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Operational Calculus Approach
to Nonlocal Cauchy Problems

Ivan Dimovski and Margarita Spiridonova

Abstract. Let ® be a linear functional on the space C = C(A) of continuous
functions on an interval A. The nonlocal boundary problem for an arbitrary

linear differential equation
d
P(%)v="Fo

with constant coefficients and with boundary value conditions of the form
{y®} =ax, k=10,1,2,...,degP —1

is said to be a nonlocal Cauchy boundary value problem.
For solution of such problems an operational calculus of Mikusirski’s
type, based on the non-classical convolution

(F+a)t) = &, {/ f(t+7-0)glo)do),

is developed.

In the frames of this operational calculus the classical Heaviside al-
gorithm extends nonlocal Cauchy problems. To such problem reduces the
quest for periodic, antiperiodic and mean-periodic solutions of Linear Ordi-
nary Differential Equations (LODE) with constant coefficients. Extensions of
the Duhanel principle are proposed.

Remarks on the use of a computer algebra system on some steps of the
algorithms are included.
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1. Introduction

Let it be given a linear functional ¢ on the space C = C(A) of the continuous
functions in an interval A of R. The interval A may be chosen arbitrary: it may
be finite, or infinite, closed, or open, but for some normalization, we assume that
0 € A. For the functional ® we assume that it is non-zero and continuous on C(A)
with Stieltjes integral representation of the form

B
8{f} = / £(8) d(e), (1)

with o, 8 € A and 7(t) being a function with bounded variation on [e, £].
According to the Riesz-Markov theorem (see Edwards [4], Ch. 4) representa-
tion (1) holds for arbitrary continuous linear functionals on C(A).
For our considerations it is important to introduce the notion of exponential
indicatrix of the functional ®.

Definition 1.1. The entire function of exponential type
E()\) = &.{e""} (1.2)
is said to be the exponential indicatrix of &.

We consider the case when the support (carrier) of ® contains at least two
different points. We characterize this case as nonlocal one.

In the nonlocal case the indicatrix E(A) of the functional & has an infinite
sequence of zeros

Al ATl 5 Apgetits
in C with corresponding multiplicities
B133K0 sty TRy e
ie. EQn) = E'(An) = ... = E=—1(),) = 0, but E®»)()\,) # 0 for n € N.

Further we consider in details the case when ®{1} # 0, i.e. the case, when
) = 0is not a zero of the indicatrix E()). The case when E(0) = {1} = 0isalso
important, since such is the functional ®{f} = f(T') - f(0), basic for determining
of periodic solutions of LODEs with constant coefficients. On this example we will
show how to reduce the case E(0) = 0 to the general one.

We normalize the functional ® by the requirement

e{1}="1, (1.3)
which is equivalent to E(0) = 1.

Definition 1.2. Let P(A) = apA™ + &A™ + - 4+ an_1A + an, ao # 0 be a given
n-th degree polynomial. The problem for determining of a solution of a LODE
with constant coefficients

P (%) W (1.4)
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satisfying the boundary value conditions (BVCs)
Q{y(k)} =iapki=051 =T (1.5)

with given ay is said to be a nonlocal Cauchy BVP, determined by the functional
.

To such problems it reduces the determining of the periodic and antiperiodic
solutions of LODEs with constant coefficients. In order to embrace a larger class
of such problems, we introduce the notion of a mean-periodic solution, determined
by a functional ®.

Definition 1.3. A function f € C(—00,00) is said to be a mean-periodic function
with respect to the linear functional @ if it satisfies the identity

e {f(t+7)} =0. (1.6)

The class of the mean-periodic functions is introduced by J. Delsarte [3] and
studied by L. Schwartz [7] et al.

It is easy to see that a necessary condition a LODE with constant coefficients
(4) to have a ®-mean-periodic solution is the right-hand side function F(t) to be
®-mean-periodic.

The next theorem shows that the problem for determining of the mean-
periodic solutions of LODEs with constant coefficients is equivalent to a non-local
Cauchy problem with homogenous BVCs.

