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Abstract

It is proposed an operational method for obtaining of explicit solutions of a class of
space-nonlocal BVPs for the two-dimensional heat equation. It is based on a direct
three-dimensional operational calculus built on a three-dimensional convolution,
combining the classical Duhamel convolution with two non-classical convolutions
for the operators 0y, and d,,. The corresponding operational calculus uses multiplier
fractions instead of convolution fractions. An extension of the Duhamel principle to
the space variables is proposed. Thus is obtained explicit solutions of BVPs
considered. The general approach is specialized to the case when some of the
boundary value conditions are of integral type.
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1. Introduction. In Gutterman [1] an operational calculus approach to Cauchy
problems for PDEs with constant coefficients is proposed. This approach did not
apply to mixed initial-boundary value problems. According to Gutterman, such
problems need new ideas and approaches. Here we use an operational calculus
approach, developed in [9] to cope with BVPs for the two-dimensional heat equation

(D W=Ug+u,+Fxyf, 0<t 0<x<ag 0<y<bd
with an initial condition

2) u(x, y, 0) =flx, y), 0<x<a, 0<y<b

and with local and nonlocal BVCs of the form

3) u0,,)=0, ®Huly,N}=p(,0), 051 0<y<h,

u(x30;:8) =0, “Wo{ule, 70}=q(x ;" 0<¢t," 0sx<a,
where @ and ¥ are non-zero linear functionals on C' [O al and C'[0, b],
correspondingly. Here F(x, y, 1), fix,»), p(y, ) and g(x, f) are given functions. We
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suppose that each of the carriers supp® and supp¥ of the functionals ® and ¥
contains at least one point, different from 0. In the next considerations we suppose
also that @ and ¥ satisfy the normalizing restrictions:

D& =1 and Yy{n =1
These restrictions are made for the sake of simplification and they can be ousted by
some unessential technical involvements.

2. Weak solutions of BVP (1) - (3)

It is natural to look for a classical solution of the BVP (1)-(3), but, in general, the
sufficient conditions for the existence of such solutions may happen to be too
restrictive. That’s why we introduce the notion of a weak solution of (1)-(3). In order
to give an exact meaning of this notion, we introduce some notations: in the domain
D =0, a] x [0, b] x [0, =), we consider the integral operators

4) L {u(x,y,0)} = Ju(x, »,7)dT,

and the right inverse operators L, and L, of 8x_22 and éyiz given by

5) L, (7,00} = (= Eu(E, y,0dé - x0, {?(g’ ~mu(, y.0)dn},
and 0 0

(6) L {u(x,y,0)}= ;f(y —mu(x,n,0)dn - y'¥, {;].(77 —¢)u(x,¢,1dg},

correspondingly. These operators are considered on C(D). They satisfy the boundary
value conditions ®,{L.u} =0 and ¥, { L,u } = 0.

Definition 1. A function u(x, y, ) € CI(D) is said to be a weak solution of problem
(1)-(3), iff it satisfies the integral relation

(1)  LiLyu =L Lyu—ILLiu =L/ Ly f(x,y)+ 1 Ly L,F(x, y, 1) —
-xLLypy, )=yl Ly q(x, ?).

Formally, (7) is obtained from equation (1) by application of the product operator
L.L.L,, followed by using BVCs (2)-(3). It is easy to show that each classical solution
of (1)-(3) is a weak solution too. If it is happens ue C*(D) then the converse is true.
Nevertheless, we can prove that each weak solution satisfies the BVCs (2)-(3).

Lemma 1. Let u € C'(D) satisfy (7). Then u satisfies BVCs (2)-(3).
Proof. Taking =0 in (7), we find L, L, u(x,y,0) = Ly L, f(x,y). Hence
u(x, y, 0) =flx,y). Forx=0 we find -/ L, u(0,y,#) = 0and, hence u(0,y,¢)=0.

