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Abstract

In the first part of this paper we find an explicit solution of Bit-
sadze - Samarskii problem for Laplace equation using operational cal-
culus approach, based on two non-classical one-dimensional convolu-
tions and a two-dimensional convolution. In fact, the explicit solution
obtained is a way for effective summation of a solution obtained in the
form of non-harmonic Fourier sine-expansion. This explicit solution is
suitable for numerical calculation too. In the second part we consider
Warbitrary" linear functionals ® and ¥ on C*[0,a] and C*(0, b, respec-
tively. The class of BVPs gz + uyy = F(z,9), 0iciz'<'a, 0:<:. <D,
u(z,0) = 0, u(0,y) = 0, Be{u(6,v)} = 9(), yfu(z,n)} = f(o) is
considered. An extension of Duhamel principle, known for evolution
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equations, is proposed. An operational calculus approach for explicit
solution of these problems is developed. A classical example of such
BVP is the Bitsadze - Samarskii problem. :

Mathematics Subject Classification(2000): 44A35, 35L.20, 35J05,
35J25.

Key words: nonlocal BVP, right-inverse operator, extended Duamel
principle, generalized solution, non-classical convolution, multiplier,
multiplier fraction.

1 Exact solutions of nonlocal Bitsadze - Samarskii
problem

In [2] it is posed the following nonlocal boundary value problem:

o, o _
ox? ~ Oy?
u(z,0) =0, u(z,1)= f(z),

More elaborately, this problem is studied in A. Bitsadze’s book 1], p. 214 -

219. Some generalizations are proposed by A. Skubachevskii in [11]. In [4],
p. 175 - 176 one of the authors proposed an explicit solution of the problem

0, —-l<z<l, O0<y<l,

P , o
ox? = Oy?
u(z, 0) = u(0,y) =0, (1.1)

u(z,1) = f(a), u(l,g)~ u(z,y) =0.

= 0.7l < 2 =170 <<,

which is only a slight modification of Bitsadze - Samarskii’s problem. This
solution has the form

13 e
u(ac,y)=—/l df{/ Uz + & —n,9) @ (n)dn - (1.2)

i / * U — 2 - ) O (Inl)sgn(nlin}
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where

I j >, sinh 4nmy sin 4n7z A
(& y) | 327303 sinh dnm (1.3)

n=

oo

Z 9sinh 2(2n — 1)mysin 2(2n — 1)z
< 4m3(2n — 1)3 cos 2(1 + n)nmsinh 2(2n — 1)

is the solution of the same problem, but for the special choice f(z) = % it ;_i,
It is a classical solution of (1.1) under the assumptions f(0) = f”(0) = 0,
f(1) - f(%) = f"(1) — f”(%) = 0. Our aim here is to simplify (1.2) to
21501
u(s, y) = / Uus 4 €,4)1"(€)d6 — (14)

= U (——w—f, y) [ (I€])sgnédE —

-

s
i / Ua(1+ 2 — £,9)f"(€)dE + / Ua(1 — 2 — &, y) f([€]) sgméde

where

o0 .
sinh 4nmy cos dnmz
8m2n? sinh 4nmw

Us(z,9) = (1.5)

n=
o 3sinh 2(2n — 1)y cos 2(2n — 1)mz
Z 2m2(2n — 1)2 cos 2(1 + n)nmsinh 2(2n — 1)7

In a sense (1.4) is simpler than (1.2) since it uses only second derivatives
of f instead of fourth ones and only simple integrals instead of repeated. The

boundary value restrictions on f are also relaxed to f(0) = f(1) — f(%) = 0.
Then (1.4) is a generalized solution of (1. 1) in the following sense:

Definition 1.1 A function u(z,y) € C([0,1] x [0,1]) is said to be a gener-
alised solution of Bitsadze - Samarskii problem (1.1), iff u(z, y) satisfies the

integral equation
Lou+ Lyu = Ly f(z).y (1.6)

3



where
Lu(z,9) = [ (@ - €ute, e - (17)
1 i
) 1 gy Bl e v
o [ (- opuc.n)dt - [ - utev)ag
Yy 1
L) = [ (= nutamdn - ([ (1~ nyuta,min
0
The right inverse operators L, and L, of g—zfz" and gi;;‘ are defined in

C([0,1] x [0,1]) by

0 1
V= Lyu : b?vzu, U(O_’y),: ’U(]_,y)-—v(—,y) =0

2
and
52 _
w = Lyu o E—Ew = u, ’w(m, 0) = w(z’ 1) o 0,
()
correspondingly. Formally, (1.6) could be obtained from the equation g—i% +
% = 0 applying to it the operator L,L, and using the boundary value

conditions.