Theorem 1.4. Let F(t) € C(—00,00) be a mean-periodic function with respect to a
. d

functional ®. A solution y(t) of P e B B F(t) is a ®-mean-periodic function

iff it is a solution of the nonlocal Cauchy problem (1.4)-(1.5) with homogenous

BV(Cs ie withag=a; =...=ap-1 =0.

Proof. a) Let y be a mean-periodic solution of P (dit) y = F(t), ie.

&, {yit+7)} =0,-00<t <@

Then &, {y®(t+7)} =0,k=0,1,...,n-1
For t = 0 we obtain ®.{y¥)(7)} = 0, i.e. y is a solution of (1.4)-(1.5) with

Qp = Q1 = ... = Qp-1 =10:
b) Conversely, let y(t) be a solution of (4)-(5) withag =1 =... = ap_; =
0. Then P (%) y(t+7) = F(t+ 7) and hence
d
£ (E) ¢ {y(t+7)} = & {F(t+7)} =0,

i.e. w(t) = ®,{y(t + 7)} is a solution of the homogenous LODE P (%) w =0

with
w®(0) = & {yW(r]} =0
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Hence w(t) =0 or &,{y(t+7)} = 0. O

Ezample 1.1. Let ®{f} = f(T)- f(0). The class of mean-periodic functions with
respect to @ is simply the class of T-periodic functions, i.e. the functions f(t) with

fT+1) = f(b).

Note, that ® violates our restriction ®{1} # 0. Later, we will show that this
restriction may be avoided by a modification of the corresponding nonlocal Cauchy
problem.

Ezample 1.2. Let ®{f} = f(T)+ f(0), T > 0. The class of mean-periodic func-
tions with respect to ® coincides with the antiperiodic functions f(t) with the
antiperiod 7', i.e. such that

f(T+1t) = —f(t), o0 <t < 00.
Here ®{1} = 1+ T # 0. In order to normalize the functional, we zre to take

ois) = 1D

instead of f(0) + f(T).

2. The basic nonlocal Cauchy problem

The simplest nonlocal Cauchy problem is the case n = 1. We write it in the
form

= =My = f(t), ®{y} = 0 (2.1)

Let us remind that for the sake of normalization, we assumed ®{1} = 1. It
is easy to see that (2.1) has an explicit solution y(t) = R, f(t) given by

At

t T
Ry f(t) = ﬁ /0 eV f(T)dr—ﬁ@,{ /o aNr=e) f(a)da} (2.2)

: o a2
In fact, this is the resolvent operator of the differentiation operator 5 with

the nonlocal boundary condition ®{y} = 0.

Tacitely, we assumed that 0 € A, which is not an essential restriction.

Basic for our next considerations is a non-classical convolution operation f*g
in C(A), such that the resolvent operator R is the multiplier

-2}

of the convolution algebra (C(A), *).
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Theorem 2.1. (Dimovski [1], pp. 52-53) The operation

t
(F+9)0) = ([ ft+7-0)g(0)do) (23)
is a bilinear, commutative and associative operation in C = C(A), such that
et
R i) = {25 b4 10 2.4

Proof. The commutativity of (2.3) is almost evident. As for the associativity, it
needs some care. At first, we prove the special associativity relation

(e”*e‘”)*e"f= e’\t*(e“t*e”). (2.5)

Indeed, it is easy to find

t
eP* welt =0, {/ ep(t“"’)e""dcf} =
T

e(q_p)t _e(q_p)r}
qg—p

ePtd, {e”’f:e(q“’)”da} = ePl®, {e’"

_e¥'o {e?7} —e?'®, {7} _ e E(p) —e?'E(g)
qa—p a—p
Then the verification of above associativity relation (2.5) is a matter of a
simple check.
Let I, m and n be arbitrary non-negative integers. We differentiate (2.5) [
times to A, m times to p and n times to v, thus obtaining

({t'e) + {tmest)) w et = {leM) s ({tmert)« {£ner)
Letting A = 0, x4 — 0 and v — 0, we get
(tl * tm) * tﬂ. . tl * (tm * tn)

for I,m,n € Np.
O

From the bilinearity of (2.3) it follows the validity of the associativity relation
(f*xg)xh = fx(gxh)

for arbitrary polynomials f, g and h. It remains to use the Weierstrass approxi-
mation theorem and the continuity of (2.3) to prove it for arbitrary functions of
C.