Next, applying @ to (7), weget — [, L, ®¢ {u(&y, 0} =—1 L, p(y,1). Ifapply %

2

and 53—2— , weget D u(éy, H)}=p(y, ). Analogously, for y =0, from (7) we find
y

~1, Ly u(x,0,f)= 0, and hence u(x, 0, 7)=0. Applying ¥ to (7), we obtain



2

=L LyYo{ u(x, n, £)}=—1, L q(x, f). Then applying %and we get -

x2
\PTI{ u(x, 17, t)}= q(xs t)' ]

Lemma 2. Assume that « is a solution of (7) with continuous partial derivatives iy,

uyy, ;. Then u is a classical solution of (1)-(3).
: d y

Proof. Applying the operator — ——

pplymg p o ax’ay”

The fulfilment of the boundary value conditions follows from Lemma 1. o

to (7), we get  u; = ux + uy, + F(x, y, 0.

Our final aim is to reduce the solution of BVP (1)-(3) to the following two nonlocal
one-dimensional BVPs:

(8) V=V, 0<t, 0<x<a,
v(x, 0)=flx), 0<x<a, v(0,0)=0, ®LW¢ H}=0, 0< ¢
and
€) wi=wy,, 0<t, 0<y<b,
w(,0)=g(y), 0<y<b, w(0,0)=0, ¥Y{u(n0}=0, 0=t

Next, with appropriate functions f{x) and g(y), we will consider the one-dimensional
problems (8) and (9) independently of problem (1)-(3).

Definition 2. The functions v=v(x, /) € C'([0, a] x [0, °)) and
w=w(y, 1) € C'([0, b] x [0, o)) are said to be weak solutions of problems (8) and
(9), if they satisfy the integral relations

(10) Lyv-liv= L, fix)
and

(11) Lyw-lLw= L,g(y),
correspondingly.

Lemma 3. If v(x, /) € C'([0, a] x [0, =)) satisfy (10), then v(x, ) satisfies the initial
and boundary value conditions:
v(x, 0) = Ax), v0,0)=0, @ 1)}=0.
The proof is similar to that of Lemma 1, but a simpler one. We skip it.
Such is the relation between problem (9) and equation (11).

Lemma 4. If v(x, ) with v(x, 1), v(x, f) € C([0, a] x [0, e)) satisfy (10), then
v(x, f) is a classical solution of (8).
A similar relation holds for (11) too. The proof is similar to that of Lemma 2.

Lemma 5. Let v(x, 1) € C'([0, a] X [0, =)) and w(y, ) € C'([0, b] x [0, =)) be
weak solutions of problems (8) and (9), correspondingly. Then
u(x, y, 1) = v(x, 1) w(y, t) € C(D) is a weak solution of the problem:

(12) U= Use t+ Uy,
(13) u(x, y, 0) = f(x) gO)
(14) u(0,,)=0, @u(sy,H}=0,

u(x,0,)=0, Yp{ulx,n 0}=0,
in the sense of Definition 1.



Remark. If v and w are classical solutions, then we may assert that v = v w is a
classical solution of (12)-(14) too.
Proof. By Definition 2, we have:
(15) Liv =Lv +L; fix), Lyw=1Lw+L, g(y).
According to Definition 1 we are to prove that:
L,Lyvw -, Lyyvw =L Lyvw = L, L, fix) g).

Using (13), we find

Ly Lyvw =L Lyvw = Lywv=L,v Lyw =L, (v L,w) —,(WwL,v) =

=y +Le ) (hw + Ly g0) =L (v ew + Ly gO)) =l (w (v + L fx))) =

=) (iw) + (L) (LygB) + (L w)(Lx fi) + (Lx X)) (Ly 807)) -
=L (v (Lw)) = 1) Ly gO) =L w (L) =1 (W) (L fix)) =

=(Uv)w) =L Ew)) =1L w {v) + (LX) Ly g)).

In order to prove the assertion of the lemma, it remains to show that
vy ew) =L (v (Lhw)) =1 (w (I v)) = 0. Indeed,

V) Gw) =L (v Ew)) =L (w (@) = [’_[V(x, T)dfj( ’J‘W(y, T)dfj -

- ]v(x, 7) (].w(y, H)dé’j dr - ]w(y,r) (]v(x, 9)a’6’] dr.