Lemma 1.1 Ifu(z,y) € C([0,1] x[0,1]) satisfies (1.6), then u(z,y) satisfies
the boundary value conditions:

u(z,0) = u(0,5) = 0, u(z,1) = f(z), u(l,y) - u(s,) =0

2
Proof. For y = 0 from (1.6) we obtain L,u(z,0) = 0. Applying the operator
;9% to this equation we find u(z,0) = 0. In a similar way for y = 1 we find
u(z,1) = f(z). In a similar way for y = 1 we find u(z,1) = f(z). Next, for
r = 0 from (1.6) we obtain L,u(0,y) = 0. Applying the operator 3%27 to this
equation we find u(0,y) = 0. Analogically, we find u(1,y) — u(3,y) = 0. ¢

3

Example. If f(z) = % — Z2 then (1.3) is a generalized solution of

z
boundary value problem (1.1) (see [4], p. 175).

Lemma 1.2 If a function u(z,y) € C?([0,1] x [0, 1]) satisfy (1.6), then it is
a classical solution of (1.1).



Proof. We apply the operator Ea;g_yg to (1.6) and obtain %;% + -gz—‘; =0. As
for the boundary value conditions, they are satisfied by Lemma 11.11. o
In order to elucidate our approach for obtaining of an explicit solution, we
will consider the following extension of Bitsadze - Samarskii problem (1.1):
?u O
EF+51;—2=F(x’y)’ Cem<il0< ane 1 (1.8)
u(z,0) =u(0,y) =0,

u(e,1) = f(o), u(l,y) - u(z,u) = o(0).
Where f(:L'),g(y) = C([O» 1]) ) F(.'z:,y) € C([O’ 1] X [O) 1])

Definition 1.2 A function u(z,y) € C([0,1] x [0,1]) is said to be a gener-
alized solution of problem (1.8), iff u(z,y) satisfies the integral equation

Lyu+ Lyu = Ly f(z).y + Lyg(y).x + Ly Ly F(z,y) (1.9)
Formally, (1.9) could be obtained easily from the equation %z—‘f‘ + %‘2‘ = F(z,y)

applying the operator L. L, to it and using the boundary value conditions.

Lemma 1.3 If a function u(z,y) € C([0,1]x[0,1]) satisfy (1.9), then u(z,y)
fulfils the boundary value conditions: :

u(z,0) = u(0,) =0, u(z,1) = (@), u(l,y) - u(5,v) = o)

Proof. Analogically to the proof of Lemma 1.1.0

Lemma 1.4 If a function u(z,y) € C*((0,1] x [0,1]) satisfies (1.9), then it
is a classical solution of (1.1).

. 4 .
Proof. Applying the oper'a.tor m'?—ay'}' t{) (1.9), we obtain % + ‘3—25;‘ = F(z,y).
The boundary value conditions are satisfied by Lemma 1.3. ¢
In order to obtain an explicit solution of (1.1) or (1.9) we will outline
an operational calculus approach to Bitsadze - Samarskii problem. To this

end, we introduce three convolution algebras: (Clo, 1],i), (o, 1],,2) i

(C([0, 1] x [0, 1]), *)-



Theorem 1.1 The operation

(f * 9)( / h(z,n dn / h(z,n)dn, (1.10)
where ‘

Wa,n) = [7 f(z+n—€g(€)de - [T f(ln—z — €])g(€])sgn(€(n — = — £))d¢

is a bilinear, commutative and associative operation on C[0,1], such that

:cf( )""m*f

This a special case of a more general operation (f ¥ g) = —3P¢{ fo h(z,n)dn}
in C[0,a] where ® is a linear functional in C*[0,a] for the. special choice

B(f} = 2(f(1) - f(3)) and a = 1 (see [4], p. 119).