The proof of identity (2.4) is a matter of a simple check, using (2.2).

For the applications of convolution (2.3) it is essential to know when the
product f g is a differentiable function. Now we may be sure only that if f,g € C,
then f * g € C. But, there is a general class of functionals ®, for which f,g € C
implies f * g € CL.
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Theorem 2.2. Let ® be a linear functional of the form

2 (1) = v.{[ 10)d0,]

where ¥ 1s a linear functional on C. Then f* g € C* for arbitrary f,g € C and
(Fxg)'(t) = ¥y { [} f(t+7~0)g(0)do} +B{f} g(t) + @ {g} f(t)- »
t 2.6

v {1}/0 f(t —)g(r) dr.

Proof. First, we will prove (2.6) for f €.C', g € C. Then

(F*9)'t) = @, {%/th(t+’r—a)g(o)da}

But
t t
-Ba_t/,, f(t+'r—a')g(a)do=/1:f'(t+'r-o)g(a)da+f(7-)g(t)
and
t t
5 [ fa+7-0)a@)do = [ 47 -0)alo)do - £)9(r)
Hence :

t t
(%/T ft+7—-0)g(o)do = %/T ft+1-0)g(c)do -

+f(7)g(t) + f(2) 9(7)

and (2.6) follows easily.
Next, we apply (2.6) for Lf € C! and g € C and obtain

t
(90 = FE10) = 0 { [ @ne+r-ogerao} +

L3 {g} Lf(t) - ¥ {1) / £(t - )g(r) dr.

since ®{Lf} = 0.
Differentiating this expression, we get (2.6) in the general case f,g € C.
0O

Another important property of the convolution product (f * g)(¢) is the fact
that it always satisfies the boundary condition @ {f * g} = 0.

Theorem 2.3. Let f,g € C. Then ®{f xg} = 0.
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Proof. From (2.3) it follows

t
& {(F+ )0} = 8.8, ([ ft+7-0)gl0)do)
From the Fubini property ®;®. {h(t,7)} = ®,®;{h(t,7)} of the functional
@ it follows
®{fxg} = 2:%- {h(t,7)} = 2, {h(t,7)} = -2, 24 {h(r,t)} = T {f g},
since h(t,7) = —h(7,t). Hence ® {f *x g} = 0. O

Theorem 2.4. The subspace Cy of the mean-periodic functions in C(R) with respect
to the functional ® is an ideal in the convolution algebra (C,*).

Proof. We are to prove that f € Cg and g € C imply f x g € Cs. First, we prove
this for ¢ = {1}, i.e. that if f € Cg, then Lf € Cg. Denote

p(t) = & {(L)(t+ 1)}

We have ¢'(t) = &, {(Lf)'(t+7)} = & {ft+7)} =0

Therefore ¢(t) = C = const. But ¢(0) = @, {(Lf)(7)} = 0 and hence
p(t) = 0. _

Thus we proved that L"f € Co forn = 1,2,.... But L™f = (L""1}{1}) %
f = (Ap=1 * f)(t), where A,_; is a polynomial exactly of (n — 1)-th degree.

Hence f, g € Cy implies f * g € Cy for arbitrary polynomial.

It remains to apply an approximation argument in order to assert that
f *g € Cg for arbitrary g € C. 0O

3. Mikusinski type operational calculus, based on convolution (2.3)

In Dimovski [2] an operational calculus for the right inverse operator L of
d defined by the solution y = Lf(t) of the elementary BVP

dt’
y' = f(t), e{y} =0

is developed.
By our assumption ®{1} = 1, the solution of this BVP is

t T
Lf(t) = /0 f(r)dr — &, {/0 f(T)dT}. (3.1)
The operator L is the convolution operator
Lf(t) = {1} * f, (3.2)

ie. L = {1} *.
Denote by D the subset of C of all non-zero non-divisors of 0 of the convolution
algebra (C,*). The set D is not empty, since at least {1} € D. Following the idea
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of Volterra and Perés [9] (see also Pérés [10]), used later by Mikusiriski [6], we
consider the ring M of the convolution fractions = with f € C and g € D.

