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Mathematical analysis without Taylor’s formula?

Peter Rusev

It is shown that the use of the classical TAYLOR formula for obtaining sufficient
conditions for existence of local extrema of real functions of real variables and for
expanding the familiar elementary functions of a real variable in power series can

be avoided. Suitable examples demonstrate the significance of this formula in other
parts of the classical analysis

1. The next assertion is more popular as a rule:

If the real function f of a real variable has derivatives up to the order
k+ 2,k € Ng = N U {0} in a neighborhood of an inner point zy of its
range of definition, fU)(zo) = 0,5 = 1,2,3,...,k + 1, f*+2) is continuous
and non-vanishing at z, and k is even, then f has a local extrema at x.
More precisely, f has maximum when f*t%)(zy) > 0 and minimum when
f®+2(z4) > 0. If k is odd, then f has no local extrema at the point z.

This rule is a direct consequence of "TAYLOR’S formula for real functions
of a real variable. The most essential condition for its validity is the re-
quirement for continuity of the (k + 2)-th derivative at the point zy. But it
can be obtained without appealing to this formula namely by using only the
existence and the non-vanishing of f**2(zg). Indeed, from the existence of

the derivatives fU),j =1,2,3,...,k+1 in the neighborhood of the point z
it follows that

 f(@)= flz) _ £
(1) e (Ef)— mo)scig) = (k+(2:§(!])'

For k = 0 the above equality is a consequence of the CAUCHY mean value

theorem. Indeed,
i @S0 _ ) _ o FEE) - ) (o)

z—z0 (T — Tg)? sozg 2(6(z) — -g) 330 2(€(z) — x0) 20 7

since 0 < |€(z) — zo| < |z — zo|. The validity of (1.1) for k > 1 can be proved
by induction.

Sufficient conditions for existence of local extrema of a real function of
real variables usually are given in the text-book of Mathematical Analysis as
consequences of corresponding TAYLOR formula. This also can be avoided
by reducing the multi-dimensional problem to the one-dimensional.

Let n > 2 and let Mo(xgo), e .,x%o)) be an inner point of the range of



definition F of the function F'. Then, there is a spherical neighborhood

U(My;r) = {(ml,...,xn) :i (a:j _mgo))2 _ r2}

J=1

contained in the set E. Suppose that the function F' is two-times differen-
tiable in U(My;r). If Ay € R,k =1,2,...,n are such that

(1.2) Y =1,
k=1

then the function
(1.3) FO Aoy Ayt = F(@ + M8, 20+ 2ot ., 2O 4 A1), —r < t < 7,

is differentiable in the interval (—r,7) and, moreover, has second derivative
at the point ¢t = 0. '
Suppose that the function F' has extrema at the point My. If A\, k =

1,2,...,n satisfy (1.2), then the function (1.3) has extrema at the point
t = 0 and, hence, for all such };,7=1,2,...,n,

FiO A2y, A 0) = ) Ay, (M) = 0.
k=1

By choosing A; = 1 and Ay = 0,k = 1,2,...,n,k # j, we come to the
equalities
F:nj(MO):Oa j:1a2a--'an7
i.e. to the necessary conditions for existence of local extrema of the function
F' at the point Mj.
From the equality

.n

F' O A2 A3 0) = Y Fog (Mo)Aj A

Jk=1

it follows that the condition
" . 2
f(l,AQ,...,)\n,O)9é0, Z)\le,
Jj=1

which ensures the existence of local extrema for the function F' at the point
Moy, holds if and only if the quadratic form

(1.4) A(F, M, A Az ) = D Foa (M)A

Jk=1



is definite. More precisely, if it is positively definite, then the function F has
local minimum at the point M, and if it is negatively definite, then it has
local maximum at this point.