Theorem 1.2 The operation

(f *g)( (/ h(y,n dn> (1.11)
where

n
) = [ Ston—ejole)ie - / Fln =y = €NgENsgn(ln—y— )k
is a bilinear, commutative and associative operation on C[0, 1], such that
Lf=y*f.
This again a special case of the above mentioned general operation for the
special choice a =1 and ®{f} = f(1).

We may combine both one-dimensional convolutions into one two-dimensional
convolution. :

Theorem 1.3 [/] The operation

(F+9en=3 [ ( | e - | ih(x,y,g,n)cm) d (112)
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where
[
ot = | / f€+a—0,n+y—1)g(0,T)doT -
£33N
i /_m/y f(¢ =z —o|,n+y—7)g(lo|,7)sgn(é — z — 0)odoT —
£ rn
_/x /_y fé+z—o0,In—y—1|)g(o,||)sgn(n —y — 7)rdoT —
&
S /_z 5 fl€—z=oal|n—y—)g(o, ITl)sgn(lg AL U LR

is a bilinear, commutative and associative o ] )
. peration, in C = C([0,1] x
[0,1]) such that the product LyLy has the representation i

LyLyu = {zy} * u. (1.13)
Lemma 1.5
0*u
LS ] = umy) - w0n) -2l uG) (119
and
0*u
T, {_6?} =u(z,y) + (y — Du(z, 0) — yu(z, 1). (1.15)

The proof is immediate.
In order to outline our operational calculus approach to the extended
Bitsadze-Samarskii problem, we start with the general definition of a multi-

plier of convolutional algebra.

Definition 1.3 [10] A linear operator M : C'— C is said to by a multiplier
of the convolutional algebra (C, *) if M (uxv) = (Mu) * v for all u,v € C

We introduce some notations. The multipliers of the form {u(z, )} will
be denoted as {u}. Let f = {f(z)} be a function of the variable z only
and g = {g(y)} be a function of the variable y only, but both considered as
clements of C. The operators [f], and [g]; defined by [fl,u = f e
[9)eu = 9 Y w are said to be partial numerical operators with respect to y
and = correspondingly. In this notations we have L, = [z]y and L= [9]5.
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The set of all the multipliers of the convolutional algebra (C, %) is a com-
mutative ring M . The multiplicative set NN of the non-zero non-divisors of

0 in M is non-empty, since at least the operators = ¥ = [z], and y ¥ = (Y]
are non-divisors of 0.

Next we introduce the ring M = NN~'M of the multiplier fractions of
the form % where A € M and B € NN. The standard algebraic procedure
named "localization" of constructing of this ring, is described, e.g. in Lang
[9]. Most important for our considerations are the algebraic inverses S, = +

Le
and Sy = le of the multipliers L, and L, correspondingly.

Lemma 1.6 Ifu € C*([0,a] x [0,b]), then

te = St = 5.{u(0,)} - 20u(1, ) - (5, 1)

uyy = Syu = Sy{(y = Du(=,0)} - [u(z, D]y

Proof. By multiplication of (1.14)and (1.15) by S, and S, , correspondingly.

Let us consider problem (1.1). Using boundary value conditions, the
equation Uy +u,, = 0 together with the boundary conditions can be reduced
to a single algebraic equation in M. Indeed, then

Upz = Szt = [9(Y)]zy  uyy = Syu — [f(z)]y

and the BVP (1.8) takes the algebraic form:

(Sz + Sy)u = [f(@)ly + [9(¥)]= + {F(z,9)}

If S, + S, is a non-divisor of zero, then the last equation has a solution in
M:
1

U= 5—"F~

1 1
(Sz + S,) [f(2)]y + m[g(y)]m i m{F(T:, )}

In order to show that the element S, + S, is a non-divisor of zero in M, we
consider the following eigenvalue problem:

v"(y) + pPu(y) =0, ye(0,1), v(0)=0, v(1)=0 (1.16)

The eigenvalues of (1.16) are ji,, = mm, m € NN, with corresponding eigen-
functions sinmnz.



Lemma 1.7 The elements Sy + Sy is a non-divisor of zero in M.

