ИНСТИТУТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

INSTITUTE OF MATHEMATICS AND INFORMATICS

Секция Комплексен анализ

Section Complex Analysis

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES Точни решения на задачата на Бицадзе-Самарски и някои обобщения

Иван Димовски и Юлиан Цанков

Explicit solutions of Bitsadze-Samarski problem and its generalizations

Ivan H. Dimovski and Yulian Ts. Tsankov

PREPRINT № 1/2010

Sofia February 2010

Exact solutions of nonlocal Bitsadze -Samarskii problem and its generalizations

Ivan H. Dimovski *

Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, "Acad. G. Bonchev" Str.,
Block 8, 1113, Sofia, BULGARIA
dimovski@imi.bas.bg

Yulian T. Tsankov †

Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridsky", "J. Bouchier" Str., N 5,1164, Sofia, BULGARIA ucankov@fmi.uni-sofia.bg

Abstract

In the first part of this paper we find an explicit solution of Bitsadze - Samarskii problem for Laplace equation using operational calculus approach, based on two non-classical one-dimensional convolutions and a two-dimensional convolution. In fact, the explicit solution obtained is a way for effective summation of a solution obtained in the form of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numerical calculation too. In the second part we consider "arbitrary" linear functionals Φ and Ψ on $C^1[0,a]$ and $C^1[0,b]$, respectively. The class of BVPs $u_{xx}+u_{yy}=F(x,y),\ 0< x< a,\ 0< y< b,\ u(x,0)=0,\ u(0,y)=0,\ \Phi_{\xi}\{u(\xi,y)\}=g(y),\ \Psi_{\eta}\{u(x,\eta)\}=f(x)$ is considered. An extension of Duhamel principle, known for evolution

^{*}This paper is partially supported under Project D ID 02/25/2009 "Integral Transform Methods, Special Functions and Applications", by National Science Found - Ministry of Education, Youth and Science, Bulgaria.

[†]Partially supported by Grand N 132, of NSF of Bulgaria.

equations, is proposed. An operational calculus approach for explicit solution of these problems is developed. A classical example of such BVP is the Bitsadze - Samarskii problem.

Mathematics Subject Classification(2000): 44A35, 35L20, 35J05, 35J25.

Key words: nonlocal BVP, right-inverse operator, extended Duamel principle, generalized solution, non-classical convolution, multiplier, multiplier fraction.

1 Exact solutions of nonlocal Bitsadze - Samarskii problem

In [2] it is posed the following nonlocal boundary value problem:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad -l < x < l, \quad 0 < y < 1,$$

$$u(x,0) = 0, \quad u(x,1) = f(x),$$

$$u(-l,y) = g(y), \quad u(l,y) = u(0,y).$$

More elaborately, this problem is studied in A. Bitsadze's book [1], p. 214-219. Some generalizations are proposed by A. Skubachevskii in [11]. In [4], p. 175-176 one of the authors proposed an explicit solution of the problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < 1, \quad 0 < y < 1,
 u(x,0) = u(0,y) = 0,
 u(x,1) = f(x), \quad u(1,y) - u(\frac{1}{2},y) = 0.$$
(1.1)

which is only a slight modification of Bitsadze - Samarskii's problem. This solution has the form

$$u(x,y) = -\int_{\frac{1}{2}}^{1} d\xi \{ \int_{x}^{\xi} U(x+\xi-\eta,y) f^{(4)}(\eta) d\eta - (1.2) - \int_{-x}^{\xi} U(\xi-x-\eta,y) f^{(4)}(|\eta|) sgn(|\eta|) d\eta \}$$

$$U(x,y) = \sum_{n=1}^{\infty} \frac{\sinh 4n\pi y \sin 4n\pi x}{32\pi^3 n^3 \sinh 4n\pi} + \sum_{n=1}^{\infty} \frac{9 \sinh \frac{2}{3} (2n-1)\pi y \sin \frac{2}{3} (2n-1)\pi x}{4\pi^3 (2n-1)^3 \cos \frac{2}{3} (1+n)n\pi \sinh \frac{2}{3} (2n-1)\pi}$$
(1.3)

is the solution of the same problem, but for the special choice $f(x) = \frac{x^3}{6} - \frac{7x}{24}$. It is a classical solution of (1.1) under the assumptions f(0) = f''(0) = 0, $f(1) - f(\frac{1}{2}) = f''(1) - f''(\frac{1}{2}) = 0$. Our aim here is to simplify (1.2) to

$$u(x,y) = \int_{x}^{2} U_{x}(\frac{1}{2} + x - \xi, y) f''(\xi) d\xi -$$

$$- \int_{-x}^{2} U_{x}(\frac{1}{2} - x - \xi, y) f''(|\xi|) sgn\xi d\xi -$$

$$- \int_{x}^{1} U_{x}(1 + x - \xi, y) f''(\xi) d\xi + \int_{-x}^{1} U_{x}(1 - x - \xi, y) f''(|\xi|) sgn\xi d\xi$$

$$(1.4)$$

where

$$U_x(x,y) = \sum_{n=1}^{\infty} \frac{\sinh 4n\pi y \cos 4n\pi x}{8\pi^2 n^2 \sinh 4n\pi} +$$

$$\sum_{n=1}^{\infty} \frac{3 \sinh \frac{2}{3} (2n-1)\pi y \cos \frac{2}{3} (2n-1)\pi x}{2\pi^2 (2n-1)^2 \cos \frac{2}{3} (1+n)n\pi \sinh \frac{2}{3} (2n-1)\pi}$$
(1.5)

In a sense (1.4) is simpler than (1.2) since it uses only second derivatives of f instead of fourth ones and only simple integrals instead of repeated. The boundary value restrictions on f are also relaxed to $f(0) = f(1) - f(\frac{1}{2}) = 0$. Then (1.4) is a generalized solution of (1.1) in the following sense:

Definition 1.1 A function $u(x,y) \in C([0,1] \times [0,1])$ is said to be a generalised solution of Bitsadze - Samarskii problem (1.1), iff u(x,y) satisfies the integral equation

$$L_x u + L_y u = L_x f(x). y (1.6)$$

$$L_{x}u(x,y) = \int_{0}^{x} (x-\xi)u(\xi,y)d\xi -$$

$$-2x(\int_{0}^{1} (1-\xi)u(\xi,y)d\xi - \int_{0}^{\frac{1}{2}} (\frac{1}{2}-\xi)u(\xi,y)d\xi)$$

$$L_{y}u(x,y) = \int_{0}^{y} (y-\eta)u(x,\eta)d\eta - y(\int_{0}^{1} (1-\eta)u(x,\eta)d\eta)$$
(1.7)

The right inverse operators L_x and L_y of $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial y^2}$ are defined in $C([0,1]\times[0,1])$ by

$$v = L_x u$$
: $\frac{\partial^2}{\partial x^2} v = u$, $v(0, y) = v(1, y) - v(\frac{1}{2}, y) = 0$

and

$$w = L_y u : \frac{\partial^2}{\partial y^2} w = u, \quad w(x,0) = w(x,1) = 0,$$

correspondingly. Formally, (1.6) could be obtained from the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ applying to it the operator $L_x L_y$ and using the boundary value conditions.

