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Abstract

Direct algebraic operational calculi for functions u(x, y, f), continuous in a domain of
the form D = [0, a] x [0, b] X [0, o), are built. Along with the classical Duhamel
convolution, the construction uses also two non-classical convolutions for the
operators d° and ai. These three one-dimensional convolutions are combined into

one three-dimensional convolution u * v in C(D). Instead of J. Mikusinski’s
approach, based on convolution fractions, we develop systematically an alternative
approach, based on the multiplier fractions of the convolution algebra (C(D), *).

AMS Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.

Key words and phrases: Duhamel convolution, sine-indicatrix, non-classical
convolutions, three-dimensional convolution algebra, multiplier, multiplier fraction,
divisor of zero, associated eigenfunctions.

1. Introductions. Till recently, all the operational calculi for functions of one, or
several variables, were intended to cope with initial value problems. In Gutterman [8],
direct operational calculi for functions of several real variables are proposed. They are
applicable for solution of Cauchy problems for linear partial differential equations
with constant coefficients. As for mixed problems, i.e. problems, containing both
boundary and initial conditions, Gutterman acknowledges that his method is
unpractical, and its extension to them would need essentially new ideas and
approaches. Not to speak about nonlocal boundary value problems. Here we intend to
propose a direct operational calculus approach to local and nonlocal boundary value
problems for functions of one, two, and three real variables.

Let P, O, R be polynomials. We consider following BVPs:

(1) P, u+ Q0% )u +R(ai)u =F(x; 9,0, 05x<a, . 0=<g5b- 0<1,
in a domain D = [0, a] X [0, b] X [0, ), with initial conditions

(2) fu(x,y,0)=f,(x,y), 0<x<a, 0<y<b, k=0,1,...,degP-1,
and boundary value conditions
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ailu(O,yst):(D/()’,t), ‘Df{ailu(fsyat)}=gl(y9t)a OSySba OSta
3) [=0,1,...,deg Q -1,
2m 2m .
9, "u(x,0,0) =y, (x,t), ‘¥, {0} u(x,n,0)}=h,(x,1), 0<x<a, 0<¢,
m=0,1,...degR — 1.
Here ® and ¥ are supposed to be non-zero linear functionals on C'[0, a] and C "0, ]
correspondingly. They have Stieltjes-type representations of the form:

(4) O{f}=Af(@)+ [ (©deé),  fe C'[0,a]  and

(5) W{g}=Bg(b)+ [g'mdpm),  ge C'[0,b],

with functions e(x) and /Xy) with bounded variation, and constants 4 and B .
For the sake of simplicity, we suppose that

(©) OAH=1 and  Wm=1

These restrictions may be ousted by some non-essential involvements.

The next considerations are based on the following elementary boundary value
problems:

(7) u" )+ A u@x)=Ax), xe(0,a), u0)=0, d{u}=0

and

8) V') V) =80), ye (0,b),  WO)=0, P{v}=0,
respectively in C[0, a] and C[0, b].

The solutions of (7) and (8) are the resolvent operators

x I3
RS A) = [sin AGx—&) £(E)dE-®,1~ [sinAE-1) fr)dn
A A

sin Ax

AE(R)

and

B4 n )
R,(g.1)= - [sinu(y—n) gtnyan-¥, {i [sin 27 - &) g(&) dg} Smiy
i Hi HF (1)

sin A&

} and F (ﬂ):‘}‘,’{ } are the so .called sine-
indicatrices of the functionals @ and ‘V.

The resolvent operators R.(f, A) and R,(g, x) are defined for A = 0 -and u = 0,
correspondingly, due to restrictions (6). Denoting L. f(x) = R.(f, 0) and

L, g(y)=R,(g, 0) we have

where E(1)=® 5{ — /f‘ 7

x ¢

) Lf(x)= [(x=)/(&,)d¢ —x®¢{ [&-mrs (n)dn},
y Y

(10) L,g(y) = [(y-mgmdn-y¥, { [~ g)g(g)dg} :

2. One-dimensional operational calculi

2.1. The Duhamel convolution. This is the operation

(1) ()0 = [plt - (@)dz, o ye Cl0, ).



It bears the name of Duhamel, but sometimes it is called either Borel, or Laplace
convolution. It is connected with the integration operator

(12) Lo@)= [p(r)dz,

to which sometimes it is given the name of Volterra integration operator. The
connection is the convolutional representation

(13) Lo={1}x9p.