The formal definition of M is the following
Definition 3.1. M is the quotient ring of C x D with respect to the equivalence
relation

(f,9) ~ (fr,1) & fxg1 = g* f1,
ie.
Mi=:Cx. D[

For our next considerations, the most important element of M is the algebraic

inverse of L, i.e. the convolution fraction
1
S=—.
{1}

The systems of real (or complex) numbers, considered as a ring with the basic
operations of addition and multiplication, may be considered as part of M, due
to the embedding

. {a}
RaM: am m

The same is true to C, considered as a ring with the operation of addition
and the convolution *, but due to the embedding

Cpo LS
(C,%) = M: fr—){l}.

The basic formula of our operational calculus concerns the relationship be-
tween the derivative f' and the product Sf.

Theorem 3.2. Let f € C'. Then
f'=5f - ®{f}, (3.3)

where ®{ f} is considered as a number, different from the constant function {®{f}},
except in the case ®{f} = 0.

Proof. From (13) we get
Lf'(t) = f(t) - £(0) - @, {f(t) - f(0)} = f(2) — &{f}
This identity in C may be written in M as
Lf' = f - ®{f} L.

Multiplying by S = %, we get (3.3) as the basic formula of the operational

calculus, we are developing. : O
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Corollary 3.3. If f € C™)| then
[ = 5nf - SR {f) - S {f) — ...
- S5® {f(n-2)} ) {f(n—l)}

Very important for the solution of nonlocal Cauchy problems are the convo-

(3.4)

lution fractions of the form ;k, k=il 280

(5=

In order such a fraction to be meaningful, it is necessary S — u to be a
non-divisor of zero.

Theorem 3.4. The element S — p is a divisor of 0 in M iff u is a zero of the
indicatriz E()), i.e. iff E(p) = 0.

Proof. Let E(u) = 0. By (15) we get
(S-u) {e#1) = S{e*t) —pu{ert} = {pen) +8, {e#t} —p{e} = Blu) = 0
Hence, S — p is a divisor of 0 in M.

In order to prove the necessity of the condition E(x) = 0, assume that S — p
is a divisor of 0. Then there should exist a non-zero function u € C, such that

(S-p)u = 0.

This equation for u is equivalent to u — g Lu = 0.

From it, it follows that u € C! and v’ — pu = 0, ®{u} = 0.

All the non-zero solutions of u' — pu =0 areu = Ce*t, C #0.
The boundary condition ® {u} = 0 gives

${e#} = E(u) = 0.

Thus, the necessity is proven. ]
Theorem 3.5. Let u € C be such that E(u) # 0. Then
1 ekt
5= = {5 o)
and i o
1 1 se
T~ T ) o

Proof. In order to prove (3.5), we use identity (2.4) from Theorem 2.1:
eHt

R,f(t) = S == ¢ * f(t).
10 = { =1+ 10
y = R, f(t) is the solution of the nonlocal BVP

vV -py=1f ey} =0
By (3.3) we have
Sy—-py=f
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and hence
N
y M S_u'

Thus we proved the identity

ﬁfz{-;:;)}fi“M‘

Taking f to be a non-divisor of 0, we may cancel it, thus obtaining

757 {5m)

Identity (3.6) can be proven by induction, using the obvious algebraic identity
1 1 1

(S—p) = S—p (S-p)k

1
Ezample 3.1. Let ®{f} = / f(r)dr. Then

(7 %) t)-/ [/ ft+7=0)glo)do | dr,

et -1
pt
S]‘#={E'L:e_l},providedu;é%in,nEZ\{O},
1  ; e bt ”eu(H-l) pte“t 3
S—p)2 " ler—-1 (er—-1)2  er—1 hed
(S—n)