Lemma 1.1 If $u(x,y) \in C([0,1] \times [0,1])$ satisfies (1.6), then u(x,y) satisfies the boundary value conditions:

$$u(x,0) = u(0,y) = 0$$
, $u(x,1) = f(x)$, $u(1,y) - u(\frac{1}{2},y) = 0$

Proof. For y = 0 from (1.6) we obtain $L_x u(x, 0) = 0$. Applying the operator $\frac{\partial^2}{\partial x^2}$ to this equation we find u(x, 0) = 0. In a similar way for y = 1 we find u(x, 1) = f(x). In a similar way for y = 1 we find u(x, 1) = f(x). Next, for x = 0 from (1.6) we obtain $L_y u(0, y) = 0$. Applying the operator $\frac{\partial^2}{\partial y^2}$ to this equation we find u(0, y) = 0. Analogically, we find $u(1, y) - u(\frac{1}{2}, y) = 0$. \diamond

Example. If $f(x) = \frac{x^3}{6} - \frac{7x}{24}$ then (1.3) is a generalized solution of boundary value problem (1.1) (see [4], p. 175).

Lemma 1.2 If a function $u(x,y) \in C^2([0,1] \times [0,1])$ satisfy (1.6), then it is a classical solution of (1.1).

Proof. We apply the operator $\frac{\partial^4}{\partial x^2 \partial y^2}$ to (1.6) and obtain $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. As for the boundary value conditions, they are satisfied by Lemma 1.1. \diamond

In order to elucidate our approach for obtaining of an explicit solution, we will consider the following extension of Bitsadze - Samarskii problem (1.1):

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y), \quad 0 < x < 1, \quad 0 < y < 1,
u(x, 0) = u(0, y) = 0,
u(x, 1) = f(x), \quad u(1, y) - u(\frac{1}{2}, y) = g(y).$$
(1.8)

Where $f(x), g(y) \in C([0,1])$, $F(x,y) \in C([0,1] \times [0,1])$.

Definition 1.2 A function $u(x,y) \in C([0,1] \times [0,1])$ is said to be a generalized solution of problem (1.8), iff u(x,y) satisfies the integral equation

$$L_x u + L_y u = L_x f(x) \cdot y + L_y g(y) \cdot x + L_x L_y F(x, y)$$
(1.9)

Formally, (1.9) could be obtained easily from the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y)$ applying the operator $L_x L_y$ to it and using the boundary value conditions.

Lemma 1.3 If a function $u(x,y) \in C([0,1] \times [0,1])$ satisfy (1.9), then u(x,y) fulfils the boundary value conditions:

$$u(x,0) = u(0,y) = 0$$
, $u(x,1) = f(x)$, $u(1,y) - u(\frac{1}{2},y) = g(y)$.

Proof. Analogically to the proof of Lemma 1.1.

Lemma 1.4 If a function $u(x,y) \in C^2([0,1] \times [0,1])$ satisfies (1.9), then it is a classical solution of (1.1).

Proof. Applying the operator $\frac{\partial^4}{\partial x^2 \partial y^2}$ to (1.9), we obtain $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y)$. The boundary value conditions are satisfied by Lemma 1.3. \diamond

In order to obtain an explicit solution of (1.1) or (1.9) we will outline an operational calculus approach to Bitsadze - Samarskii problem. To this end, we introduce three convolution algebras: $(C[0,1],\overset{x}{*})$, $(C[0,1],\overset{y}{*})$ and $(C([0,1]\times[0,1]),*)$.

Theorem 1.1 The operation

$$(f * g)(x) = \int_0^{\frac{1}{2}} h(x, \eta) d\eta - \int_0^1 h(x, \eta) d\eta, \tag{1.10}$$

where

$$h(x,\eta) = \int_{x}^{\eta} f(x+\eta-\xi)g(\xi)d\xi - \int_{-x}^{\eta} f(|\eta-x-\xi|)g(|\xi|)sgn(\xi(\eta-x-\xi))d\xi$$

is a bilinear, commutative and associative operation on C[0,1], such that $L_x f(x) = x * f$.

This a special case of a more general operation $(f * g) = -\frac{1}{2} \Phi_{\xi} \{ \int_{0}^{\xi} h(x, \eta) d\eta \}$ in C[0, a] where Φ is a linear functional in $C^{1}[0, a]$ for the special choice $\Phi\{f\} = 2(f(1) - f(\frac{1}{2}))$ and a = 1 (see [4], p. 119).

Theorem 1.2 The operation

$$(f * g)(y) = -\frac{1}{2} \left(\int_0^1 h(y, \eta) d\eta \right)$$
 (1.11)

where

$$h(y,\eta) = \int_{y}^{\eta} f(y+\eta-\xi)g(\xi)d\xi - \int_{-y}^{\eta} f(|\eta-y-\xi|)g(|\xi|)sgn(\xi(\eta-y-\xi))d\xi$$

is a bilinear, commutative and associative operation on C[0, 1], such that $L_y f = y * f$.

This again a special case of the above mentioned general operation for the special choice a = 1 and $\Phi\{f\} = f(1)$.

We may combine both one-dimensional convolutions into one two-dimensional convolution.