0
Further, we get:

1

jv(x,r) Uw(y, 6’)d9] dr = }[]w(y,@)dﬁ] d ]v(x,a) do =
0 0

0 0 0

= ( ]w( v, 6’)d6’)[ ]v(x, G)da) = j []v(x, a)a’aj d ]w( 1,0)d6 =

0 0

= ( l_[w(y, H)dBJ( ]v(x, O')dO'] - ]w(y, 7) U.v(x, O')dO') ar.

0 0
Hence (/,v) (lkw) =1L (v (liw)) -1 (w (I v)) = 0. Thus we proved relation (7) for
u=vw, py,1)=0,q(x, f)=0 and flx, y) =fix)g(r). Hence, u =v w is a weak
solution of (12)-(14). o

3. Convolutions

Here we will briefly remind the convolutions, introduced in [9].
3.1. One-dimensional convolutions

1) g€ C[0, ), f " gt = :[ f(t-7)g(7)dr (Duhamel convolution).
0

2) fige C=Cl0,al,  (f*g)x)= —éég{h(x, &)}, (Dimovski [2])

with (B=®¢ ol.f and

W) = [0+ x-9)g()ds - [£(m-x—¢Dgll¢ Dsgn(sn—x-¢))ds.



3) fge G=C[0,bl,  (f*g)(y)= —%\Tlﬂ{h(y,m},
with ¥ =¥, o/, (Dimovski [2]).

3.2. Two-dimensional convolutions

1) fige CQO.alx[0,=), f(x0) * g(xn)= [f(ni-7)rg(nr)dr, (see 4]
0

1) 2 y
2) f,g€ C([0,5] X[0,°0)), [f(y,1) * g(y,0)= J’f(y,t-vf)*g(y,f)df,(see [4]).

Theorem 1. (See [5]) If f,g € C([0, a] x [0, b]), then

(x,y) s ik
(16) fG3) ¥ gy =78, (hx, v, Em,
with
$n
h(x,y,&,n) = ”f(f-*-x— o,n+y-1)g(o,7)dodr -
&n

- [[r4é-x-cln+y-vg(olr)sen(¢ - x-0)o dodr-

-xy

&n
~[[r&+x-0n-y-7Dg(| ) setn-y-r)rdodr+

x=y

I
+ [[7(&-x-0lin-y-tDg(olIT)sen(¢-x-0)n-y-r)oTdo dr.

-x-y

is a bilinear, commutative and associative operation in C([0, a] % [0, b]), such that
(x.y)

L.Lu(x,y,t)={xy} * u(x,y,1).
For a proof see [5].

3.3. A 3-dimensional convolution in C(D)

Theorem 2. Let u, v e C(D). Then the operation

! (x,5)
(17) u(x, 3,0 4v(x, ,0) = [u(x,y,1=7) * W(x,,7)dr,

0

x,y
where by * is denoted operation (16), is a bilinear, commutative and associative
operation in C(D), such that

(18) I, L.L, u(x, y,t) = {x y}* u(x,y,1).
Proof. If u(x, y, 1) = fi(x) g1(y) h1(?) and v(x, y, ?) = /a(x) g2() ho(f) We have
u*y =(f, * £)(g, >igz)(h1 ’;hz). The assertions of the Theorem 2 follow from the

T5x y
corresponding assertions about one-dimensional convolutions *, * and *.
Let us prove (18). First we prove this for a product u(x, y, f) =fix) g(») h(¢). We have



L LLu(x,y,0)=1 LL,[f(X)gWhD]=L,[(x).L,g(y).]h(t)=

t x y
=[{I}*h@) 1 {x}* I} g] = {x yi{f (X)g(W)h()} = {x y}* u(x, y,1).
Then, (18) is true for linear combinations of such products. But every function
u(x, y, 1) € C(D) can be approximated by linear combinations of product functions
fx) gv) h(f) where flx) e C[0, a], g(y) € C[0, b] and h(r) € C[0, =), e.g. by
polynomials of the variables x, y, t. Hence, (18) is true for arbitrary u € C(D).o

4. Ring of the multiplier fractions of (C(D), *)

We consider the convolution algebra (C, *), where C = C(D). Our direct operational
calculus approach which we will apply to the two-dimensional heat equation is
outlined in [10]. Here we will remind only some notations.