Evample 3.2. Let @{f} = M. Then

/f(t—'r d'r——/f1+t-7)g('r)d'r

l1+e
E(\) = 7 An (2n+1)2 €EZ
1 2eht g
S_p-{l_{_e”},y#@n-}-l)-é-,nez
1 2ebti iy Qerikl)
= - , etc.
(S —n)? {1+e" (1+e“)2}
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4. Application of the operational method for solving nonlocal
Cauchy problems

Let’s consider the general nonlocal Cauchy problem (1.4)—(1.5) with
PA) =aoA" + a1 A" 1+ -+ ap_i A+ ag

dt
in an interval A with 0 € A.
For the linear functional ¢ we suppose only that ®{1} # 0 and, more pre-
cisely, that ®{1} = 1. :
In the ring M the nonlocal Cauchy problem is equivalent to a single algebraic
equation of the form

P(d) y = F(t),@{y(k)} = o, k = 0,1’2,_”,degp_]_’

P(S)y = F + Q(S), (4.1)
where @Q(S) is the polynomial expression

Qs) = i (ian-k ak—j) s,

=1 \k=j

Indeed, by the basic formula (3.4) of our operational calculus, we have

y® = Sky — S1§{y} - ... - S& {y(k'2)} -3 {y<k-1>} =
= Syk — Sk—lao - Sk_2(11 — .= Sagp_g —ap_1
d
Then P <&7> y = P(S)y - Q(S).
Equation (4.1) has a unique solution if P(S) is a nondivisor of zero. In this
case ()
1

y = P(S)F + PG (4.2)

Theorem 4.1. Let py, pa, - .., im be the different zeros of a polynomial P(u). Then
P(S) is a nondivisor of 0 in M iff E(u) #0, k = 1,2,...,m.
Proof. Since P(S) = ao(S — )" ... (S = pim)'™, then the assertion follows from
Theorem 3.4.

In order to find explicitly ——-(%3 and %% as functions of C, we use the well
known expansions of these expressions in elementary fractions of the form

1
(S — )’

According to Theorem 4.1 each of these fractions can be expressed as a func-

tion of C.

k=t 2 e mir =] 20 e e
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Let
Git) = =—= =

|

o]
@r—a

Bs
nM:
™

|
“E...

m U
R(t) = Q—(Ez — Z ————Bkl

Then (4.2) takes the form
y=Gxf+ R

This procedure is only a modification of the classical Heaviside algorithm.

5. The homogenous nonlocal Cauchy problem
Let’s consider problem (1.4)-(1.5) in the case when
Qp =" a1 "=Hude =0 i =10}

i.e. the problem

d :
P<—) y="F@),2{y®} =0, k=012, ,dgP~1.

dt
This problem reduces to the equation
P(S)y = F

in M.
Here two cases may arise:
Case 1: P(S) is a nondivisor of 0 in M (non-resonance case).
Case 2: P(S) is a divisor of 0 in M (resonance case).
In the non-resonance Case 1 (5.3) has the unique solution

1

VEFE

(5.1)

(5.2)

(5.3)

In the resonance Case 2 equation (5.2) well may have no solution. Necessary
condition on order to exist a solution of (5.2) is F to be divisor of 0 of a special
kind. Obviously, in Case 2, there may exist infinitely many solutions. In the frames
of our approach this case can be settled completely too, but here we will restrict our
consideration only to the non-resonance case. We leave the modifications needed

for the resonance case for a forthcoming publication.

In the non-resonance case it is possible the following extension of the classical

Duhamel principle.
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Theorem 5.1. Let P(S) be a non-divisor of 0. If G(t) is the solution of (5.1) for
the special choice F(t) = 1, then

d
y = E[G(t) x F(t)] (5.4)
is the solution of the general problem (5.1) .
Proof. From (5.3) we have y = —l—F B —i—F = ii—(G:otF) i
' - Y= 5P TS\PE) ) T @ Somy
®(G) = 0.

If F € C', then the differentiation of (5.4) gives
y = ®{F}G(t) + G(t) * F'(2).