Proqf. Assume the contrary, i.e. that there exists a non-zero multipliers
fraction % # 0 with (S; + Sy)ﬁ = 0. The last relation is equivalent to
(S; + Sy)A = 0. Since A # 0, then there exist a function v € C such that
Av = u # 0. Then (S;+Sy)A = 0 implies (S; + S, )u = 0 which is equivalent
to :
(Lz + Ly)u =0 (1.17)

We will show that the only solution of this equation is the trivial one, i.e.
u = 0, which would be a contradiction. To this end we multiply (1.17) by
the eigenfunction ¢, (y) = sinmmy of the eigenvalue problem (1.16) using

the convolution product f H g, defined by (1.11). It easy to see that

1
e
u(z,y) * sinmmy = {fym/ u(z,n) sin mwndn} sin mmy
0

with a constant v,, # 0, the exact value of which is unessential for us. The
function

Am(z) = {’rm /0 1 u(z,n) sin mvrndn}

up to a non-zero constant is the m-th finite Fourier sine-transform of the
function u(z,y) with respect to y. From (Lg + Ly)[u H ©m(y) = 0 we obtain

[LeAm(z)] sinmmy + Am(z)Ly sinmry = 0.

But L,sinmny = —(—m—:r? sinmmy and thus we obtain the following simple

integral equation for Am(z):

L:z:Am i m
(z) (mw)zA (z)
It is equivalent to the BVP
Axl(m) 5 (mW)ZAM(‘T)’ Am(O) = 0, Am(l) = (. (118)

The only solution of (1.18) is the trivial one: Ap(z) = 0. Thus we proved
that fol u(z,n) sinmmndn = 0 for arbitrary z € [0,1] and \/n € NN. From a
basic property of the Fourier sine-transform it follow u(z,y) = 0 for arbitrary
z €[0,1]andy € [0, 1]. This is a contradiction with the assumption u(z,y) #

9



0 and it proves the Lemma. Along with this, it is proven the uniqueness of
the extended Bitsadze - Samarskii problem.o
z3 Tz

Let s consider Bitsadze - Samarskii problem (1.1) for f(z) = & — &2 =

L, = —; In [4] a representation of the solution U(z,y) of this problem by
the series (1.3) is found. The same solution has the algebraic representation

1 2 Tz 1 1 1
U= s 2Jy<&+m S A R AN

Then the solution of Bitsadze - Samarskii problem (1.1) for arbitrary f can
be represented in the form:

1 ot

u=—=———=~[f(@)y _Szm[f( )y = P el

. +S) Uk fz). (1.19)

In [4] one of the authors had shown that for f(z) € C*|0, 1] which satisfies the
conditions f(0) = f(1)— f(3) = f"(1) — f"(3) = 0 (1.19) is a representation
of the classical solution of (1.1). Indeed, since U(z,y) is a (generalised)
solution of problem (1.1), we have U(1,y) — U( 2,y) = 0 . Assuming that
f(z) € C?0,1] with f(0) = f(1) — f(3) = 0 and using , we obtain

4

u(e,9) = o5 (U(@,) 3 1(2) = (1.20)
- ([ Wle+1-09) - Ul +1-E0) -
UL+ 5~ 09) + Uala+ 5 — £ ) E)dE +

+A<U@+¢—sy> Ua(l— 7 — £,9)) f(€)dt —

- [[Wle+ - 60~ Ualg - £

with U,(z,y) given by (1.5). It is easy to see that this representation of the
solution of (1.1) is equivalent to (1.4).

Theorem 1.4 If f(z) € C*[0,1], f(0) =0, and f(1)— f(3) =0, then (1.19)
is a generalised solution of boundary value problem (1.1). If f(z) € C*[0,1]
and f(0) = f"(0) =0, f(1) = f(3) = f"(1) = f"(3) =0, then

10



u(e,) = 5 (U(,0) ¥ f2) = | (121

= [t +o - @ - [ WG ~a - ) (esomec -

- / (U1 + 5 - E:)(E)dE - / (U1 == €, ) (l)snsi

where

o0 .
sinh dnmy cos dnmx

Us(z,y) = (1.22)
n=
3sinh £(2n — 1)y cos 3(2n — )7z

; 2m2(2n — 1)2 cos 2(1 + n)nmsinh 2(2n — 1)x

872n? sinh dnm

o0

is a classical solution of (1.1).