The operational calculus for operator /; is developed in a purely algebraic way by J.
Mikusinski [11] using the Duhamel convolution. Here we suppose that at least the
elements of it are known to the reader.

2.2. A family of convolutions in C[0, a] = C;
Theorem 1. (Dimovski [2], p.119) If f, g € C [0, a], then the operation

i W= Bl
with ®, =®, ol, and
¢ ¢
h(x,£) = [f(E+x-6)g)ds— [f(1£-x—¢Del s Dsen(s( —x—¢)dg

is a bilinear, commutative and associative operation in C [0, a], such that the
resolvent operator R.(f; X) has the representation

(15) R,(f,z>={5i“’“}if.

A EQR)

Due to (4), the functional ® can be written in the explicit form
D{f} =4 [f(E)dE+ [f(©de(§).
0 0

For A=0, we get
ae Lf(x)={x}5f

2.3. A family of convolutions in C[0, b] =
Completely analogical to Theorem 1 is the followmg Theorem 2. The difference is
only in the notations.

Theorem 2. If f, g € C [0, b], then the operation

y lis
(17) (F*20)==3%; {h(y,m}
with ¥, =¥, ol and

h(y,n)—jf(nw 5)g(g)ds - If(ln y=¢Dhe(sDsen(c(n-y-¢)dg

o 4
is a bzlmear, commutative and associative operation in C [0, b], such that the

resolvent operator R)(g ; 1i) has the representation

(18) Bile ) Si“/‘y}i
»(2,1) {#F(#) g

Due to (5), the functional ¥ can be written in the explicit form




P{g} =B [g(ndn+ [gndpw).
For 1= 0, we get
(19) Lg(y) = }*g.

2.4. Rings M, and M, of the multiplier fractions for the convolution algebras

(Cyy #) and (G, *)

We will describe briefly the construction of the rings M, and M, of the multiplier

X y
fractions of the convolution algebras (Cy, *) and (C,, *). These constructions are

completely analogical. We restrict our considerations in more detail on (C,, ;) only
(see Dimovski [2]).
Definition 1. (See [9], p. 14) A linear operator M : C; — C is said to be a multiplier

of the convolution algebra (C,, ;), iff the relation

M+ g)=(Mf) * g
holds forall f, ge C..

These multipliers form a commutative ring /J7.. Denote by /1, the subset of non-zero
nondivisors of zero of /.. The standard procedure of construction of the ring M, =

= 7'M, of multiplier fractions %//[— with M e M., Ne I, is described in S. Lang
[10]. This procedure bears the name of “localization”. Considered as a ring, the

algebra (C,, ;) embeds into M, by the map

%k
==,
/ I

X

where f* denotes the convolution operator (f*)g = f*g and I, is the identity
operator of C.. Further, due to this embedding, we denote the convolution operator

% by f. Especially, L, = {x}* = {x}.
Further, we denote

S, is an element of M,, but not an operator on Cy . Nevertheless, if fe C*[0, a], then
2
Sy is connected with the operator 3 due to
x

Lemma 1. If fe C*[0, a], then

(20) f1"=8, [+ S AG®{} - 1) f(0)—xP{/} }.
Proof. Let us calculate L _f"":
1) LA/} = f(0) +(x®{1} = 1) f(0) - x®{f}.



Multiplying by S, and using S {x} =S L =1, we get (20). 0

Lemma 2.If A€ C isazeroof E(A),then S+ A isa divisor of zero in M, .
Indeed (S, + A%) {sin Ax} =0, since Og{sin 1 & = 0.

Theorem 3. If E(A)#0, then S, + A% is a nondivisor of zero in M, and

1) sindx
S+ |AEW)|

Proof. Assume that S, + 4> is a divisor of zero in M.,. Then there should exist a non-
zero function u € C2[O, al, such that (S, + /12) u = 0, or equivalently, u + A5 L=,

2
From this equation it follow %(0) = 0 and ® {u} = 0. Applying the operator (g—) , wWe
i

get u'"+ A2u=0.Henceu#0, u=Csin Ax with C#0. Then, ®{u} =0
implies CAE(A) =0 which is a contradiction.
Denoting u = R\(f, 4), we have u(0) = 0 and ®{u} = 0. By (7) and (20), we get

U= f——)fu and thus we obtain u = 5. 1/12 f= {j;?;)}if For f={x},

we get u = 1 | stihs L and it remains to multiply the last identity b
s 5 +8) |AEM] s, g

S,.0

)
Analogous is the construction of the ring of the multiplier fractions M, of (C,, *).
Here we denote
1
Sy = L_ ¢

y
The relation between S, and f' is given by

Lemma 3. If fe C? [0, b], then
(22) f'=S,f+85,{ OW{}-1)f(0) =y ¥{f}}.