Now we specialize our consideration to the case of the mean-periodic solutions of
an arbitrary LODE with constant coefficients

P (%) = F(t).

According to Theorem 2.1, this problem is equivalent to the homogenous
nonlocal Cauchy problem (5.1) for C = C(R). Denoting the space of the mean-
periodic functions with respect to the linear functional ¢ on C by Cs, a necessary
condition for existence of such solution is F' € Cg. In the non-resonance case, this
condition is also sufficient. O

Theorem 5.2. Let F € Co and P()\) and E()\) have no common zero. Then the
equation P & y = F(t) has a unique mean-periodic solution in Cey with the

dt
explicit representation (5.4), where G(t) is the solution of the non-local Cauchy

problem

d
— — (k) { = —] L
P <dt> G =1, <I>{G } 0, k=01,2,...,degP -1

Proof. (5.4) is the solution of the non-local Cauchy problem (5.1) in C = C(R).
According to Theorem 1.1 if F € Cg, then G x F € Cg. Since G * F € C!, then

d
yza(G*F)GCq» O

The solution (5.4) can be represented in the form
y = G'(t)* F(t) (5.5)
Remark 5.3. Note that G(t) is by no means a mean-periodic function, but accord-

ing to Theorem 1.1, the convolution product G x F' is a mean—periodic function,
provided F is a such function. Its derivative is also a mean-periodic function. In

other words, if F' € Cg, then y = dilt- [G * F) is automatically ®-mean-periodic.
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Ezample 5.1. Let us consider the case when P(u) has only simple zeros p, pa, . . ., fin .

Then
eukt

! s L - S ;—1— = 3 DI NE
G'(t) = P(S) ;P'(I‘k)s—# ;P'(uk)E(Nk)

and the solution (24) takes the form

=~ 1
= "N Ry
y ;Pl(ﬂ-k) Hke ()

where R, F(t) are given by (2.2).

6. Periodic and antiperiodic solutions of LODE with constant
coefficients
The operational method for obtaining of mean-periodic solutions of LODEs

with constant coefficients can be specialized for periodic and antiperiodic solutions
of such equations.

6.1. Periodic solutions with a given period T' (T-periodic solutions)

We are looking for solutions y(t) of P (%) y = F(t),such that y(t +7T) =

y(t) for —o0 < t < oo0.

Each T-periodic solution is also a mean-periodic solution with respect to the
functional®{t} = f(T) — f(0). Unfortunately, the approach, developed in Section
5 is not directly applicable, since ®{1} = 0. We will show, that the problem for
determining of the T-periodic solutions for LODEs with constant coefficients can
be reduced to determining of mean-periodic solutions with respect to the functional

T
o) =7 [ sy

Theorem 6.1. If y = y{t} is a T-periodic solution of

d
P(z)v=Fo. (6.1)
1 (T
then §(t) = y(t) — 7/, y(r)d7 is a mean-periodic solution of the equation
P e F(t) (6.2)
dt y o ) .

T
where F(t) = F(t) — %/ y(r)dT with respect to the functional ®{f} =
0

T
% /0 f(r)dr.
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Proof. Let us, for the simplicity sake, denote:

Yo T/ dTa.ndFo—T/FT)dT
Integrating (6.1) from 0 to 7', we get

anyo = Fo, le. anT/ dT"'T/ F(r)dr (6.3)
It remains to subtract this identity from (6.1) to obtain(6.2). § is mean-

1
periodic with respect to the functional ®{f} = T / f(r)dr, since it satisfies
: 0

the BVCs
§lk=1) (k=1) (T} — ,(k=1) (0
() — -I(T) - 0 _ " (@) -y""(0) _
for k=1,2,...,n—1and also ®{j} = 0.
There one should distinguish two cases: 1) a, = P(0) # 0 and 2) a, =
P(0) =

1) The case a, # 0. Then the unknown constant yo = 7 / 7)d T can be

determined from (29):

1
Yo = ;n_f /0. F(r)dr
2) In the case a, = 0, the constant yo remains arbitrary. The periodic

solution y = yo + ¥ depends on an arbitrary constant yo. Then, in order to
T

exist a T-periodic solution, the necessary condition / F(r)d7 = 0 should be
0 .
satisfied. O