Theorem 1.3 [4] The operation

$$(f * g)(x,y) = \frac{1}{2} \int_0^1 \left(\int_0^1 h(x,y,\xi,\eta) d\xi - \int_0^{\frac{1}{2}} h(x,y,\xi,\eta) d\xi \right) d\eta \quad (1.12)$$

$$h(x,y,\xi,\eta) = \int_{x}^{\xi} \int_{y}^{\eta} f(\xi+x-\sigma,\eta+y-\tau)g(\sigma,\tau)d\sigma\tau - \\ -\int_{-x}^{\xi} \int_{y}^{\eta} f(|\xi-x-\sigma|,\eta+y-\tau)g(|\sigma|,\tau)sgn(\xi-x-\sigma)\sigma d\sigma\tau - \\ -\int_{x}^{\xi} \int_{-y}^{\eta} f(\xi+x-\sigma,|\eta-y-\tau|)g(\sigma,|\tau|)sgn(\eta-y-\tau)\tau d\sigma\tau - \\ -\int_{x}^{\xi} \int_{-y}^{\eta} f(|\xi-x-\sigma|,|\eta-y-\tau|)g(\sigma,|\tau|)sgn(|\xi-x-\sigma|)(\eta-y-\tau)\sigma\tau d\sigma\tau$$

is a bilinear, commutative and associative operation, in $C = C([0,1] \times [0,1])$ such that the product L_xL_y has the representation

$$L_x L_y u = \{xy\} * u. (1.13)$$

Lemma 1.5

$$L_x \left\{ \frac{\partial^2 u}{\partial x^2} \right\} = u(x, y) - u(0, y) - 2x[u(1, y) - u(\frac{1}{2}, y)]$$
 (1.14)

and

$$L_x \left\{ \frac{\partial^2 u}{\partial y^2} \right\} = u(x, y) + (y - 1)u(x, 0) - yu(x, 1). \tag{1.15}$$

The proof is immediate.

In order to outline our operational calculus approach to the extended Bitsadze-Samarskii problem, we start with the general definition of a multiplier of convolutional algebra.

Definition 1.3 [10] A linear operator $M: C \to C$ is said to by a multiplier of the convolutional algebra (C, *) if M(u * v) = (Mu) * v for all $u, v \in C$.

We introduce some notations. The multipliers of the form $\{u(x,y)\}$ * will be denoted as $\{u\}$. Let $f = \{f(x)\}$ be a function of the variable x only and $g = \{g(y)\}$ be a function of the variable y only, but both considered as elements of C. The operators $[f]_y$ and $[g]_x$ defined by $[f]_y u = f \stackrel{x}{*} u$ and $[g]_x u = g \stackrel{y}{*} u$ are said to be partial numerical operators with respect to y and x correspondingly. In this notations we have $L_x = [x]_y$ and $L_y = [y]_x$.

The set of all the multipliers of the convolutional algebra (C,*) is a commutative ring $\mathcal M$. The multiplicative set NN of the non-zero non-divisors of 0 in $\mathcal M$ is non-empty, since at least the operators $x\stackrel{x}{*}=[x]_y$ and $y\stackrel{y}{*}=[y]_x$ are non-divisors of 0.

Next we introduce the ring $\mathcal{M} = NN^{-1}\mathcal{M}$ of the multiplier fractions of the form $\frac{A}{B}$ where $A \in \mathcal{M}$ and $B \in NN$. The standard algebraic procedure named "localization" of constructing of this ring, is described, e.g. in Lang [9]. Most important for our considerations are the algebraic inverses $S_x = \frac{1}{L_x}$ and $S_y = \frac{1}{L_y}$ of the multipliers L_x and L_y correspondingly.

Lemma 1.6 If $u \in C^2([0, a] \times [0, b])$, then

$$u_{xx} = S_x u - S_x \{u(0, y)\} - 2[u(1, y) - u(\frac{1}{2}, y)]_x,$$

$$u_{yy} = S_y u - S_y \{(y - 1)u(x, 0)\} - [u(x, 1)]_y.$$

Proof. By multiplication of (1.14) and (1.15) by S_x and S_y , correspondingly. Let us consider problem (1.1). Using boundary value conditions, the equation $u_{xx} + u_{yy} = 0$ together with the boundary conditions can be reduced to a single algebraic equation in \mathcal{M} . Indeed, then

$$u_{xx} = S_x u - [g(y)]_x, \qquad u_{yy} = S_y u - [f(x)]_y$$

and the BVP (1.8) takes the algebraic form:

$$(S_x + S_y)u = [f(x)]_y + [g(y)]_x + \{F(x,y)\}$$

If $S_x + S_y$ is a non-divisor of zero, then the last equation has a solution in \mathcal{M} :

$$u = \frac{1}{(S_x + S_y)} [f(x)]_y + \frac{1}{(S_x + S_y)} [g(y)]_x + \frac{1}{(S_x + S_y)} \{F(x, y)\}.$$

In order to show that the element $S_x + S_y$ is a non-divisor of zero in \mathcal{M} , we consider the following eigenvalue problem:

$$v''(y) + \mu^2 v(y) = 0, \quad y \in (0, 1), \quad v(0) = 0, \quad v(1) = 0$$
 (1.16)

The eigenvalues of (1.16) are $\mu_m = m\pi$, $m \in NN$, with corresponding eigenfunctions $sinm\pi x$.

Lemma 1.7 The elements $S_x + S_y$ is a non-divisor of zero in \mathcal{M} .

Proof. Assume the contrary, i.e. that there exists a non-zero multipliers fraction $\frac{A}{B} \neq 0$ with $(S_x + S_y)\frac{A}{B} = 0$. The last relation is equivalent to $(S_x + S_y)A = 0$. Since $A \neq 0$, then there exist a function $v \in C$ such that $Av = u \neq 0$. Then $(S_x + S_y)A = 0$ implies $(S_x + S_y)u = 0$ which is equivalent to

$$(L_x + L_y)u = 0 (1.17)$$

We will show that the only solution of this equation is the trivial one, i.e. $u \equiv 0$, which would be a contradiction. To this end we multiply (1.17) by the eigenfunction $\varphi_n(y) = sinm\pi y$ of the eigenvalue problem (1.16) using the convolution product f * g, defined by (1.11). It easy to see that

$$u(x,y) \stackrel{y}{*} \sin m\pi y = \left\{ \gamma_m \int_0^1 u(x,\eta) \sin m\pi \eta d\eta \right\} \sin m\pi y$$

with a constant $\gamma_m \neq 0$, the exact value of which is unessential for us. The function

$$A_m(x) = \left\{ \gamma_m \int_0^1 u(x, \eta) \sin m\pi \eta d\eta \right\}$$

up to a non-zero constant is the *m*-th finite Fourier sine-transform of the function u(x,y) with respect to y. From $(L_x + L_y)[u * \varphi_m(y) = 0$ we obtain

$$[L_x A_m(x)] \sin m\pi y + A_m(x) L_y \sin m\pi y = 0.$$

But $L_y \sin m\pi y = -\frac{1}{(m\pi)^2} \sin m\pi y$ and thus we obtain the following simple integral equation for $A_m(x)$:

$$L_x A_m(x) = -\frac{1}{(m\pi)^2} A_m(x)$$

It is equivalent to the BVP

$$A_m''(x) = (m\pi)^2 A_m(x), \quad A_m(0) = 0, \quad A_m(1) = 0.$$
 (1.18)

The only solution of (1.18) is the trivial one: $A_m(x) \equiv 0$. Thus we proved that $\int_0^1 u(x,\eta) \sin m\pi \eta d\eta = 0$ for arbitrary $x \in [0,1]$ and $\bigvee n \in NN$. From a basic property of the Fourier sine-transform it follow $u(x,y) \equiv 0$ for arbitrary $x \in [0,1]$ and $y \in [0,1]$. This is a contradiction with the assumption $u(x,y) \neq 0$

0 and it proves the Lemma. Along with this, it is proven the uniqueness of the extended Bitsadze - Samarskii problem.