Lemma 4. If F(z)=0, then S, + ;7 is a divisor of zero in M, .
Indeed (S, + £7) {sin uy} = 0, since ¥, {sin & n }= 0.

Theorem 4. If F(u)+#0, then S,+ /7 is a nondivisor of zero in M, and

1 _{sin,uy}
S, +ut  |HEW]

The proof is similar to that of Theorema 3.




3. Two-dimensional convolutions
3.1. Two-dimensional convolution in C ([0, a] X [0, ))

Theorem 5. Let u, v e C([0, a] X [0, e)). Then

(23) u(x,t) (xﬂ;’)v(x,t) = ]u(x,t —7)*v(x,7)dr.

is a bilinear, commutative and associative operation in C([0, a] x [0, «)) such that
(x.1)
[, L u={x} * u(x,t), where I, denotes the integration operator
t
L {u(x,0} = [u(x,7)dr.
0

Proof. First, we prove the assertions of the theorem for product functions

u(x, 1) =flx)p () and v(y, 1) = g(y) ¥ (?). It is easy to see that u (x"':)v = (f;g)(¢>;<1//),
Then, the commutativity relation u (Xﬂ;l)v = v(xﬂ,:)u and the associativity relation
(u (x:)v)(x;) w=u (xét)(v(xﬂ:) w) follow from the corresponding associativity relations

X t
for the one-dimensional convolutions f*g and @*y . Further, we may use
approximation argument.o

3.2. Two-dimensional convolution in C ([0, b] X [0, =0))

Theorem 6. Let u,v e C([0, b] X [0, )). Then

(3,1 i y
(24) u(y,t) * v(y,t)= '[u(y,t—r)*v(y,r) dr

0
is a bilinear, commutative and associative operation in C([0, b] X [0, «)) such that

(r,1)
I, Lu={y} * u(y,t), where I, denotes the integration operator

1

1 {u(y,0} = [u(y,7)dz.

0
The proof is identical with that of Theorem 5.

3.3. Two-dimensional convolution in C (|0, a] X [0, b])

Theorem 7. (Dimovski [3]) Let u,ve C([0, a] X [0, b]). Then
(x,y) 1~ ~
(25) u(«‘%}’) * V(X,J’)=Z(D¢\P,7{h(xay,f,77)},

with



¢n
hx,y,6m) = [ [u€+x-0,n+y-1)v(0,7)do dr~

x)y

¢
- ”u(l E—x-o|\n+y-1)v(o|,7)sgn(é - x—-0o)ododr-

-xy

&
- J‘ Iu(é‘+x—0’,| n-y-t))v(o, 7|)sgn(n-y-7)rdodr+

Lt 4

¢
+ [ [u@é-x-alin-y-zd)w( oLt )sgn(é - x-0)n-y-T)0Tdo dr.

A
is a bilinear, commutative and associative operation in C([0, a] X [0, b]), such that
(%)
L.Lu(x,y,t)={xy} * u(x,y,t)
and the operator Ly and L, are multipliers of the convolution algebra
: (x,)
(C([0, a] x [0, b]), * ).

The proof of the last assertion follows frofn the considerations in the next section.
4. Three-dimensional convolution in C(D)
Theorem 8. Let u,ve C=C([0,a] %[0, b] X [0, «)) = C(D). Then
(26) u(x, y,0)*v(x, y,t) = ]‘u(x, Pyt = T)(x;ky)v(x,y,r) dr
0

is a bilinear, commutative and associative operation in C(D), such that

27) I, L.L u(x,y,t)={xy}*u(x,y,t).
and the operators I, , L, and L, are multipliers of the convolution algebra (C, *).
Proof. For u(x, y, 1) =f1(x) @21(y) i (¢) and v(x, y, 1) = fo(x) g2(y) ha(f) we have
x y t
uxv=_f *f,)(g *g,)(h *h,). The assertions of Theorem 8 follow from the

corresponding assertions about one-dimensional convolutions *, * and x . For
example, let us prove (27). First we consider a product function
u(x, y, ) = flx) g(y) h(f). We have

L Lu(x,y,t)=1,LL,[f(x)gWh®]= L f(x).L,&(y).L,h(t) =

t x b4
=[{B*h() )[{x}* fOI Y} g ()] = {x y3{f ()gh(D)} = {x y}* u(x, y,0).
Then, (27) is true for linear combinations of such products. But every function
u(x, y, f) € C(D) can be approximated by linear combinations of product functions

fx) g(y) h(t) where fix) € C[0, a], g(v) € C[0, b] and A(f) € C[0, ), e.g. by
polynomials of the variables x, y, ¢, using Weierstrass’ approximation theorem. Hence,
(27) is true for arbitrary u € C(D).o

5. Multipliers of (C, *)

Further, we consider the algebra /7 of the multipliers of (C, *). Let us remind the

x Y.
definition of a multiplier of (C, #). It is analogical to those of (C,, *) and (Cy, *).