The multipliers of the form {u(x, y, /)}* will be denoted by {«} or u and the result of
the application of the operator u* to a function Fe C(D) will be denoted simply by
{u}For uF.

Definition 3. Let f be a function of the variable x only in C[0, a] and g be a function
of the variable y only in C[0, a], but both considered as functions of C(D). The

X y
operators [f]; and [g], defined by [f], u = f*u and [g], u = g* u are said to be partially
numerical operators with respect to y and x, correspondingly.

In this notations we have Ly=[x]x and L,=[y],.

The set of all the multipliers of the convolution algebra (C, *) is a commutative ring
/M. The multiplicative set /7 of the non-zero non-divisors of 0 in /7 is non-empty,

x y
since at least the operators {x}* = [x], and {y}* =[y], are non-divisors of 0.

Next we introduce the ring M = /1"' /1 of the multiplier fractions of the form %

where A€ /1T and Be /1. The standard algebraic procedure of constructing of this ring,
named “localization”, is described, e.g. in Lang [7]. Basic for our construction are

. 1 s
the algebraic inverses S, = L and S, =— of the multipliers L, and L, in M
x y
correspondingly. If u € C*(D), then, in general S;u and Sy are different from uy,
and u,,, but they are connected with them.

Lemma 6. Let uy,, 1y, #, be continuous on D. Then
U, =Su+S { (x@ A -Du(0,y,0) = xP{u(S,,0)} },
u, = Syu + Sy{ (y‘{’,, {1} =Du(x,0,0} - y'¥, {u(x,n,0)} },
u, =su—[u(x,y,0)],,

(See [4] and [10]).



5. Formal (generalized) solution of (1)-(3)

Let us consider problem (1)-(3). The equation (1) u, = ux + uy, + F(x, y, 1) together
with the initial and boundary conditions (2) and (3) can be reduced to a single

algebraic equation for # in M. Indeed, by Lemma 6, using (2) and (3), we get:
Ug =Su=[p»0l, ., u,=Su-[qg(x0),,, u=su-[f(xy],,.
Then, (1)-(3) takes the following algebraic form in M:
(19) (s=8, =8 u=0/(x),, -[p(3:0],, -[a(xN],, + F(x,y,0).
We may solve (19) in M, provided s—S, — S, is a non-divisor of zero in M. Next,
a sufficient condition of this is given.

Theorem 3. If a € supp ® and be supp ¥, then the element s - S, — S, is a non-
divisor of zero in M.
Proof. Assume the contrary. It is easy to see, that s— S, — S, would be a divisor of
zero in M iff there is a function u with wy, uy), u,€ C, u# 0, such that
(s—Sx — S, ) u=0. This relation is equivalent to
(20) (LxLy =L Ly=LL)u=0.
Let A, be an arbitrary eigenvalue of the elementary boundary value problems
u'" (x) + A u@x)=Ax), xe(0,aq)., u0)=0, ®{u}=

Then A, is a zero of the sine-indicatrix E(1)=® ¢{Sm ﬂf} of the functional ®. Let

@, be the multiplicity of 4, as a zero of E(4). To 4, it corresponds the following finite
sequence of the eigenfunction sinA,x and the @, —1 associated eigenfunctions:

¢"v5(x)=(Sx+li)x¢n,0 ’ ISSSC&,-—L
where
smzlx

AE (ﬂ)
Here I, is a contour in the complex plane, containing only the zero A, of E(A)
(see Dimovski and Petrova [6], p.94). Note that ¢, , _,(x) = b, sin 4, x with some b,#0

¢no( )—— J.

is the eigenfunction corresponding to A,.
The @, -dimensional eigenspace corresponding to 4, is
& =span{p,,(x), s=0,1,..,a, -1}.

The spectral projector P, :C, &% is given by P, {f}=f ;qp". According to a
theorem of N. Bozhinov [6], in the case a € supp @, the projectors P, form a total
system, i.e. a system for which P, {f}=0, V ne/N imply f=0. For a simple proof
of Bozhinov’s theorem for our case, see [6] p. 97-98.