Let us consider Bitsadze - Samarskii problem (1.1) for $f(x) = \frac{x^3}{6} - \frac{7x}{24} = L_x = \frac{1}{S_x^2}$. In [4] a representation of the solution U(x, y) of this problem by the series (1.3) is found. The same solution has the algebraic representation

$$U = \frac{1}{(S_x + S_y)} \left[\frac{x^3}{6} - \frac{7x}{24} \right]_y = \frac{1}{(S_x + S_y)} L_x \{x\} = \frac{1}{(S_x + S_y)} L_x^2 = \frac{1}{(S_x + S_y)S_x^2} L_x^2 = \frac{1}{(S_x + S_$$

Then the solution of Bitsadze - Samarskii problem (1.1) for arbitrary f can be represented in the form:

$$u = \frac{1}{(S_x + S_y)} [f(x)]_y = S_x^2 \frac{1}{(S_x + S_y)S_x^2} [f(x)]_y = \frac{\partial^4}{\partial x^4} (U * fx).$$
 (1.19)

In [4] one of the authors had shown that for $f(x) \in C^4[0,1]$ which satisfies the conditions $f(0) = f(1) - f(\frac{1}{2}) = f''(1) - f''(\frac{1}{2}) = 0$ (1.19) is a representation of the classical solution of (1.1). Indeed, since U(x,y) is a (generalised) solution of problem (1.1), we have $U(1,y) - U(\frac{1}{2},y) = 0$. Assuming that $f(x) \in C^2[0,1]$ with $f(0) = f(1) - f(\frac{1}{2}) = 0$ and using , we obtain

$$u(x,y) = \frac{\partial^4}{\partial x^4} (U(x,y) * f(x)) =$$

$$= -\left(\int_0^x (U_x(\xi+1-x,y) - U_x(x+1-\xi,y) - U_x(\xi+\frac{1}{2}-x,y) + U_x(x+\frac{1}{2}-\xi,y)\right) f''(\xi) d\xi +$$

$$+ \int_0^1 (U_x(x+1-\xi,y) - U_x(1-x-\xi,y)) f''(\xi) d\xi -$$

$$- \int_0^{\frac{1}{2}} (U_x(x+\frac{1}{2}-\xi,y) - U_x(\frac{1}{2}-x-\xi,y)) f''(\xi) d\xi$$

$$(1.20)$$

with $U_x(x, y)$ given by (1.5). It is easy to see that this representation of the solution of (1.1) is equivalent to (1.4).

Theorem 1.4 If $f(x) \in C^2[0,1]$, f(0) = 0, and $f(1) - f(\frac{1}{2}) = 0$, then (1.19) is a generalised solution of boundary value problem (1.1). If $f(x) \in C^4[0,1]$ and f(0) = f''(0) = 0, $f(1) - f(\frac{1}{2}) = f''(1) - f''(\frac{1}{2}) = 0$, then

$$u(x,y) = \frac{\partial^4}{\partial x^4} (U(x,y) * fx) =$$

$$= -\int_x^{\frac{1}{2}} (U_x(\frac{1}{2} + x - \xi, y) f''(\xi) d\xi - \int_{-x}^{\frac{1}{2}} (U_x(\frac{1}{2} - x - \xi, y) f''(|\xi|) sgn\xi d\xi -$$

$$-\int_x^1 (U_x(1 + x - \xi, y) f''(\xi) d\xi - \int_{-x}^1 (U_x(1 - x - \xi, y) f''(|\xi|) sgn\xi d\xi$$

$$(1.21)$$

$$U_x(x,y) = \sum_{n=1}^{\infty} \frac{\sinh 4n\pi y \cos 4n\pi x}{8\pi^2 n^2 \sinh 4n\pi} +$$

$$\sum_{n=1}^{\infty} \frac{3 \sinh \frac{2}{3} (2n-1)\pi y \cos \frac{2}{3} (2n-1)\pi x}{2\pi^2 (2n-1)^2 \cos \frac{2}{3} (1+n)n\pi \sinh \frac{2}{3} (2n-1)\pi}$$
(1.22)

is a classical solution of (1.1).

The proof the first part is a matter of a direct check. The second is proven in [4]. \diamond

2 Generalization of nonlocal Bitsadze - Samarskii problem.

2.1 Introductions.

Let Φ be a linear functional on $C^1[0,a]$ and Ψ be a linear functional on $C^1[0,b]$. Then they have Stieltjes type representations:

$$\Phi\{f\} = Af(a) + \int_0^a f'(t)d\alpha(t), \quad f \in C^1[0, a]$$
 (2.1)

and

$$\Psi\{f\} = Bg(b) + \int_0^b g'(t)d\beta(t), \quad g \in C^1[0, b]$$
 (2.2)

where α and β are function with bounded variation, A and B being constant. We consider the potential equation

$$u_{xx} + u_{yy} = F(x, y) \tag{2.3}$$

on the rectangle $G = \{(x, y) : 0 < x < a, 0 < y < b\}$ with local BV conditions

$$u(x,0) = \varphi(x) \text{ and } u(0,y) = \psi(x)$$
 (2.4)

and nonlocal BV conditions

$$\Phi_{\xi}\{u(\xi, y)\} = g(y), \quad \Psi_{\eta}\{u(x, \eta)\} = f(x) \tag{2.5}$$

with some mild smoothness requirements for the given functions F, φ , ψ , f and g. The only restrictions on the functionals Φ and Ψ are the requirements $\Phi \neq 0$ and $\Psi \neq 0$. They are connected with the approach chosen and may be ousted by means of some technical involvements. For the sake of some normalization of the functionals Φ and Ψ , we assume

$$\Phi_{\xi}\{\xi\} = 1, \quad \Psi_{\eta}\{\eta\} = 1$$
(2.6)

We consider the space C(G) and $C^1(G)$ of the continuous and smooth functions on $G = [0, a] \times [0, b]$, respectively.