Thus, the practical determining of T-periodic solution reduces to the solution
of the nonlocal Cauchy problem

P e G=1 l/TG(k)(T)dT—O k=0,1,2,...;n =1
dt _’To T T A TR A g ik g el g Tate eiy

or, more explicitly,
GE(T)-G®)(0) =0, k = 0,1,2,...,n—2

1 T
Go = T/o G(r)dr =
1

It is equivalent to the following equation in M: P(S)y = 3
In order this equation to have a solution in M, it is necessary and sufficient
P(S) to be a non-divisor of 0 (the non-resonance case). Then
1

G.= SPE)
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Theorem 6.2. (Extended Duhamel principle). Let P(S) be a non-divisor of zero in
M, ie P (2"7”) #0 forn € Z\ {0} and F(t) be a T-periodic function. Then

Il
the equation P (i) = F(t) has a T-periodic solution of the form

) = Yo — = / F(t-1)G(r)dt, (6.4)

where G = S—Isl-(g,-)- and yo = —}-JW fOTF(T)d'r for P(0) # 0. For P(0) =

T
0, yo s an arbitrary constant, provided / R(rjdre=0:
0

Proof. According to Theorem 5.1, the equation P (:t) j = F has a unique

mean-periodic solution with respect to the functional ®{f} = % fOT f(r)dr. It
has the Duhamel representation (formula (5.4))

- d
§(t) = ZIG+(F - Ry)) (69)
where by * it is denoted the convolution:

.( * g)( T/ [/ft-’:-f-—a (a)da] dr.

By Theorem 2.2 we have
t T
2 (140)(t) = Joglt)+1(t) so= 7 { [ re-nowars [ s@e- r)gmdr}

and hence

. T
¥ = —% [/0 (F(t—71)-F)G(r)dt +/t (F(T'*'t-f)"FO)G(T)dtJ

Using the T-periodicity of F' and the BVC / G(r)dT = 0, we obtain the

explicit representation (6.4). The T-periodicity of the function in the 1ight-hand
side of (6.4) is obvious. . m)

Corollary 6.3. Representation (6.4) is equivalent to
‘ 1 t T
y=Y-7 /G(t—T)F(T)dT+/ GT+t-1)F(r)dT (6.6)
0 0

Indeed, (6.6) follows from (6.5) by the commutativity of convolutionf * g.
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Ezample 6.1. Find the m-periodic solution of the equation y(®) 42y +-y" = F(t)
for m-periodic F(t) with / F(r)dr =0.

0
Solution. According to Theorem 6.2 all the 7-periodic solutions have the form
1 ™
) = o ;/ F(t-7)G(r)dr, (6.7)
0

where yo is an arbitrary constant, and G(t) is the solution of the nonlocal Cauchy
problem

GO +2G@W +@" = 1, /G 7)dr =0, k=0,1,2,...,5.

Using the corresponding operational calculus, we find easily

e A 2 s S
S(S2+1) S8 ST S2+1 (§241)°

The functional interpretation of the elementary fractions gives:

G =

1 1 R
— =L1}) = 22 - —t4+—, = =2
g o tlh= st nes
20 = 7sint bt 7rcost
S2+1 2’ S24+1 2 -
-(Sz—i-l—)z=—%(sint*cost):-—gtcost+%-cost+£—sint
For G(t) we obtain
2 2
G(t)=%t2-%t+%—2—§tcost+%cost+§-47—rsint

d (6.7) gives all 7-periodic solutions.

7. Antiperiodic solutions with a given antiperiod 7" > 0
(T-antiperiodic solutions)

We are looking for solutions y(t) of P ( d) y = F(t), such that

d
y(t+T) = —y(t) for —o0 < y < o0.
Each T-antiperiodic solution is also a mean-periodic solution with respect to

T 0 .

the functional ®{t} = ﬁ—%—)- (Example 1.2 of Section 1).