In a similar way, we consider the elementary eigenvalue problem

V') + V) =g0), ye (0,b), W0)=0, ‘¥{v}=0
Let 4, be an arbitrary eigenvalue of (8). Let /4, be the multiplicity of 4, as a zero of

sin un
Y7

the sine-indicatrix F(u) = ‘{’,,{ of the functional . To 4, it corresponds the



following finite sequence of the eigenfunction and S, — 1 associated eigenfunctions,
corresponding to f4,:

l//m,s(x)z(‘sy-*-/‘l:r)svlm,o ] lsssﬂm_ls
where
smﬂy
Wino (V) =—
’ I ﬂF(/J—)

Here I', is a contour in the complex plane, containing only the zero 4,, of F(u) (see
Dimovski and Petrova [6], p.94). In fact v, , (y)=c, siny,y with some c,#0 is

the eigenfunction, corresponding to 4, The corresponding /3, - dimensional
eigenspace is
f'(y/:”') =span{y,, (), s=0,1,....5, -1} .

The spectral projector 0, :C, — # /) is given by 0, 1= f’}"‘l//,,,.

X y
Denote u,, (x,y,t) =[u(x,y,0)*@,(x)]*y, (y). From (Ly L, -, L, -}, L;)u=0it

follows

(21) (LiLy =L L,= I, Ly) upm =0.

We will show that this equation has only the trivial solution #,, = 0 in
SEZ") ®/“‘:f:") ®C[0, ). Assume the contrary, i.e. that there exists a non-zero solution

Unm€ & @F L) ® C[0, =) of (21). It should have the form

2, S
(22) Uy (5,2,8)= 2.2 4,5 (0) €, (5) ¥ ;)

with 4, 4(f) #0 forsome pand g, 0<p< a,—1,0<g < 3, — 1. We multiply (21) by
(s +2)"" (s 7 )~ and obtain
(L, L=l L, =1, L)A, ()P0 (X)W, 5.()=0,
since (S, +Zf,)5(p,,'0 =0, for s> @, and (Sy +,u,f,)jy/m‘0 =0 for j = f3,.
But ¢,, (x)=b,sin4,x withb,#0 and ¥, , ,(y)=c,siny,y with c,#0.

Consider (Ly Ly —1I; L, —I; Ly) Apq(f) sin A, x sin ft, y =0 as an equation for 4,4 (7).
It is equivalent to the initial value problem

A, O+ +p,)4,,(0)=0, Ap,4(0)=0.
The only solution is A4, 4 (f) = 0, which is a contradiction. Hence, u,,(x, y, 1) = 0 for
all n, me NY. By N. Bozhinov’s theorem it follows that u(x, y, #) = 0. Thus we proved,
that s—S;—S, isanon-divisorof 0in M. o

Remark. Theorem 3 is a special case of Theorem 13 from [10].

Corollary. If aesupp ® and besupp ‘¥ then boundary value problem (1)-(3) has a

unique solution.
Indeed, the homogeneous BVP (1)-(3) reduces to the algebraic equation

(s—=S:.—S,)u=0in Mand hence u =0, since s —Sx—S, 1sanon-divisor of zero in

M.



From now on, we suppose that ae supp ® and besupp P.
The formal solution of (19) is
1

(23) u=—"————(L/] -[p(».0]; -[9(x,0], + F(x,,1) ).

s=S,-8S,
Similarly, considering the algebras (C[0, a]x[0, ), * ) and (C[0, b]X[0, ), ¥ ) and
their rings of multiplier fractions M,, and M, the problem (8) and (9) have the
formal solutions

(4 ve (AL =[P O + F(x))
and
25) w=—— (L), ~[p: 0], +F0:0)

in M, and M,, sinces—S, and s—-S, are non-divisors of zero (see [3]).
6. Interpretation of the formal (generalized) solution of (1)-(3) as a function