The well-known criterion of SILVESTER says that a real quadratic form
is positively definite if all principal minors of its KRONECKER’S matrix are
positive. For the form (1.4) this matrix looks as follows

(1.5) |11/2(Fe;0,(Mo) + Faya; (Mo)|[7 =1

As an example let us consider the case n = 2. More concrete, let (zg, yo)
be an inner point of the range of definition of a real function F' of the real
variables z,y. Suppose that this function has partial derivatives up to the
second order in a neighborhood of the point (zg,y,) and, moreover, that
Fgy, Fy, are continuous at this point, which leads to the equality Fy(zo,yo) =

Fyz(%0,70). KRONECKER’S matrix in the case under consideration has the
form

D(F; 2o, Y0) = Fzz(%0, Y0) Fyy (Zo, o) — (Fay(To, 0))>.

F:n:c(mO; yO) Fzy(:I:Oa yO)
Fy:z: (IO) yO) F'yy (.’Z'o, yO)

Its principal minors are Fy.(Zg, o) and

If they are positive, then the function F' has local minimum at the point
(Zo,Y0). Thus we come to the well-known rule:

If the real function F' of the real variables =,y has continuous partial
derivatives up to the second order in the neighborhood of the point (zg,yo),

Fz(Z0,%0) = Fy(zo,y0) = 0, D(F; zg,v0) < 0 and Fyz(zo,y0) > 0, then it has
local minimum at this point.

If the function F' has local maximum at the point (zo, o), then —F has

local minimum there. Since D(—F;zo,yo) = D(F; o, yo), We obtain also the
rule:

If the real function F' of the real variables x,y has continuous partial
derivatives up to the second order in the neighborhood of the point (zo,yo),

Fy(z0,90) = Fy(zo,90) = 0, D(F; z0,%0) < 0 and Fyz(zo,y0) < 0, then it has
local maximum at this point.

2. As it is well-known, if the function f is defined as the sum of a
convergent power series with center at the point zg € R, i.e.

(o]

(2.1) f($)=2an(x-—mo)", |z — 20| < R < o0,

n=0



‘then it is in the class C* in the interval (zo — R, zo 4+ R). That means it has
all the derivatives in this interval. Moreover,

(2.2) ARG

. n=0,1,2,...,

i.e. each convergent power series with center zy € R is in, fact, the TAYLOR
series with the same center of the function defined by it. But the converse
of the last assertion is, in general, not true. Indeed, the TAYLOR series of a
function f of the class C* in a neighborhood of the point z of its range of
definition may be convergent there with sum different from the function f.
An example confirming this hypothesis is the function f defined by f(z) =
exp(—z~2) for  # 0 and f(0) = 0. It is of the class C®(R), fM(0) =
0,n = 0,1,2,..., hence its TAYLOR’S series with center at the point 0 is
everywhere convergent, but its sum is not the function exp(—z~2). The
function (1+22)7!,z € R is also in the class C*°(R), but its TAYLOR’S series
with center at the zero point represents it only in the interval (—1, 1), i.e.

1 oo
=) (<), -l<z<Ll

n=0

It arises the problem how to “guess” where does the TAYLOR series of a
real function f € C* represent it. The answer may be given by the reminder
of its TAYLOR’S formula, namely

n. (k)
(2.3) Rn(f;20,2) = f(2) - ,go ! k(!mO) (z — zo)*.
If we define
(2.4) p(f;mo) =sup{r > 0: lim max Rn(f;zo,x) =0},

n—o0 |z—zo|<r

then the TAYLOR series of the function f with center zy does not represent it
in any nonempty subset of the open set (—o0, zo—p(f; zo))U(zo+p(f; Zo), 00)
even when it converges there. But the application of this criterion may find
considerable technical difficulties as it is e.g. in the case of the function
exp(—z~?) when zg # 0. This can be avoided by having in view the analytical
structure of the real functions of a real variable admitting expansions in
convergent power series.