Definition 2. A linear operator M : C — C is said to be a multiplier of the
convolution algebra (C, *), iff the relation

Mu*v)y=Mu)*v
holds forall u,ve C.

If f e C, then the convolution operator f x in Cy = ([0, a] can be lifted to an

operator in the space C(D) by the natural lifting (/%) {u(x, y,1)} = { £(x)} {u(x, y, )},
where the variables y and ¢ are considered as parameters. The same is true for

convolution operators: g; , where g = g(y) e C, = ([0, b]; (o>:< , @ =@(f) e C[0, ),
x,t Y.t
v * where v=v(x, 1) € C([0, a] X [0, «)); w * where w=w(y, ) € C([0, b] x [0, =));

and G 4 where G = G(x, y) € ([0, a] x [0, b]), correspondingly. Of course, the
operator {u}*, where u = u(x, y, 1) € C(D) = C([0, a] X [0, b] X [0, )), obviously, is
also a multiplier of (C, *).

Further, we use the notations

@) ol =toon+, Ul =/, gl =g,

X1 y,t X,y

Moo=t@nys, [l =wonrs, [Gl, =Gy} #

and call them “numerical operators” with respect to the absent variables.
Remark. Here we deviate slightly from the notations, accepted in [6].

Theorem 9. The convolution operators (28), lifted to C(D), are multipliers of the
convolution algebra (C, *).
Proof. Let ¢ = ¢ (7) € C[0, ). We are to prove that [¢], (v * w)= {[¢], v} *w or,

t !
which is the same, @* (v*w) = (@*v)*w, where v, w e C(D). First we prove this for

products: v(x, y, 1) = vi(x) va(y) va(2) , w(x, y, 1) = wi(x) wa(y) wi(?).
We have '

! t ! X,y !
p(vew)= (0*("1"2"3 * W1W2W3)= PE((vvy * wwy) (v *wy)) =
%,

t t Xy t t 1
=(Vlv2 i Wlwz)((o*(v}*w:;)):(vlvz * waz)(((/’*";)*wg):((P*V)*W-

But every function v(x, y, f) € C(D) can be approximated by linear combinations of
product functions — vi(x) vo(y) v3(r) with vi(x) € C[0, a] , vo(y) € C[0, b] and
v3(f) € C[0, =), e.g. by polynomials of the variables x, y, .

Next, let us take f'e C([0, a] X [0, e]). We are to show that [f],, (v * w) = {[f], v}* w

x 1 X,
or f*x@wsw)=(f*v)*w where v,we C(D).
Again, first we prove this for product functions
v(x, y, 1) = vi(x) va(y) v3(f) and w(x, y, t) = wi(x) wa(y) wi(?).
We have

x,t x,t x,t x,t y
S * (V* w)= [ * (V1V2v3 *Wlwzwa)zf *((vvy *wwy) (v, *wy)) =
x,t x,t y Xyl x,! y x,t
=(f *(vy = wwy)) (v, 2 wy) = ((f *v»y) * wwy) (v *wy) =(f *v)*w.



Any function v(x, y, £) € C(D) can be approximated by lincar combination of
functions of the form vi(x) va(y) v3(f) where vi(x) € C[0, a] , v2(y) € CJ[0, b],

vi(?) € C[0, =), e.g. by polynomials of x, y, ¢. In a similar way, we may prove that the
operators

)=, lel, ={eon*, Dl =twonys, [Gl, =G+

are multipliers of (C, *) .0
5.1. Ring of the multiplier fractions of (C, *)

In /77 there are elements which are non-divisors of 0. Indeed, such elements are the

x y
multipliers {x}* =[x], and {y}* =[y],,i.e. the operators L, and L,.
Denote by /T the set of the non-zero non-divisors of zero on /7. The set /7 is
a multiplicative subset on /)7, i.e. such that p,ge /T implies pge /1.