The proof the first part is a matter of a direct check. The second is proven
in [4]. ©

9 Generalization of nonlocal Bitsadze - Samarskii
problem.

2.1 Introductions.

Let ® be a linear functional on C'0,a) and ¥ be a linear functional on
C*[0,b] . Then they have Stieltjes type representations:

{f} = Af(a) + /0 "F)dalt), fecoq 21)

and :

b
¥(f) = Bo®)+ | 9080, 9€CoY (22)

where a and /3 are function with bounded variation, A and B being constant.
We consider the potential equation

Ugs + Uy = F(z,9) (2.3)

11



on the rectangle G = {(z,y) : 0 < 2 < a,0 < y < b} with local BV conditions

u(z,0) = p(x) and u(0,y) = ¥(x) (2.4)

and nonlocal BV conditions

e{u(€,v)} =9@), Ynfulz,n)} = f(z) (2.5)

with some mild smoothness requirements for the given functions F, ¢, 1, f
and g. The only restrictions on the functionals ® and ¥ are the requirements
® # 0 and ¥ # 0. They are connected with the approach chosen and may
be ousted by means of some technical involvements. For the sake of some
normalization of the functionals ® and ¥, we assume

Befe} =1, Tyfn}=1 (2.6)

We consider the space C(G) and C*(G) of the continuous and smooth func-
tions on G = [0, a] x [0, b], respectively.

Further, we introduce the right inverse operators L, and L, of and on
C([0,a] x [0,b]) as the solutions v(z,y) = Lyu(z,y) and w(z,y) = Lyu(z,y)
of the elementary BVPs

TV —umy), w09)=0, Pfole,)}=0 27
and i
%y_l;] = u(z,y), w(z, 0) =, \I’n{w(:z;,'r’)} =0 (2.8)

The operators L, and L, have the explicit representations:

z 3
Lo{u(z,y} = / (v — EulE, y)de — o / E—mpulmy)n,  (29)

L,{u(zy} = / " (v — mule,n)dn — yT,{ / "(n- Oulz,O)dC}.  (2.10)

12



2.2 Convolutions.

One of the authors had found a convolution (f, ¥ f2)(z) in C[0,a] and a
convolution (g, H 92)(y) in C[0, b] such that the operators L, and L, are the
convolution operator {z} ¥ and {y} ¥, correspondingly.

Theorem 2.1 [6/ The operations

A ¢
(5§ 2@ = e { | e, m)in (211)
(01 ¥ 62)(w) = "%\I’n {/Onk(y, C)dc} (2.12)

where
) = [ flo+a=080d~ [ filn=a-On(chson(cr-a—-O)ic
(2.13)

k(y,m) = /y" 91(77+y—C)92(C)dC—/:; 91(ln—y—¢)g2(|¢])sgn(¢(n—y—¢))d¢

(2.14)
are bilinear, commautative and associative operations on C([0, a]) and C([0, b]),
respectively, such that it hold the representations

L.f(z) = {z} * f(a) (2.15)

and
Lyg(y) = {y} * 9(v). (2.16)

For a proof see [6].
By means of (2.11) and (2.12) a two-dimensional convolution in C([0, a]
[0,8]) can be defined.
Theorem 2.2 [8] The operation
J Epti
(uxv)(z,y) = 7PVn{h(z,y,€,m)}, (2.17)

13



where

setr@=oc{ [ o}, oy =va{ [ awyir)

with

.
h(l‘;yvf)n):/ /nf(€+$_0777+y_T)g(UaT)dUT—
z Jy

13 Ul
- / / f(I€ = 5 — ol,n+y — 7)g(lo], 7)sgn(€ — = — o)odoT —

£ yn
—// flé+z—o,n—y—1))g(o,|r|)sgn(n —y — 7)rdoT —

z J-y .

13 Ul
¥ / f(l€ = 5 — o], |1 =y — T)a(o, Ir])sgn(l€ — = — o)(n — y — T)ardor

is a bilinear, commutative and associative operation in C(G) such that

Lo{u(z,y)} = {z} * {u(z,y)}, L{u(z,y)}={z} % {u(z,y)} (2.18)
LoLy{u(z,y)} = {zy} * {u(z,7)}. (2.19)

The linear space C' = C(G) equipped with the multiplication (2.17) is a
commutative Banach algebra (C, ).