6.1. Our next task is to interpret (23) as a function of C([0, a] X [0, b] X [0, <)). To
this end, we consider (1)-(3) for F(x, y, ) =p(, ) =q(x,/)=0 and Ax,y)= xy. We
denote its weak solution, if it exists, by U = U(x, y, ). We have the following
algebraic representation of this solution:
1 1 1
ey et~ (Ll = :
=S =0 SRS 0.8 (=8, =8.)
Analogically, we denote the weak solutions of the problems (8) and (9) for fix) =x
and g(y) =y by V= V(x, t) and W = W(y, t), correspondingly. Then the algebraic
representations of these solutions are
1 1

V=——-——ad W=——"-—.
S.(s=S,) S,(s-S,)

Theorem 4. Assume that V = w il i and W = KT are weak solutions of
5.(5=5,) 5,(5-5,)

(8) and (9) for fix) = x and gy) = y, correspondingly. Then

1

(= ={VW}, where WV =V(x, ) W(y, t) is the ordinary product
5.5,6-5.-5) Vw} (x, 1) Wy, 1) ryp

of V and W, is a weak solution of (1)-(3) for p(y, 1) = q(x, ) = F(x, y, ) = 0 and

fx,y)=xy.
The proof follows immediately from Lemma 5.

The generalized solution of problem (1)-(3) for arbitrary Ax, y), p(y, 1), q(x, #) and
F(x, y, t) can by represented in the form:

1

1
u —SxSy(SxSy(s_Sx _Sy) [f(xay)]x o SxSy(S—Sx _Sy)[p(y,t)]x et

g ), F
SiS, (S=SE=5, )1 L W 2 oSS (=5, 5)

As a function it has the form

F(x,y, t)j.



26) u= aaa [U P 2)-U'% pO.)=U % qx,0)+ U *F(x, y,t)}

provided the denoted derivatives exist.
Let us consider the problem(l) -(3) for p(y, ) = q(x, f)= F(x, y, ) = 0. Then

— (U(x i)+ f(x,y)) a? 2((V(x N WO,H)* £, y))

x*dy
o (V(x t)ff{my 01 (x y>D= ih 2 (W( 0% f(x )j _
ox’ 0y’ ’ ’ ’ ox’ Tt . -

ox*dy?
=V (x,1) i(W(y, 0 if(x,wj.

v

where the operations ¥ in C[0, a] and ¥ in C[0, b] are deﬁned as
J(x) * g(x)= —(f (X)*g(X)) and  f(y) ¥ gy)=
If fix,y) —fx(x)fz(y), then

u= 0% [ENF 0% 1,00,
This is the desired explicit solution of (1)-(3) for Ax, y) =£1(x) 2(»).

6.2. Let us consider BVP (1)-(3) with F(x, y, f)=p(y, ) =q(x,#)=0 and
3 3
f(x,y) =L {x}L, {y}=——[x——— A8 })[——“P n }j

We denote the solution of this problem by Q = Q(x, y, 7). Then we have the following
algebraic representation of (23):

1
Q—————— L{x}L, = .
-5, =5, LWL N = s
Analogically we denote the weak solutions of problems (8) and (9) for
x’ 1 ’
f@)= L{x}——=?—g¢ (£} and  g()=L,{)= Sz—-yé—— ¥, {1} by

H = H(x, t) and K = K(y, t), correspondingly. Then the algebraic representations of

these solutions are
1 1

=———— and K=—.
S3(s-5,) S3(s=S,)
Theorem 5. Assume that H = —,—l———— and K = ————— are weak solutions of
S;(s—9,) S,(s-S,

3 3
(8) and (9) for f(x)= %—%d{f {EY and g(y) =Z6——%‘I’,, n’}, correspondingly.
1
Th = ={H K}, where HK = H(x, t) K(y, t) is the ordi
en SfSyz(s—Sx—S},) { } (x, H K(y, ) rdinary

product of H and H, is a weak solution of (1)-(3) for p(y, 1) = q(x, ) = F(x, y, )= 0
X o y oy 3
and f(x,y)=(-—6——g¢¢{§3}IF—g‘i’n{ﬂ H-

10



The proof follows immediately from Lemma 5.