If a real function f has representation in the neighborhood U(zg; R) =
{z € R: |z — x| < R},0 < R < oo by its TAYLOR’S series with center zy,
then it has holomorphic extension in the plane if complex numbers. That

4



means there exist aregion G C C containing U(zo; R) and a complex function
F holomorphic in G and such that F(z) = f(z) for z € U(zo; R). Indeed, it
is sufficient to choose G = {z € C: |z—1z¢| < R} and to define F' as the sum
of the power series obtained from (2.1) by substituting = by z. The converse
is also true and this is a consequence of TAYLOR’S theorem for holomorphic
function of one complex variable. It is clear now that this “philosophy”
gives the answer of the question why does the TAYLOR series of the function
exp(—z~2) with center at the point 0 do not represent it in the neighborhood
of this point. Indeed, this function does not admit holomorphic extension in
any its circular neighborhood since this point is an essentially singular point
for the function exp(—z~2),z € C* = C\ {0}. The function (1 + z?)~! has
holomorphic extension in the region C\ {7, —i} as a meromorphic function
with simple poles at the points 7, —i. This makes clear why does the radius
of convergence of the power series (2.3) have to be equal to 1.

3. The general conclusion we could make now is that in order to represent
a real function of one real variable by a convergent power series with center
at inner point of its region of definition, we have to convince ourselves that
its restriction to a neighborhood of this point has holomorphic extension and
then to apply TAYLOR’S theorem for holomorphic functions of one complex
variable. But in particular cases this can be realized without using any tools
of the classical complex analysis and even without the help of TAYLOR’S
formula as it was “promised” at the beginning. This can be done by engaging
some ground facts concerning the power series of one variable including the
rules for their termwise differentiation and integration. This approach is
applied further to the to most usable functions in the Mathematical Analysis
and its applications usually named elementary transcendental functions.

The exponential function. This is the function with value e® for z € R,
where

1 n
(3.1) e = lim <1 + —) ;
n—oo n
is the NAPIER number. By WALTER RUDIN: “This is the most important
function in the mathematics” (Real and complex analysis, New York, 1976,
Prologue).

As it is well-known, (%)’ = €®,z € R, and it is clear that e = 1. More-
over, this function is the unique differentiable function with these two prop-
erties. Indeed, if f'(z) = f(z),z € R and f(0) = 1, then from (f(z)e™*)' =
0,z € R it follows that f(z)e™® = 1,z € R and, hence, f(z) = €%,z € R.

Since (e*)™ = €%,z € R,n = 1,2,3,..., the MACLORAIN series of the



exponential function, i.e. its TAYLOR’S series with center at the point 0, is

72

: 1 =
(3.2) . TRETRE

D’ALEMBERT’S criterion immediately yields that this series is absolutely

convergent for each z € R* =R\ {0} and, hence, it is uniformly convergent
on each compact subset of R. The same holds for the series obtained after
its termwise differentiation. If E(z) is the sum of the series (3.2), then
F'(z) = E(z),z € R and, moreover, E(0) = 1. Therefore, F(z) = e,z € R,
i.e.

(3.3) r=y %
n=0

Remark. Since more than fifty years instead of €” it is used the denota-
tion exp .

The logarithmic function. The exponential function is positive and
increasing in the interval (—oo,00). Its inverse function is the logarithmic
function whose value for z € R* is usually denoted by log z. Typical property
of this function is that log(zy) = log z+log y, z,y € R, which is a consequence
of the equality exp(u + v) = expuexpv,u,v € R. The last one means that
the mapping exp : R — R* defined by the exponential function is, in fact, an
(algebraic) isomorphism of the additive group {R, +} of real numbers and the
multiplicative group {R*,.} of positive real numbers. Hence, the mapping
defined by the logarithmic function is the inverse of this isomorphism.

In the Mathematical Analysis they use more often the function defined
for 2 > —1 by log(1 + z). The MACLORAIN series of this function, namely

Z(—l)n_lirn—na

has radius of convergence equal to 1. If L denotes its sum in the interval
(—1,1), then

Z( )"z =(1+2)7}, -l<z<l.

n=0

Hence,

t T
og(1+2) = [+ = [ HO@=L@), 1<a<,
0 0
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l.e.

(3.5) log(1 + z) =Z "1x, -l<z<1.

n=1

The function(1l + z)™. If m is a nonnegative integer, then the region
of definition of this function is R. If m is a negative integer, this region is
R\ {-1}. If m ¢ Z, this function is defined by the equality

(3.6) (1+2)™ =exp(mlog(l+z)) —=1<z < oo

Its consequence is that
(1+2)™™ =m(m-1)(m—-2)...(m—n+1)(1 +z)™ ™.