Further, we introduce the right inverse operators L_x and L_y of and on $C([0, a] \times [0, b])$ as the solutions $v(x, y) = L_x u(x, y)$ and $w(x, y) = L_y u(x, y)$ of the elementary BVPs

$$\frac{\partial^2 v}{\partial x^2} = u(x, y), \quad v(0, y) = 0, \quad \Phi_{\xi}\{v(\xi, y)\} = 0$$
 (2.7)

and

$$\frac{\partial^2 w}{\partial u^2} = u(x, y), \quad w(x, 0) = 0, \quad \Psi_{\eta}\{w(x, \eta)\} = 0$$
 (2.8)

The operators L_x and L_y have the explicit representations:

$$L_x\{u(x,y)\} = \int_0^x (x-\xi)u(\xi,y)d\xi - x\Phi_{\xi}\{\int_0^{\xi} (\xi-\eta)u(\eta,y)d\eta\},$$
 (2.9)

$$L_{y}\{u(x,y)\} = \int_{0}^{y} (y-\eta)u(x,\eta)d\eta - y\Psi_{\eta}\{\int_{0}^{\eta} (\eta-\zeta)u(x,\zeta)d\zeta\}.$$
 (2.10)

2.2 Convolutions.

One of the authors had found a convolution $(f_1 * f_2)(x)$ in C[0, a] and a convolution $(g_1 * g_2)(y)$ in C[0, b] such that the operators L_x and L_y are the convolution operator $\{x\} * and \{y\} *,$ correspondingly.

Theorem 2.1 [6] The operations

$$(f_1 * f_2)(x) = -\frac{1}{2} \Phi_{\xi} \left\{ \int_0^{\xi} h(x, \eta) d\eta \right\}$$
 (2.11)

$$(g_1 * g_2)(y) = -\frac{1}{2}\Psi_{\eta} \left\{ \int_0^{\eta} k(y,\zeta)d\zeta \right\}$$
 (2.12)

where

$$h(x,\eta) = \int_{x}^{\eta} f_{1}(\eta + x - \zeta) f_{2}(\zeta) d\zeta - \int_{-x}^{\eta} f_{1}(|\eta - x - \zeta) f_{2}(|\zeta|) sgn(\zeta(\eta - x - \zeta)) d\zeta$$
(2.13)

$$k(y,\eta) = \int_{y}^{\eta} g_{1}(\eta + y - \zeta)g_{2}(\zeta)d\zeta - \int_{-y}^{\eta} g_{1}(|\eta - y - \zeta)g_{2}(|\zeta|)sgn(\zeta(\eta - y - \zeta))d\zeta$$
(2.14)

are bilinear, commutative and associative operations on C([0, a]) and C([0, b]), respectively, such that it hold the representations

$$L_x f(x) = \{x\} * f(x)$$
 (2.15)

and

$$L_y g(y) = \{y\} * g(y).$$
 (2.16)

For a proof see [6].

By means of (2.11) and (2.12) a two-dimensional convolution in $C([0, a] \times [0, b])$ can be defined.

Theorem 2.2 [8] The operation

$$(u*v)(x,y) = \frac{1}{4}\tilde{\Phi}_{\xi}\tilde{\Psi}_{\eta}\{h(x,y,\xi,\eta)\},$$
(2.17)

$$\tilde{\Phi}_{\xi}\{f(\xi)\} = \Phi_{\xi}\left\{\int_{0}^{\xi} f(\sigma)d\sigma\right\}, \qquad \tilde{\Psi}_{\eta}\{g(\eta)\} = \Psi_{\eta}\left\{\int_{0}^{\eta} g(\tau)d\tau\right\}$$

with

$$h(x,y,\xi,\eta) = \int_{x}^{\xi} \int_{y}^{\eta} f(\xi+x-\sigma,\eta+y-\tau)g(\sigma,\tau)d\sigma\tau - \\ -\int_{-x}^{\xi} \int_{y}^{\eta} f(|\xi-x-\sigma|,\eta+y-\tau)g(|\sigma|,\tau)sgn(\xi-x-\sigma)\sigma d\sigma\tau - \\ -\int_{x}^{\xi} \int_{-y}^{\eta} f(\xi+x-\sigma,|\eta-y-\tau|)g(\sigma,|\tau|)sgn(\eta-y-\tau)\tau d\sigma\tau - \\ -\int_{-x}^{\xi} \int_{-y}^{\eta} f(|\xi-x-\sigma|,|\eta-y-\tau|)g(\sigma,|\tau|)sgn(|\xi-x-\sigma|)(\eta-y-\tau)\sigma\tau d\sigma\tau$$

is a bilinear, commutative and associative operation in C(G) such that

$$L_x\{u(x,y)\} = \{x\} \stackrel{x}{*} \{u(x,y)\}, \quad L_y\{u(x,y)\} = \{x\} \stackrel{y}{*} \{u(x,y)\}$$
 (2.18)

$$L_x L_y \{u(x,y)\} = \{xy\} * \{u(x,y)\}. \tag{2.19}$$

The linear space C = C(G) equipped with the multiplication (2.17) is a commutative Banach algebra (C, *).

Further, we introduce the algebra MM of the multipliers of (C, *). Let us remind the definition of a multiplier of (C, *).

Definition 2.1 (See [10]) A mapping $M: C \to C$ is said to by a multiplier of the convolutional algebra (C, *) iff the relation

$$M(u * v) = (Mu) * v \tag{2.20}$$

holds for all $u, v \in C$.

As it is shown in Larsen [5] each such mapping for our convolution (2.17) is automatically linear and continuous. That's why, further we consider each multiplier of (C, *) as a continuous linear operator.

If $f \in C[0, a]$ and $g \in C[0, b]$, then the convolutional operators $f \overset{x}{*}$ and $g \overset{y}{*}$ defined in C by

$$(f *)u = f * u, (g *)u = g * u$$

are multipliers of (C, *) (See Dimovski and Spiridonova [8]). Of course, the operator $\{F(x, y)\}$ is also multiplier of (C, *).