Further, we consider the multiplier fractions of the form —% with Me I

and N € /1. They are introduced in a standard manner, using the well-known method
of “localisation” from the general algebra [10].

Let M = /1~ 'D be the set of multiplier fractions of (C, *). It is a
commutative ring, containing the basic field (R or C), the algebras (C[0, a, ;),
(€10, ), ), (CT0, =), * ), (€10, al X[0,=), %), (C[0, b X[0,), %),

([0, a] X [0, b], * ), (C,*)and I, due to the embeddings

i RoM or CoM by aHaLL*,
X L .
x *
ii) (C[0, a], *) < Mand (C[0, b], x ) = M by f(x)l——>( f) gl—)g—lg)—,
x Ly
r !
i) (C[0, ), ¥ ) M by pr> ['l"’]f i l"’)*,
t t
Xyl 51
1v) (C[0,a] X[0,e) , * ) > M and  (C[0, b] X [0, ) ,y* Yoy vt by
»t
[, L w)*
(l ) and W|—>———(' 1) 4
53 LT
Xy
= [L.G] [L,G] (L.L,G) *
0 0, b]), B = =2 =2 )
v)  (C([0,a] x[0,0]), *)>M by G % I Il
(, L .Lu)*
vi) (C([0, a] X [0, b] X [0, )), ¥) > M by u > ——>—.
DL,

Further, we consider all numbers, functions, multiplier and multiplier fractions as
elements of a single algebraic system: the ring M of the multiplier fractions.



5.2. Elements of M.

In the ring M we introduce the algebraic inverses s =ll, S, = L and S, =— of
i t x y
the multipliers /,, L, and L,, correspondingly.

Lemma 5. Each element £ of M can be represented as L =

P withp,ge C.
q

Proof. Relation (27) can be written as /; L, Ly u = {x y} u. Denote p = P{x y} and
qg=0{xy}. Wehave Pu=s5,S, (pu)and Qu=s5,S,(qu). Taking u to be a

nondivisor of zero in M, we have L L =L g
Qu qu g
a 2 2
The elements s, S, and S, of M are connected with —, —- and — by relations
Jt ox’ ay’ i

similar to those of Lemmas 1| and 3.

Theorem 10. If u,., u,, and u, are continuous in D, then
U, =S u+S A{(xP@ {1} =Du(0,y,0)} - [P, {u(S, y,0}1,,
(29) u, =S u+S {(y¥, {1} - Dux0,0} [V, {u(x,n,0}],,
u, =su—[u(x,y,0)],.

Theorem 11. If u is a classical solution of boundary value problem (1)-(3), then it
reduces in M to a single algebraic equation

(0) [P(s) + O(S) + RS u=F,
where F is a known element of M.

The problem of uniqueness of the solution of (1)-(3) reduces to the algebraic problem,
weather [P(s) + Q(Sy) + R(S,)] is a divisor of zero or not.

Lemma 6. [7] Let {4,} and {#,} be the eigenvalues of (7) and (8) for n, m € A,
correspondingly. If there exists a dispersion relation of the form

O(=A)+R(=p.)=0 for some n, m € N, then Q(S,) + R(S,) is a divisor of zero in
M.
Proof. Since S {sin A,x} = -4, x, then Q(S,){sin A, x}= Q(~ 2)sin 4, x.
Similarly R(S,){sin f4, y}= R(— . )sin f4, y. Hence
(O(Sy) sind,, x) sin f4, y + sind, x (R(S,) sin g, y ) =
=(Q(-4) + R(= ) {sind, x sin 44, y} = 0. 0

Corollary. [7] Let 4, and 4, be the eigenvalues of (7) and (8) for n, m e A,
correspondingly. If there exists a dispersion relation of the form A7 + 42 =0 for

some n,me N, then S, +S, isa divisorof zeroin M.
Lemma 7. [4] Leta € supp @ and b € supp 'W. Then the elements s~ S, and

s =S, are non-divisors of zero in M.
For a proof sce [4].

10



Theorem 12. [7] Let ac supp @, be supp Y. Then S, + S, is a non-divisor of zero
in M, ifand only if 22+ u> #0 foralln, me N.
For a proof see [7].

Theorem 13. Let both ae supp ® and be supp V. If deg P = 1, then the element
P(s) + O(Sx) + R(S,) is a non-divisor of zero in M.