Hence, the (formal) MACLORAIN series of the function (1 + z)™

(3.7) g (’:) "

mostly named binomial series.

Except the case when m is a nonnegative integer, its radius of convergence
is equal to 1. Let us denote its sum by By,(z). Then, (Bn(z))' = mB,_1(z)
and, hence, (Bp(z)(1+2)™™) =0,—-1 < z < 1. Since B, (0) = 1, it follows
that By ()1 2He) ™ =1, =1"< "< Lehe Bule)'= (T +'2)™, =L <z 1.
Thus we come to the MACLORAIN expansion of the function (14z)™, namely

o0

(3.8) (1+x)m=Z(Tg>m", meR\Ny,-1<z<1.

n=0

The functions sinz and cosz. This is the only pair of differentiable
functions S(z),C(z),z € R such that S'(z) = C(z),C'(z) = -S(z), S(0) =
0,C(0) = 1. Indeed, for the derivative of the function F(z) = (S(z) —
sinz)? + (C(z) — cosz)? one obtains that F'(z) = 0,z € R. Hence, F(z) =
F(0)=0,z € R, ie. S(z)=sinz,C(z) =cosz,z € R.

The functions sinz,cosz are in the class C*(R). Their MACLORAIN’S
series are

0 I2n+1
(3.9) 2(-1)“m,



and

£ zn
(3.10) > G

respectively, and they converge for each z € R. Moreover, if s(z) is the
sum of (3.9) and c(z) is that of (3.10), then s'(z) = ¢(z),d(z) = —s(z),z €
R, s(0) = 0,¢(0) = 1, hence, s(z) = sinz,c(z) = cosz, i.e.

oS $2n+1
3.11 inr = ~ e
(3.11) sinz ngzo( ) Gnr )V z € R,
o0 2n
T
(3.12) cos T = nizoi(—l)"(%)!, z €R.

“Algebraic intermezo”. Let us denote by C3°, 29 € R, the set of real
functions of one real variable such that each of them is of the class C* in a
neighborhood of the point z; and let 7, be the set of such functions which
are representable around the point zy by their TAYLOR’S series centered at
this point. In view of (2.4),

* Too = {f € Cqp : p(f;30) > 0},

but 7, is a proper subset of CZ7. Each of these sets is a R-vector space.
Moreover, the following assertion holds:

The space T, is an integral domain. Its group of units consists of those
f € Tz, such that f(zo) # 0.

The fact that 7;, is a ring is a consequence of the CAUCHY rule for
multiplication of power series in the systems of monomials (z — z()",n € Nj
as well as of LEIBNITZ’S rule for computation of the derivatives of a product
of two differentiable functions.

Suppose that f,g € Ty, f # 0and fg = 0. Since f(z) = (z—z0)*p(z), k €
No, ¢ € Gz, from f(z)g(z) = (z - zo)kp(z)g(z) = 0 in a neighborhood of
the point zg, it follows that g(x) = 0 in its neighborhood, i.e. g = 0.

Each function f € 7, has holomorphic extension in a disk with center z,
and if f(zy) # 0, the same holds for the function 1/f. Then, by TAYLOR’S
theorem for holomorphic functions of a complex variable it follow that 1 /f €
Tz, Let us point out that the last fact could be proved without using this
theorem as it is done e.g. in G. M. FICHTENGOLZ, A course in differential
and integral calculus, Moskow 1966, 11, 448.

8



Bernoulli’s numbers. These are the numbers B,,,n € Ny introduced by
J. BERNOULLI in 1713. They make possible finite sums of powers of positive
integers to be represented in a “closed” form, namely
(3.13)

m—1 v
1

1
Sk = ,,+1Z<V: >Bnm"+1—", v=0,1,2,...;m=1,23,....

k=0 n=0

Here are some of the first BERNOULLI’S number:

1 38 1 1
By=1,B, 2,32 6’B3 0, By T 0, Be 42,57 0,
By = oA P 08 By B EEEY
8 = 30a AT 4 10_66a 11 — Yyer vt

It holds the equality

Z(n;:l)Bk:O’ n>1,

k=0

which yields that in fact all the BERNOULLI numbers are rational numbers.