Further, we use the notations

$$[f]_y = \{f(x)\} \stackrel{x}{*}, \quad [g]_x = \{g(y)\} \stackrel{y}{*}$$
 (2.21)

2.3 A two-dimensional operational calculus.

In \mathcal{M} there are elements which a non-divisors of 0. Indeed, such elements are the multipliers $\{x\} \stackrel{x}{*}$ and $\{y\} \stackrel{y}{*}$, i.e. the operators L_x and L_y .

Denote by $\mathbb N$ the set of the non-zero non-divisors of zero on $\mathbb M$. The set $\mathbb N$ is a multiplicative subset on $\mathbb M$, i.e. such that $p,q\in\mathbb N$ implies $pq\in\mathbb N$.

Further, we consider multipliers fractions of the form $\frac{M}{N}$ with $M \in \mathcal{M}$ and $N \in \mathcal{N}$. They are introduced in a standard manner, using the well-known method of "localisation" from the general algebra [9].

Denote by \mathcal{M} the set $\mathcal{N}^{-1}\mathcal{M}$ of multipliers fractions. We consider it as a commutative ring containing the basic field (\mathbb{R} or \mathbb{C}), the algebras ($C[0, a], \overset{x}{*}, (C[0, b], \overset{y}{*}), (C, *)$ and \mathcal{M} , due to the embeddings

$$R \hookrightarrow \mathcal{M} \quad or \quad R \hookrightarrow \mathcal{M} : \quad \alpha \mapsto \frac{\alpha L_x}{L_x}$$

$$(C[0, a], \overset{x}{*}) \hookrightarrow \mathcal{M} : \quad f \mapsto \frac{(L_x f) \overset{x}{*}}{L_x}$$

$$(C[0, b], \overset{y}{*}) \hookrightarrow \mathcal{M} : \quad g \mapsto \frac{(L_y g) \overset{y}{*}}{L_y}$$

$$(C([0, a] \times [0, b]), *) \hookrightarrow \mathcal{M} : \quad u \mapsto \frac{(L_x L_y u) *}{L_x L_y}$$

Further, we consider all numbers, functions, multiplier and multipliers fractions as elements of a single algebraic system: the ring \mathcal{M} of the multipliers fractions.

2.4 Explicit solution of nonlocal BVPs for the potential equation.

Further, we consider following boundary value problem:

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = F(x, y), \quad 0 < x < a, \quad 0 < y < b,
u(x, 0) = u(0, y) = 0,
\Phi_{\xi}\{u(\xi, y)\} = g(y), \quad \Psi_{\eta}\{u(x, \eta)\} = f(x).$$
(2.22)

Definition 2.2 A function $u(x,y) \in C^1([0,a] \times [0,b])$ is said to be a generalised solution of (2.22) iff u(x,y) satisfies the integral relation

$$L_x u + L_y u = L_x f(x) \cdot y + L_y g(y) \cdot x + L_x L_y F(x, y). \tag{2.23}$$

Formally, (2.23) could be obtained from the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y)$ applying to it the operator $L_x L_y$ and taking into account the boundary value conditions.

Lemma 2.1 If $u(x,y) \in C1([0,a] \times [0,b])$ satisfy (2.23), then u(x,y) satisfies the boundary value conditions:

$$u(x,0) = u(0,y) = 0,$$

$$\Phi_{\xi}\{u(\xi,y) = g(y), \quad \Psi_{\eta}, \{u(x,\eta)\} = f(x).$$

Proof. Let us consider (2.23). For y=0 we find $L_x u(x,0)=0$. Next we apply the operator $\frac{\partial^2}{\partial x^2}$ and find u(x,0)=0. For x=0 we find $L_y u(0,y)=0$. Applying $\frac{\partial^2}{\partial y^2}$, we get u(0,y)=0. If apply Ψ to (2.23), we obtain $L_x \Psi_{\eta} \{u(x,\eta)\} = L_x f(x)$. Then applying $\frac{\partial^2}{\partial x^2}$ we obtain $\Psi_{\eta} \{u(x,\eta)\} = f(x)$. At last, applying Φ to (2.23), we get $L_y \Phi_{\xi} \{u(\xi,y)\} = L_y g(y)$ and hence $\Phi_{\xi} \{u(\xi,y)\} = g(y)$.

Lemma 2.2 If $u(x,y) \in C^2([0,a] \times [0,b])$ satisfy (2.23) then it is a classical solution of (2.22).

Proof. Applying the operator $\frac{\partial^4}{\partial x^2 \partial y^2}$ to (2.23), we get $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y)$. The fulfilment of the boundary value conditions follows from Lemma 2.1. \diamond

Lemma 2.3 If $u(x,y) \in C^2(G)$, then it holds:

$$L_x \left\{ \frac{\partial^2 u}{\partial x^2} \right\} = u(x, y) + (x \Phi_{\xi} \{1\} - 1) u(0, y) - x \Phi_{\xi} \{u(\xi, y)\}$$
 (2.24)

and

$$L_y \left\{ \frac{\partial^2 u}{\partial y^2} \right\} = u(x, y) + (y \Psi_{\eta} \{1\} - 1) u(x, 0) - y \Phi_{\eta} \{u(x, \eta)\}$$
 (2.25)

For a proof, see [5].

Most important for our considerations are the algebraic inverses $S_x = \frac{1}{L_x}$ and $S_y = \frac{1}{L_y}$ of the multipliers L_x and L_y , correspondingly.

Lemma 2.4 If $u \in C^2([0, a] \times ([0, b])$, then

$$u_{xx} = S_x u(x, y) + S_x \{ (x \Phi_{\xi} \{1\} - 1) u(0, y) \} - [\Phi_{\xi} \{ u(\xi, y) \}]_x, \tag{2.26}$$

and.

$$u_{yy} = S_y u(x, y) + S_y \{ (y \Psi_{\eta} \{1\} - 1) u(x, 0) \} - [\Phi_{\eta} \{ u(x, \eta) \}]_y.$$
 (2.27)

Proof. By multiplication of (2.24) and (2.25) by S_x and S_y , correspondingly. Using the boundary value conditions of (2.22), the equation $u_{xx} + u_{yy} = F(x,y)$ can be reduced to a single algebraic equation in \mathcal{M} . Indeed, by (2.26) and (2.27) we find

$$u_{xx} = S_x u - [g(y)]_x. (2.28)$$

$$u_{yy} = S_y u - [f(x)]_y. (2.29)$$

and the equation $u_{xx} + u_{yy} = F(x, y)$ takes the algebraic form:

$$(S_x + S_y)u = F(x, y) + [g(y)]_x + [f(x)]_y.$$

If $S_x + S_y$ is non-divisor of zero, then the last equation has the following formal solution in \mathcal{M} :

$$u = \frac{1}{(S_x + S_y)} \{ F(x, y) \} + \frac{1}{(S_x + S_y)} [f(x)]_y + \frac{1}{(S_x + S_y)} [g(y)]_x.$$

The requirement $S_x + S_y$ to be a non-divisor of 0 in \mathcal{M} is equivalent to a theorem for uniqueness of the solution of (2.22). Therefore, our next task is

to study the uniqueness for problem (2.22). In the direct algebraic approach we a following, this problem reduces to the purely algebraic requirement the elements $S_x + S_y$ of \mathcal{M} to be a non-divisor of zero in \mathcal{M} .