Further, we introduce the algebra MM of the multipliers of (C,*). Let us
remind the definition of a multiplier of (C, ).

Definition 2.1 (See [10]) A mapping M : C — C is said to by a multiplier
of the convolutional algebra (C, ) iff the relation

M(u*v) = (Mu) * v ‘ (2.20)
holds for all u,v € C.

As it is shown in Larsen [5] each such mapping for our convolution (2.17)
is automatically linear and continuous. That’s why, further we consider each
multiplier of (C, %) as a continuous linear operator.

14



If f € C[0,a] and g € C[0,b], then the convolutional operators f ¥ and
g % defined in C by

(f:)uzf:u, (gi)uzgiu

are multipliers of (C, *) (See Dimovski and Spiridonova [8]). Of course, the
operator {F(z,y)} is also multiplier of (C, *).
Further, we use the notations

flo= @)} % 9o = {o(v)} * (2.21)

2.3 A two-dimensional operational calculus.

In M there are elements which a non-divisors of 0. Indeed, such elements are
the multipliers {z} ¥ and {y} i, i.e. the operators L, and L.

Denote by N the set of the non-zero non-divisors of zero on M. The set
N is a multiplicative subset on M, i.e. such that p,q € N implies pg € N,

Further, we consider multipliers fractions of the form % with M € M and
N € N . They are introduced in a standard manner, using the well-known
method of "localisation" from the general algebra [9].

Denote by M the set N~*M of multipliers fractions. We consider it as a
commutative ring containing the basic field (R or C), the algebras (C|0, a], fc,

(C[0,b],%), (C, +) and M, due to the embeddings

R—>M or R—M: aHaLL”
(C’[O,a],i)HM: f»—»gL—zQi
' y
Clo,8, %) > M: g a8t
Ly
(LgLyu)*

(C([0,a] x [0,8]), %) > M:  u ToLd

Further, we consider all numbers, functions, multiplier and multipliers frac-
tions as elements of a single algebraic system: the ring M of the multipliers

fractions.
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2.4 Explicit solution of nonlocal BVPs for the potential
equation.

Further, we consider following boundary value problem:

®u  O%*u
?9?+5_1/—2=F(x’y)’ 0<zx<a, 0<y<bd,
u(z,0) = u(0,y) =0, (2.22)

Pe{u(§,v)} = 9(y), Yy{u(z,n)} = f(2).

Definition 2.2 A function u(z,y) € C*([0,a] x [0,b]) is said to be a gener-
alised solution of (2.22) iff u(x,y) satisfies the integral relation

Lyu+ Lyu= Ly f(z).y + Lyg(y).x + Ly Ly F(z,y). (2.23)

Formally, (2.23) could be obtained from the equation %::—’;‘ + g%,’; = F(z,y)
applying to it the operator L, L, and taking into account the boundary value
conditions. '

Lemma 2.1 Ifu(z,y) € C1([0,a]x[0,b]) satisfy (2.23), then u(x,y) satisfies
the boundary value conditions:

u(z,0) = u(0,y) =0,
Pe{u(é,y} =g(y), ¥y {ulz,n)} = f(z).

Proof. Let us consider (2.23). For y = 0 we find L,u(z,0) = 0. Next we
apply the operator a%; and find u(z,0) = 0. For z = 0 we find L,u(0,y) =
0. Applying ai:g, we get u(0,y) = 0. If apply ¥ to (2.23), we obtain
L.V, {u(z,n)} = L, f(z). Then applying 5‘% we obtain ¥, {u(z,n)} = f(z).
At last, applying ® to (2.23), we get L,P¢{u(¢,y)} = Lyg(y) and hence
De{u(€,y)} = 9(y)-

Lemma 2.2 If u(z,y) € C%([0,a] x [0,b]) satisfy (2.23) then it is a classical
solution of (2.22).