The function G, defined by G(z) = z7'(expz — 1),G(0) = 1 is in G,.
Hence, the function F, defined by F(z) = 1/G(z),z € R is also in G,. If
b, = F("(0),n € Ny, then the equality :

o0 xn o0 mn
F(z)(expz —1) = anﬁ—z =
n=0 o=

holds in a neighborhood of the point 0. Hence,

Z(”:l)bﬁo, S 0s

k=0

Taking in view (3.13) as well as that by = By = 1, we find that b, =
B.,n € N, i.e. the MACLORAIN series of the function F' is

(3.14) F(z) = Z n%.,
n=0 ;

i.e. F is a generating function for the Bernoulli numbers

The function F admits holomorphic extension as a meromorphic function
with simple poles at the points 2kmi, k € Z* = Z \ {0}. Hence, the radius of
convergence of the series in (3.15) is equal to 2m. Further, since the function

9



F(z) + z/2, -2 < z < 2 is even, it follows that Bj,4; = 0,n € N, i.e. all
the Bernoulli numbers with odd index greater or equal to 3 are equal to zero.
Hence, the series representation (3.15) has, in fact, the form

oo
_ e 2
(3.15) Flz)=1- 3 =+ ;anl' ", =2 <z <2m.
Let us point out that L. EULER has proved in 1740 that
— 1 _q (2m)%n
8271:2@:(_ 2( )an, n=1,2,3,....
k=1
The functions z cot z and tanz. The function defined by L z € R”
T
and E{E = 1 isin Gy. Hence, the function i is also in Gy and so does
T lz=0 sinz
——Cc0sz =z Ccotz.
sinz

Let us “extend” the ring 7,,2¢ € R by adding to it the complex-valued
functions of a real variable which are representable by their Taylor’s series
with center zp. In particular, exp iz is in 7, and even in G,, for each zy € R.
Then, EULER’S formulas

cosz = —(exp iz + exp(—iz)), sinz = %(exp iz — exp(—iz))

NS

yield that

e exp(2iz) + 1 oy %S
=1 —= _—_
‘ exp(2iz) — 1 exp(2iz) — 1

Then, from (3.16) it follows that

=iz + F(2iz), z € (-m,7).

2n
2n)!’

Further, the equality tanz = cotz — 2cot2z,z € (—7/2,7/2) leads to
the representation ‘

zeotz =1+ Z ”22"B2n —-T<z<.

. n—1 22n(22n S 1)B 2n—1
tanx=Z(—1) ———(-2-;)—,-— onT 3 —-7r/2<z<7r/2.

n=1

The functions arcsinz and arctanz. From (3.7) it follows that

(1-13)"12 = i(_ )" ( 1/2) FA 1+Z —2??;).1.)—7: "o-l<t<l

10



Then,

¢ 1/2dt—x+ e A
A( E: S G n° 0 Tr<es<h

1.e.

3 " @u=1jies
arcsinz = x+z (2n)!!(2n+1)x" B R G i i

In the same way from the representation

—E: {1l e B g e

n=1

we obtain that

ot x2n+1
arctanz = E (-1)" o=l <L
oo 2n+1

4. Let us suppose that o € R is an inner point of the range of definition
of the complex-valued function f of real variable and, moreover, that this
function is in the class C"*!,n € Ny in a neighborhood of zg. Then, after
replacing a by zo, b by z, u(t) by f(¢) and v(t) by (z —t)"™ in the generalized
formula

n

b
(4.1) / u(B)dn®™ = 3 (=1)Fu® (B2

k=0

b

+(=1)"+! /b v(t)du™(t)

a

for integration by parts, we obtain the equality

nofk) e
(42) f(.’L') — Z f_él.:_z_(ﬁ(z 5 mo)k 24 % /mo f(n+1)(t)($ L t)n dt,

which is valid in a neighborhood of the point 2. This is the TAYLOR formula
with reminder in an integral form.