To this end we consider the following two eigenvalue problems:

$$u''(x) + \lambda^2 u(x) = 0$$
, $x \in (0, a)$, $u(0) = 0$, $\Phi_{\xi}\{u(\xi)\} = 0$ in $C[0, a]$, (2.30)

$$v''(v) + \mu^2 v(y) = 0$$
, $y \in (0, b)$, $v(0) = 0$, $\Psi_{\eta}\{u(\eta)\} = 0$ in $C[0, b]$. (2.31)

Let λ_n and μ_m be the eigenvalues of (2.30) and (2.31) for $n, m \in N$, correspondingly.

Lemma 2.5 If there exists a dispersion relation of the form $\lambda_n^2 + \mu_m^2 = 0$ for some $n, m \in \mathbb{N}$, then S + S is a divisor of zero in M.

Proof. Let for some $n, m \in N$ we have $\lambda_n^2 + \mu_m^2 = 0$. Then

$$(S_x + S_y)\sin\lambda_n x \sin\mu_m y = -(\lambda_n^2 + \mu_m^2)\sin\lambda_n x \sin\mu_m y = 0. \diamond$$

Theorem 2.3 Let $a \in supp\Phi$. If $\lambda_n^2 + \mu_m^2 \neq 0$ for all $n, m \in \mathbb{N}$, then $S_x + S_y$ is a non-divisor of zero in M.

Proof. Assume the contrary. It is easy to see, that $S_x + S_y$ is a divisor of zero in \mathcal{M} iff there is a function $u \in C^2(G)$, $u \neq 0$, such that $(S_x + S_y)u = 0$. This relation is equivalent to

$$(L_x + L_y)u = 0. (2.32)$$

Let λ_n is an arbitrary eigenvalue of (2.30). Then λ_n is a zero of the sine-indicatrix $E(\lambda) = \Phi_{\xi}\left\{\frac{\sin \lambda \xi}{\lambda}\right\}$ of the functional Φ . Let \varkappa_n be the multiplicity of λ_n as a zero of $E(\lambda)$. To λ_n it corresponds the finite sequence of an eigenfunction $\sin \lambda_n x$ and $\varkappa_n - 1$ associated eigenfunctions

$$\varphi_{n,s}(x) = \left(L_x + \frac{1}{\lambda_n^2}\right)^s, \quad 0 \le s \le \varkappa_n - 1,$$

where

$$\varphi_{n,0}(x) = \frac{1}{\pi i} \int_{\Gamma_n} \frac{\sin \lambda x}{\lambda E(\lambda)} d\lambda$$

(see Dimovski and Petrova [7], p.94)

Note that $\varphi_{n,\varkappa_{n-1}}(x) = \alpha_n \sin \lambda_n x$ with some $\alpha_n \neq 0$. The corresponding \varkappa_n -dimensional eigenspace is

$$E_{\lambda_n}^{(\varkappa_n)} = span\{\varphi_{n,s}(x), s = 0, 1, ..., \varkappa_n - 1\}.$$

The spectral projector $P_{\lambda_n}: C \to E_{\lambda_n}^{(\varkappa_n)}$ is given by $P_{\lambda_n}\{f\} = f * \varphi_n$. According to a theorem of N. Bozhinov [3] in the case $a \in supp\Phi$, the projectors P_{λ_n} form a total system, i.e. a system for which $P_{\lambda_n}\{f\} = 0$, $\bigvee n \in N$ implies $f \equiv 0$. For a simple proof of Bozhinov's theorem for our case, see [7] p. 97-98.

Denote $u_n(x,y) = u(x,y) * \varphi_n(x)$. From $(L_x + L_y)u = 0$ it follows $(L_x + L_y)u_n = 0. \tag{2.33}$

We will show that (2.33) has only the trivial solution $u_n = 0$ in $E_{\lambda_n}^{(\varkappa_n)}$. Assume that there exists a nonzero solution u_n of (2.33), i.e. of the form

$$u_n(x,y) = A_{n,k}(y)\varphi_{n,k}(x) + A_{n,k+1}(y)\varphi_{n,k+1}(x) + \dots + A_{n,\varkappa_{n-1}}(y)\varphi_{n,\varkappa_{n-1}}(x)$$
(2.34)

with $A_{n,k}(y) \neq 0$ for some k, $0 \leq k \leq \varkappa_n - 1$. We apply the operator $\left(L_x + \frac{1}{\lambda_n^2}\right)^{\varkappa_n - k - 1}$ to (2.33) and obtain

$$(L_x + L_y)A_{n,\varkappa_n - 1}(y)\varphi_{n,\varkappa_n - 1}(x) = 0,$$

since $\left(L_x + \frac{1}{\lambda_n^2}\right)^s \varphi_{n,0}(x) = 0$, for $s \geq \varkappa_n$.

But $\varphi_{n,\varkappa_{n-1}}(x) = \alpha_n$ with $\alpha_n \neq 0$. Denote $A_{n,\varkappa_{n-1}}(y) = A_n(y)$. Consider $(L_x + L_y)A_n(y)\sin \lambda_n x = 0$ as an equation for $A_n(y)$. It is equivalent to the BVP

$$\frac{\partial^2}{\partial x^2}(A_n(y)\sin\lambda_n x) + \frac{\partial^2}{\partial y^2}(A_n(y)\sin\lambda_n x) = 0$$

$$A_n(0) = 0$$
 and $\Psi_n\{A_n(\eta)\} = 0$,

which reduces to

$$A_n''(y) - \lambda_n^2 A_n(y) = 0$$
, $A_n(0) = 0$ and $\Psi_{\eta} \{A_n(\eta)\} = 0$.