The solution of problem (1)-(3) for arbitrary fx, y), p(y, 1), q(x, ?) and F(x, y, ) can
by represented in the form:

; 1 !
=528} ], =
= y(sjsﬁ(s—sx—sy)[f(xy)]’ S2SE(=S; =57)

[p(y.0)], =

1
S28%(s-S,-S,)

[g(x.0], + 'y (x,y,t)]

1
S:S3(s-S,-S,)

which can be interpreted as
8

a x,y b xt P 3 M 4
(27) u =W[Q " f(X,J’)"Q* p(yat)_Q* Q(y,t)"‘Q * F(x9yat)]‘

Assuming some smoothness conditions for the given functions we may assert that
(27) is either weak, or classical solution of (1)-(3).

In order to reveal further the structure of the solution, we may introduce the auxiliary
operations

F()og() = g?)c—z(f(x)% e ‘and * F0)eE0) = aay—zmy)i g)).

Let us consider problem (1)-(3) for p(y, £) = q(x, f) = F(x, y, f) = 0. We get
2 = 2 y 5 3
u= aa_Z[V(x’ Z); -—a—? (W(y,t);f(x,y))) = V(x’ t)o(W(y’ t)Of(x,y)) 3
X ay
If fix,y)=fi(x)A(»), then

u=¥ (5.0 f,)T (300 f,(7).
7. Examples

Problem 1:  u, = uy +uy +xy,
ux,y,00=0, u0,y,0=0,  Du(Sy,0}= yt,
u(x,0,7)=0, W {ux, n, )}=xt
Solution:
Fix,y,)=xy=LL;L,,
u,=Su —[yt]y', =S u —Lyl,2 y
uyy=Syu—-[xt]x_,=Syu—Lxl,2, u, =su.
The problem reduces to the single algebraic equation:
(s=S,-S,)u=-L,1} =L I} +I, L, L, with the solution

[ St red 24
1

u:———(—thz—Lxl,z-kl,LxLy): l n 12— 12'*‘ 1 5
s=§5, -8 g S=8,; =Sy Sus* # S350 W8, S

1 s=18, =880
" 5-S,-5, 8,8,  sS,S,
Thus we obtain the classical solution =7 x y.

Y

= 1,2LxLy =txy.

Problem 2: U= Unx + Uyy , u(x,y, 0)=xy,
u(O,y, t)=01 ¢§{u(éys t)}= Vs

11



U(X, O, t) = 0’ \PU{U(X, 77’ t)}: X,
Solution:

[Ax, »)] xy = [xy] xy = L, Ly s
u,=Su-[y], = Su-LJ,

u,=Su-[xt], , =Su-Ll, U, =su.
The problem reduces to the single algebraic equation:
(s-S,-S,)u=LL -LJI-LJI,

with the solution

u:————l——-(LxLy—Ly[,—LxI’)z L l = L —‘L =
s=S§,-S§, s=5,-5,{S,S, S S
s=5,-8
l —— 1 =1 L.L =xy.

T5-5,-5, S5 58,9,
Remark. Note that the solutions of problems 1) and 2) do not depend on the specific
choice of the functionals @ and V.

In the next Problem 3, the functionals ® and ¥’ are of Samarskii-Ionkin type (see
[8]). Here we look for a classical solution of the BVP considered.

Problem 3. Solve the boundary value problem:

U=uytu, , 0<x<a 0<y<b, t>0
ux, y, 0) =/ (x, y),
(28) u(0,y,6H)=0, u(x, 0, 1) =0,
a b
[u.y.0dé =0, fuxmndn=0.
0 0
Solution:
We consider the following two one-dimensional BVPs:
(29) V=V, 0<x<a, t>0,

wx, 0)= f(x), »(0,H)=0, ]v(f, Ndé =0,

0

(here B(f} =2 [(§)d¢ )

and
(30) w=wy, 0<y<b, t>0,

b
Wy, 0=g(), w0,0=0,  [w@m,ndn=0,

2 b
(here W{g} =~ [gman ).
0
We find two representation of the solution of (28).