Proof. Applying the operator E?;_yf to (2.23), we get %::—% + ?,3;; = F(z,y).
The fulfilment of the boundary value conditions follows from Lemma 2.1.0
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Lemma 2.3 Ifu(z,y) € C*(G),then it holds:

L. {Z—} — u(@p) + @01} - Du(0,9) — o fule, )} (224)
and
L {-‘(.’;‘—:} = u(e,) + UF(1) - Dule,0) ~ 18, {ul 1)) (229

For a proof, see [5].
Most important for our considerations are the algebraic inverses S; = Ll
and S, = L%, of the multipliers L, and L,, correspondingly.

Lemma 2.4 Ifu € C*([0,a] x ([0,b]), then

Ugy = S:cu(z) 'l_j) + Sx{(.’L'(I)E{].} 3 1)“(0) y)} TE: [(I)f{u(g’y)}]m) (2'26)

and
Uyy = Syu(x) y) T Sy{(y\IIn{l} T l)u(m, 0)} o [‘Dn{u(a:, U)}]y- (227)

Proof. By multiplication of (2.24) and (2.25) by S; and S, , correspondingly.o
Using the boundary value conditions of (2.22), the equation ugg + uyy =
F(z,y) can be reduced to a single algebraic equation in M. Indeed, by (2.26)

and (2.27) we find
Uge = St — [9(y)]z- (2.28)

Uyy = Syu — [f(2)]y. (2.29)
and the equation ug; + uy, = F(z,y) takes the algebraic form:

(Sz + Sy)u = F(z,y) + [9(v)]= + [f (2)]y-

If S, + S, is non-divisor of zero, then the last equation has the following
formal solution in M:

1 1 1
U= m{F(m,y)} % m[f(m)]y it m[g(y)]z-

The requirement Sy ot Sy to be a non-divisor of 0 in M is equivalent to a
theorem for uniqueness of the solution of (2.22). Therefore, our next task is
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to study the uniqueness for problem (2.22). In the direct algebraic approach
we a following, this problem reduces to the purely algebraic requirement the
elements S; + S, of M to be a non-divisor of zero in M.

To this end we consider the following two eigenvalue problems:

u'(z) + Nu(z) =0, z€(0,a), u(0)=0, ®{u(é)}=01inC[0,a], (2.30)

v"(v) + pPu(y) =0, ye€(0,b), v(0)=0, W, {u(n)}=0i1in C[0,d]. (2.31)

Let A, and i, be the eigenvalues of (2.30) and (2.31) for n,m € N,
correspondingly.

Lemma 2.5 If there exists a dispersion relation of the form A2+ pu2, = 0 for
somen,m € N, then S+ S is a divisor of zero in M.

Proof. Let for some n,m € N we have A2 + 2 = 0. Then
(Sz + Sy) sin \pz sin pry = —(A2 + p2)) sin A,z sin gy = 0. 0

Theorem 2.3 Let a € supp®. If \2+p2 +# 0 for alln,m € N, then S;+ 5,
1 a non-dwisor of zero in M.

Proof. Assume the contrary. It is easy to see, that S, + S, is a divisor of
zero in M iff there is a function u € C*(G), u # 0, such that (Sz 4 Sy)u = 0.
This relation is equivalent to

(Lg + Ly)u = 0. (2.32)

Let \, is an arbitrary eigenvalue of (2.30). Then ), is a zero of the sine-
indicatrix E(\) = & {22} of the functional ®. Let s, be the multiplicity
of A, as a zero of E()\). To ), it corresponds the finite sequence of an
eigenfunction sin A,z and s, — 1 associated eigenfunctions

1Y\° '
tpn,s(:l:)= (Lz+j\3) ) OSSS%n—la

where , )
[ sin)z
== [ —dA
() = 5 /F NE()
(see Dimovski and Petrova [7], p.94)
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Note that ¢y ,,,—1(Z) = a, sin A,z with some a,, # 0. The corresponding
»#,- dimensional eigenspace is

E™ = span{pns(z),s = 0,1, .., 36 — 1}.