So, the general theory of Section 5 is directly applicable to this case. The
convolution (2.3) has the form

¢ iy
/ft—'r T)d‘l'—/ fT+t=7)g(r)dT
t

(f*g)(t T+1
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AT .
ik
eT ++1 with zeros A\, = m—;Tl)il,

Here the indicatrix is E(A\) =

n € Z.
If u# Apn, then (Theorem 3.5):

1 (T+1)e+T
S—p~  erT4+1

2n+1)mi
2T

Z. Then _13_(1?) = U(t) is the solution of the nonlocal Cauchy problem

Theorem 7.1. Let P(S) be a nondivisor of 0 on M, i.e. P ( ) #0,ne€

P (%) U =0 UMNT)+U®0) =0, k=0,1,2,...,n—2

and :
vn=(T) + U-D(0) = —.
(T) (0) =

The proof follows from Theorem 4.1.

Theorem 7.2. (Extended Duhamel principle for antiperiodic solutions). Let P(S)

is a nondwisor of 0 in M, i.e. P (_@_7%)7”) #0,n €Z,and F(t) isa T-
antiperiodic function of C (R). Then the equation P (%) y = F(t) has a unique
T'-antiperiodic solution of the form ;
e e
y(t) = E"TT/O F{t-7)U(r)dr (7.1)

Proof. From Theorem 5.1 we have

1
y——p—(-s;iF—U*F—F*U—

_ 'T_-lﬁ [/OtF(t—T)U(T)dT + /TtF(t-i-T—-T)U(T)dT] =

_ 1
T T+1

[/otF(t—-T)U(T)dT . /TtF(t—-T)U(T)dT] 4

1

T
= T_ﬁ/() Fit-7)U(r)dr

Corollary 7.3. (7.1) is equivalent to

t T
y(t):ﬁ[/o U(t—-T)d'r—-‘/t U(T+t—T)F('r)d—r}
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Ezample 7.1. Find the m-antiperiodic solution of the equation y4) — 4y = F(¢) if
F(t+m) = —F(1).

Solution. Here ®{f} =

An = (2n+1)

f(0) + f(m) 3 LA’
147 3 B = 1+

—g,nEZ,and

)

t T
/ f(t—'r)g(-r)d‘r—-/ fT+t—-7)g(r)dr
0 t

For obtaining of antiperiodic solutions in explicit form, it is convenient to use
the extended Duhamel principle (3.5), i.e.

yi=yvF *x U3 Us=

(F9)t) = 7

1
P(S)’
Using the 7r-ant1penod1mty of F(t), we obtain

T)dT,

+

1
It remains to find U = 75-(5 = ST—_Z :

1 1 e A LA
St—4 " (S2-2)(S2+2)  4\S2-2 S242)°

1 1 1 1 147 s
= - h hv2(t — =
$ -2 2\/'{5-\/5 s+\/§} ) 75 Sinb V2t - 3)
1 1+7r
S7+2  2v2 \/‘Sln\/_( )
Thus we get

U(t)=18%§w'< \/—Slnh\/-( ) sec\/_sm\/_(t——))

The m-antiperiodic solution y(t) has the explicit representation
y(t) =

8\/1(2 / F(t-7) (sech\/_smh\/_( ) secﬁ sm\/_(r_.Q_))dT

Remark 7.4. It is convenient to use the explicit representations of the solutions
for practical computation of mean-periodic solutions of LODEs with constant co-
efficients and, particulary, for computation of periodic and antiperiodic solutions
of such equations, in the environment of a computer algebra system.

In [8] it is considered the obtaining of periodic solutions of LODE with con-
stant coefficients (in the non-resonance and in the resonance cases) with use of
an extension of the Heaviside algorithm, proposed by Dimovski [1]. The algorithm
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is implemented by means of the computer algebra system Mathematica. For the
purposes of this implementation, a table of interpretation formulae was compiled.
A part of the developed programs can be used for computation of mean-periodic
solutions. Some interpretation formulae can be used as well.

Thus we ensure the chance to compute periodic solutions of any kind in the
program environment of a computer algebra system.
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