First we use representation (26) from 6.1. of solution (23).
Applying the method, used in [8] for f{x)=x, we find the weak solution of problem

(29):

12



V(x,t)= 22(3"1'2"(2/1,, tsind x— xcos 4, x), with A, _2n_7z’ el B
n=] a
Similarly, if g(y) =y, then for problem (30) we find

W(y,t)=2z e"‘":"(Z,u,,, tsiny, y— ycosy,y), with u, =-2—':£,m= Jaes: ol

m=]

Let f, g € C. = C[0, a. In the case of <I>s.{f(§)}—%]. &)d¢& and
0

Yi{g}= _[ g(m)dn the convolutions * and . are two times differentiable. Indeed,

we have
x 1 a ¢ y
(f*@))==— [ [ax.m) dnd§, and  (F*g)(x)=-
00
and, after the differentiations, we get

Em =L [(f*g)(x))-—-‘%(h(x,a)-h(x,o)ﬂf(x) [emdn-2g(x) jf(n)dn]

b2

s

b ¢
- | [nom) dna¢

where
h(x,a) = [f(a+x-¢)g(e)ds - [f(la-x—¢e(ls Dsgn(g(a-x-¢))ds
and

h(x,0) = =2 [/ (x-¢)g(s)ds
Let f,ge C[0,a] and ]’f(n) dn = i[g(n) dn=0.We have
=2 o )-
X
= —;12-[ [fa+x-6)g@)ds - [fla-x-5Dg( s Dsen(s(a—x-¢))ds -2 [f(x- g)g(g)dc}

Analogically we have

2

FE )0 = %((figx;»)) g
y

b b y
—bi[ [f6+y-9)g(e)ds - [f(b-y-5Dells Dsgn(s(b-y-5)ds -2 7 (y- g)g(g)dg].
Then the solution of (28) (Problem 3) is

0* z 4
Gl u= oy =7 VxOW (y, t)] ¥ f (x,2) =V (x,0)*(W(y,0)* [ (x,)).
It is a weak solution of Problem 3 in the sense of Definition 1.
Looking for a classical solution of Problem 3 we are to impose some smoothness
restriction on the function fx, y).

If flx,y)=/1i(x)/f2(y), then the solution of (28) is:

13



(32) u= 0% £,@) WO0%£,0)).

This time, we are to use representation (27) from 6.2. of the solution of (23).

3 a X

The solution of (29) for fx) = ? TR =L,{x} is

a

H(x, t)——zz "“( (—+/121 t)sin 4, x—%xcos/l x] where A, ___2n_7z.

n

- 1 2mzw
K(y,H==-2) e ‘”(2(—+ A, O)Sinfd, y——XCOS /L,y ), where u, =——.
Z YT T K, b

m=1 m m m

H and K are obtained following Ionkin’s (see [8]) approach.

Lemma 7. Let f,ge C'[0,a]and f(0)=g(0)= ‘]'f(f)d‘f = ‘]g(f)dg =0, then

X

0 x 9 ([ x
Seg =5 (f*9)x) |=—| (f*&)x) |=

X ox
=—;12—(ff'(a+x—g)g'(g)d§—If'(la—x—gl)g'(lgl) dg+2ff'(x—g>g'(g>dg].
Proof. By direct check. o

Theorem 5. Let f € C(D) be such that fi(x, y), fi(x, y) € C([O al x [0, b]) and

If(e“ y)dn = jf(x 7)dn=0, Then

Yy
(33) u=H(x,0)o (K)o f(x,))
is a weak solution of (28).
If suppose additionally f{x, y)e C*(D), then (33) would be a classical solution of (28).
If flx,y)=/fi(x)/2(y), then the solution of (28) is:

u=(H(x,0)0 £,(x) (K10 fo(0) =

=;l;{jf,'(n)(Hx(a-%-x—n,t)—Hx(a—x—n,t))dn—
- ]fl‘(n)(Hx(n+a—x,t)+Hx(a+x—77,t)—2Hx(x—77,t))d77]><
X(Ifz'(n)(Ky(bw-ﬂ,t)-K,(b—y—n,t))dn-

—]fz'(ﬂ)(Ky(Tl+b-y,t)+K,(b+y—TLf)—2Ky(y—77,t))d77}

14
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