From this equation it follows that $-\lambda_n^2$ is an eigenvalue $-\mu_n^2$ of problem (2.31). Hence $\lambda_n^2 + \mu_n^2 = 0$ which is a contradiction. Hence $u_n(x,y) \equiv 0$ for all $n \in \mathbb{N}$. By N. Bozhinov's theorem it follows that $u_n(x,y) \equiv 0$. Thus we proved, that $S_x + S_y$ is a non-divisor of 0 in M.

2.4.1

Let us consider BVP (2.22) for $f(x) = L_x\{x\} = \frac{1}{S_x^2}$ and $g(y) = F(x, y) \equiv 0$. We assume that there exists a generalized solution of this problem and denote it by U(x, y). It has the following algebraic representation:

$$U = \frac{1}{(S_x + S_y)} L_x \{x\} = \frac{1}{(S_x + S_y)} L_x^2 = \frac{1}{(S_x + S_y)S_x^2}$$

Then there exists also the solution of problem (2.22) for arbitrary f(x), g(y) and F(x,y) and it can by represented in the form:

$$u = \frac{1}{(S_x + S_y)} \{ F(x, y) \} + \frac{1}{(S_x + S_y)} [f(x)]_y + \frac{1}{(S_x + S_y)} [g(y)]_x =$$

$$= S_x^2 \left[\frac{1}{(S_x + S_y)S_x^2} F(x, y) + \frac{1}{(S_x + S_y)S_x^2} [f(x)]_y + \frac{1}{(S_x + S_y)S_x^2} [g(y)]_x \right]$$

$$u = \frac{\partial^4}{\partial x^4} \left[U * F(x, y) + U * f(x) + U * g(y) \right]$$

provided the denoted derivative exists.

2.4.2

Let us consider BVP (2.22) for $F(x,y) = xy = L_x L_y = \frac{1}{S_x S_y}$ and $g(y) = f(x) \equiv 0$. We denote the solution of this problem by W(x,y). Then we have an algebraic representation of this solution:

$$W = \frac{1}{(S_x + S_y)} L_x L_y = \frac{1}{(S_x + S_y) S_x S_y}$$

The solution of problem (2.22) for arbitrary f(x), g(y) and F(x, y) can by represented in the form:

$$u = S_x S_y \left[\frac{1}{S_x S_y (S_x + S_y)} [f(x)]_y + \frac{1}{S_x S_y (S_x + S_y)} [g(y)]_x + \frac{1}{S_x S_y (S_x + S_y)} \{F(x, y)\} \right]$$
$$u = \frac{\partial^4}{\partial x^2 \partial y^2} \left[W * f(x) + W * g(y) + W * F(x, y) \right]$$

but we will illustrate these conditions on the example of Bitsadze - Samarskii's problem.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < 1, \quad 0 < y < 1,
u(x,0) = u(0,y) = 0, \quad u(x,1) = f(x),
u(1,y) - u(\frac{1}{2},y) = 0.$$
(2.35)

This is the special case of boundary value problem (2.2) when $\Phi_{\xi}\{u(\xi,y)\}=2(u(1,y)-u(\frac{1}{2},y))$ and $\Psi_{\eta}\{u(x,\eta)\}=u(x,1)$. Following the approach outlined above, we can find ([9], p 175) that the solution U(x,y) of (2.35) for $f(x)=L_x\{x\}=\frac{x^3}{6}-\frac{7x}{24}$ is

$$U(x,y) = \sum_{n=1}^{\infty} \frac{\sinh 4n\pi y \sin 4n\pi x}{32\pi^3 n^3 \sinh 4n\pi} + \sum_{n=1}^{\infty} \frac{9 \sinh \frac{2}{3} (2n-1)\pi y \sin \frac{2}{3} (2n-1)\pi x}{4\pi^3 (2n-1)^3 \cos \frac{2}{3} (1+n)n\pi \sinh \frac{2}{3} (2n-1)\pi}$$

Then, for $f \in C^2[0,1]$, with $f(0) = f(1) - f(\frac{1}{2}) = 0$, we obtain

$$u(x,y) = \int_{x}^{2} U_{x}(\frac{1}{2} + x - \xi, y) f''(\xi) d\xi -$$

$$- \int_{-x}^{2} U_{x}(\frac{1}{2} - x - \xi, y) f''(|\xi|) sgn\xi d\xi -$$

$$- \int_{x}^{1} U_{x}(1 + x - \xi, y) f''(\xi) d\xi + \int_{-x}^{1} U_{x}(1 - x - \xi, y) f''(|\xi|) sgn\xi d\xi$$

as a generalized solution of (2.35). It can be shown that it is a classical solution too, if $f \in C^4[0,1]$ and additionally, $f''(0) = f''(1) - f''(\frac{1}{2}) = 0$ (Cf. Theorem 1.4).

Литература

[1] Бицадзе, А. В., Некоторые классы уравнений в частных производных. Москва, "Наука 1981.

- [2] Бицадзе, А. В., Самарский А. А., О некоторых простейших обобщениях линейных эллиптических краевых задач. ДАН СССР, 185, 4, 1969, 739-741.
- [3] Bozhinov, N. S. On the theorems of uniqueness and completeness on eigen- and associated eigenfunctions of the nonlocal Sturm-Liouville operator on a finite interval. (Russian) Diferenzial'nye Uravneya, 26, 5 (1990), 741-453.
- [4] Dimovski, I. H., Convolutional Calculus. Kluwer, Dordrecht. 1990.
- [5] Dimovski, I. H., Nonlocal boundary value problems. In: Mathematics and Math. Education, Proc. 31 Spring Conf. UBM, 2009, 31 40.
- [6] Dimovski, I. H. Two new convolutions for linear right inverse operators of . C. R. Acad. bulg. Sci., 29, 1, 1976, 25-28.
- [7] Dimovski, I. H., Petrova, R. I., Finite integral transforms for nonlocal boundary value problems. In: Generalized Functions and Convergence, eds. P. Antosik and A. Kaminski. World Scientific, Singapore, 1990.
- [8] Dimovski, I. H., Spiridonova, M., Computational approach to nonlocal boundary value problems by multivariate operational calculus. Math. Sci. Res. J. 9 (12), 2005, 315-329.
- [9] Lang, S. Algebra. Addison-Wesley, Reading, Mass. 1965.
- [10] Larsen, R., An Introduction to the theory of multipliers. Springer, Berlin-New York Heidelberg, 1971.
- [11] Skubachevskii, A. L., The elliptic problems of A. V. Bitsadze and A. A. Samarskii, Soviet Math. Dokl. 30, 2, 1984.