The spectral projector Py, : C' — E,(\’:‘) is given by Py {f} = f*@n. Accord-
ing to a theorem of N. Bozhinov [3] in the case a € supp®, the projectors Py,
form a total system, i.e. a system for which Py {f} = 0, \/n € N implies
f = 0. For a simple proof of Bozhinov’s theorem for our case, see [7] p.
97-98. s

Denote u,(z,y) = u(z,y) * @a(z). From (L, + Ly)u = 0 it follows

(LS L o= 0. (2.33)

We will show that (2.33) has only the trivial solution u, = 0 in Ef\’:‘) Assume

that there exists a nonzero solution u, of (2.33), i.e. of the form

un(7,y) = An k()P k() + Ange1(Y)Onpe41(T) + .o + Anpe-1(Y)Pn,200-1(2)
(2.34)
with A, x(y) # 0 for some k , 0 < k < 35, — 1. We apply the operator

(Lx + fg)""— t0 (2.33) and obtain
(Lz + Lu)An,Kn—l(y)SOn,xn—l(m) =0,

S
since (LgC + Xl,{) no(z) =0, for s > s,
But ©n e -1(Z) = an with a, # 0. Denote Ay ,,,—1(y) = An(y). Consider
(Lz + Ly)An(y) sin Ay = 0 as an equation for A,(y). It is equivalent to the
BVP 5

: 0* :
5_512—2(A"(y) sin \,z) + 8_y2(A"(y) sin \p,z) =0
A,(0)=0 and \Il,,{A,,(n.)} =)
which reduces to
A(y) — M An(y) =0, Au(0)=0 and ¥,{A.(n)}=0.

From this equation it follows that —A2 is an eigenvalue —pu2 of problem
(2.31). Hence A2 + p7 = 0 which is a contradiction. Hence u,(z,y) = 0 for
all n € N. By N. Bozhinov’s theorem it follows that u,(z,y) =0 . Thus we
proved, that Sz + S is a non-divisor of 0 in M.
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2.4.1

Let us consider BVP (2.22) for f(z) = L.{z} = & and g(y) = F(z,y) = 0.
We assume that there exists a generalized solution of this problem and denote
it by U(z,y). It has the following algebraic representation:

1 R 1

U = =Ly — =
Gt 5) T = G s " G 15,8

Then there exists also the solution of ﬁroblem (2.22) for arbitrary f(z), g(v)
and F(z,y) and it can by represented in the form:

1 1 1
U= m{F(z,y)} + m[f(x)]y + m[g(y)]z =

, 1 1 1
=5; [mF(z,y) + m[f(m)]y -+ m[g(y)lz]
u= 2 Vs Py +UF @)+ U )]

provided the denoted derivative exists.

2.4.2

Let us consider BVP (2.22) for F(z,y) = zy = LyL, = Tls,, and g(y) =

f(z) = 0. We denote the solution of this problem by W(z,y). Then we have
an algebraic representation of this solution:
1 1

W=—IL,L,=
(Sz+S,) “ Y (Sz+Sy)SeSy

The solution of problem (2.22) for arbitrary f(z),g(y) and F(z,y) can by
represented in the form:

1 1 1

u =55y lsmsy(s,, TVt SEE s iVt g e sy )
o T Y
UIWp’V*f(a?) W*Q(y)+W*F($,y)]
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but we will illustrate these conditions on the example of Bitsadze - Samarskii’s
problem.

%u 0%
u(z,0)=u09)=0, u(z,1)=F(z); (2.35)

u(l,y) —U(%,y) = 0.

‘This is the special case of boundary value problem (2.2) when ®¢{u(§,y)} =
2(u(1,y)—u(3,y)) and ¥y {u(z, n} = u(z,1). Following the approach outlined
above, we can find ([9], p 175) that the solution U(z,y) of (2.35) for f(z) =
L{z} = %E W %% is

2. sinh 4n7y sin dnwz

327m3n3 sinh 4nm
n=1

i 9sinh 2(2n — 1)7ysin 2(2n — 1)1z
4m3(2n — 1)3 cos 2(1 + n)nwsinh 2(2n — 1)

Uz,y) =

n=1

Then, for f € C?[0,1], with f(0) = f(1) — f(3) = 0, we obtain

2
wa) = [ Ul +a -0 €dk -

2 .
- [ UG~ 2= &) el)somea -

1 1 |
- [ Ut e -6 @+ [ U0~ &) )sgnse

T

as a generalized solution of (2.35). It can be shown that it is a classical
solution too, if f € C*[0,1] and additionally, f(0) = f"(1) — f”(3) = 0 (Cf.
Theorem 1.4).
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