Theorem 5 follows easily from (5.7).

Corollary 4 Let the function f(z) defined by (1.12) be in the class $TS_{\lambda}(n, \alpha, \beta)$. Then f(z) is convex of order ρ $(0 \le \rho < 1)$ in $|z| < r_3$, where

(5.8)
$$r_{3} = r_{3}(n, \alpha, \beta, \lambda, \rho)$$

$$= \inf_{k} \left\{ \frac{(1-\rho)[k(1+\beta) - (\alpha+\beta)][1+\lambda(k-1)]^{n}}{k(k-\rho)(1-\alpha)} \right\}^{\frac{1}{k-1}},$$

$$k \ge 2.$$

The result is sharp with extremal function f(z) given by (2.3).

References

- [1] S. Kanas and A. Wisniowska, Conic regions and k-uniformly convexity, J. Comput. Appl. Math 104 (1999), 327–336.
- [2] S. Kanas and A. Wisniowska, Conic regions and starlike functions, Rev Koum. Math. Pures Appl. 45 (2000), No. 4, 647–657.
- [3] F. Al-Oboudi, On univalent functions defined by a generalized Salagen operator, Internat. J. Math. Math. Sci 27 (2004), 1429– 1436.

- [4] G. Salagean, Subclasses of univalent functions.Lect. Notes in Math (Springer-Verlag), 1013 (1983), 362–372.
- [5] T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their applications to certain subclass of uniformly convex functions, Far East J. Math Sci (FJMS) 115 (2004), No. 2, 231–242.
- [6] R. Bharati, K. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamakang J. Math 28 (1997), 17–32.