Proof. Assume the contrary. It is easy to see that P(s) + Q(Sx) + R(S,) would be a
divisor of zero in M iff there exist a function # € C(D) with 0%u, 92"u djue C,

1=0,1,...,degQ -1,m=0,1,...degR - 1,k=0,1, ...,deg P—1, u # 0, such that

31 [P(s) + O(Sy) + R(S,)] u = 0.
Let A, be an arbitrary eigenvalue of (7). Then 4, is a zero of the sine-indicatrix
E(A)=® ¢ {sm lé} of the functional @. Let ¢, be the multiplicity of 4, as a zero of

E(), ie. E(A) =EA)= v = ESP(A)="0, but EY(4)#0. To 4, it

corresponds the following finite sequence of the eigenfunction sind,x and the o, — 1
associated eigenfunctions:

¢",k(x)=(Sx+2‘i)k¢n,o(x)3 1<k< -1,
where
sin Zx

AE(l)

Here I', isa contour in the complex plane, containing only the zero 4, of E(A)
(see Dimovski and Petrova [5], p.94).
For the next considerations it is essential to note that ¢, , ,(x) =5, sin 4, x with some
b, #0.
The corresponding ¢,-dimensional eigenspace is
&L =span{p, ,(x), s=0,1, ..., -1}

¢n0( )_'“ I

The spectral projectors P, :C, — 85{:") are given by P, {f}= f*¢,. According to a
theorem of N. Bozhinov [1], in the case a € supp ®, the projectors P, , ne ¥ form a
total system of projectors, i.e. a system for which P, {f}=0, V ne¥ imply f=0.

For a simple proof of Bozhinov’s theorem for our case, see [5], p. 97-98.
In a similar way, we consider the eigenvalue problem (8). Let /4, be an arbitrary
cigenvalue of (8). Let £, be the multiplicity of 4, as a zero of the sine-indicatrix

F(u) =¥ {sm A 77} of the functional . To g, it corresponds the following finite
Y7,

sequence of the eigenfunction sin 4,y and f,—1 associated eigenfunctions

Vo) = (S, + 22 J ¥o (), 1Ss<Bu-1,
where

sm,uy
#F(ﬂ)

Here T', isa contour in the complex plane, containing only the zero y, of F(u)

'//mo()’)—_ J.
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(sece Dimovski and Petrova [5], p.94).
Let us note that v, , (y) =c,, sing,y with some ¢, # 0.

The corresponding f,-dimensional eigenspace is

F =spanfy,, (), s=0,1,... 8, - 1}.

The spectral projectors 0, :C, — 7/ are given by 0, {f}= f:‘l//,,,.

x y
Denote u, , (x,y,t) =u(x, y,0)*@,(x)*y, (y). From (31) it follows
(32) [P(s) + O(Sx) + R(Sy)] tnym = 0. ‘
We will show that this equation has only the trivial solution u, ,,=0 in
& @7 ® ([0, «). Assume the contrary, i.e. that there exists a nonzero solution

Un,m € &5 @F /) ® ([0, 00) of (32). It should have the form

a, fn
Uy, (50,00 =2 3" A, () 9,,(X) ¥, ()

with 4, ,(7) # 0 for some p and ¢ ,X l(’)fs‘lp <op—-1,08¢g<f,-1.We multiply (32) by
the element (S, + 42 """ (Sy + 22" and obtain
[P(s)+O(S)+R(S )N, ()P, 0 1 ()Y, 5, (1) =0,
since (S, +/1i)d¢)n_0 =0, for 0 > ¢, and (Sy +,uf,)jl//m’o =0 for j>f3,.
But ¢,, (x)=b,sin4d,x withb,#0 and W51 (y)=c,,siny, y with ¢, #0.

Consider [P(s) + O(Sy) + R(S,)] 4pq (?) sin A, x sin t4,, y =0 as an equation for Apq ().
It is equivalent to the initial value problem
d
P[E)A,,,q O+(Q2) + R, () =0,

dk

ETAPJ](O):O’ k=0, ...,degP—1. _
The only solution is 4, 4 (f) = 0, which is a contradiction. Hence, u, ,(x, y, 1) = 0 for
all n, me N. By N. Bozhinov’s theorem it follows that u(x, y, #) = 0. Thus we proved,

that P(s) + Q(S:) +R(S,) is anon-divisor of 0in M. o

Corollary. If ae supp ® and be supp ¥, then boundary value problem (1)-(3) has a
unique solution.
Proof. Indeed, the homogeneous BVP (1)-(3) reduces to the algebraic equation

[P(s) + O(Sx) + R(S,)] u = 0 in M. Since P(s) + O(Sx) + R(S)) is a nondivisor of zero
in M, thenu=0.0
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