Let us suppose that the function f is real-valued. Since (z — )" as a
function of ¢ is monotonic, there is £ such that £ — zo| < |z — z4| and,
Imoreover,

z (1)

i.e. from (4.2) we obtain TAYLOR’S formula with reminder in a form of
LAGRANGE.

11



Asymptotic formula for Macdonald’s function. The differential
equation z2w"” + zw' + (2% — v?)w = 0 bears the name of BESSEL. Its solution
are called cylinder functions. Such is the function J, defined by the equality

. (_1)n f 2n+v
Jz) = ; n!l'(n -<¥-21/)+ 1)’ eeiChlCee ()

It is called BESSEL function of first kind with parameter v. The function
I,, defined by the equality I,(z) = exp(—ivn/2)J,(iz), is called modified
BESSEL function of first kind. It is a solution of the modified BESSEL differ-
ential equation z?w” + zw' + (22 +v?)w = 0, which is obtained from BESSEL’S
equation after replacing z by iz. If v is not an itegral multiple of 7, then the

function
m{f—v(z) — I,(2)}

™

K lz) =

is also a solution of the modified BESSEL equation. It is called modified
Bessel function of third kind, or function of MACDONALD. The last one has
the the following integral representation

u 1/2
L(v+1/2)K,(2) =/ =— > / 2”2 exp(—1z) dz,

z € C\(—oo,O],?RV > —1/2.

v—1/2
From (4.2) with f(z) = <1 + ;—z> and zo = 0 it follows that
/ v+n-+1/2 _
KV(Z) = exp {Z k' 1/—7’L+1//2)) (23) k+R’n,V(z)})
where

nT(v —n+1/2)(22) " 'Ry, (2)

o0 1 tu V+ﬂ+1/2
= / /12 exp(—t) dt/ (1 + — ) (1-w)"du.
0 0 22

If n and v with Rv > —1/2 are fixed, then from the last representation it
follows that R, (2) = O(|z|™""") when |z| = oo in the region C\ (o0, ], i.e.
that the function 2"™ R, (2) is bounded in each of the regions {C\ (—oo, 03N
D(0;7),0 < r < c0.

If we use HANKEL’S symbol

(k) = (02 - 1382 8) . (87~ (2k - 1) = kflgl{u+—kk++1{ /2;)

k!

12



then the asymptotic formula for the function K,(z) can be written in the
following form

K,(2) = \/—gexp(—z) {Z(v, k(22)7F) + O(|z|)—n—1} .

k=0

Obrechkoff’s formula. In the paper Neue Quadratur formeln, Abh.
preuss. Akad. Wiss. Math.-naturwiss. Kl., 1940 No 4, 1-20, of N. OBRECHKOFF
is given a formula named by him formula for the aritmetical means of the
TAYLOR series. For the function f it is supposed that it is of the class C*tk+!
in a neighborhood of the point zy. The following denotations are introduced,
namely

(4) ;
(0)(f3$07x) = Z . ](,xO)(-T — g5 ), ig= 0012, v,

j=1

n

f;x()? Zs(k 1) fyiUo, k=l)273’~

g=0
OBRECHKOFF’'S formula has the form

- — i\ fU) :
4 sma =Y (") e

§=0

._1)k /-’5 f(n+k+1)(t) (.’E P t)n(t ol :Uo)k dt.

k!n!

The proof is by induction with respect to k provided n is fixed. If k = 0,
then the formula (4.3) turns into (4.2). This gives rise it to be considered as a
generalization of the classical TAYLOR formula. By its means OBRECHKOFF
obtains in the sited paper quadrature formulas having as particular cases
those of MACLORAIN and NEWTON.

13



	Image00189
	Image00190
	Image00191
	Image00192
	Image00193
	Image00194
	Image00195
	Image00196
	Image00197
	Image00198
	Image00199
	Image00200
	Image00201
	Image00202
	Image00203

