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Abstract

In this paper we consider the problem of finding bounds on the size of ternary and
quaternary equidistant constant weight codes with 2 < w < n < 10. Optimal
ternary and quaternary equidistant constant weight codes have been constructed by
combinatorial and computer methods. Tables of the best known bounds for ternary
and quaternary equidistant constant weight codes are presented.
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1 Introduction

Consider a finite set of g elements and containing a distinguished element ”zero”. The
choice of a set does not matter in our context and we will use the set Z; of integers modulo
g. Let Z7 be the set of n-tuples (or vectors) over Zg and Zg"* be the set of n-tuples over
Z4 of Hamming weight w.

A code is called constant weight if all the codewords have the same weight w. A code
is called equidistant if all the distances between distinct codewords are d. Let By (n,d)
denote the maximum number of codewords in an equidistant code over Z, of length n
and distance d (called an (n, M, d; q) equidistant code or EC) and B, (n,d,w) denote the
maximum number of codewords in an equidistant constant weight code over Z, of length
n, distance d, and weight w (called an (n, M, d,w;q) equidistant constant weight code or
+ ECWC). : - :

Equidistant codes have been investigated by a large number of authors, mainly as
examples of designs and other combinatorial objects. Some works published on this topic
are (8], [9], [11], [16]. Constant weight codes have been studied by many authors. For
some references for the binary case, see Brouwer et al. [4], Agrell [1] and for the ternary
case, see Bogdanova [3] and Svanstrom [15]. A few papers study codes which are both
equidistant and of constant weight, for example [10], [14] and [7]. The same problem is
considered in this paper.

2  Preliminaries

Some bounds for ECWC and EC are given by the following theorems:



Theorem 1 [7/ By (n,d) =1+ Bg(n,d,d).

Theorem 2 (Plotkin) /18, 11]

dg
By(n,d) £ ———7—,
R 1 RS
if the denominator is positive.
Theorem 3 (Delsarte) /6] By(n,d) < (g—1)n+1.
Theorem 4 By (n,n,w) < g,

By (n+1,d,w) > By (n,d,w), By(n+1,d,w+1) > By (n,d,w).
The proof of Theorem 4 is easy and we omit it here.

Theorem 5 (Trivial values)
B3 (n,d,w) =1 if d > 2w, By (n,d,n) = By—1 (n,d)

Theorem 6 ( the Johnson bounds for ECWC)
The mazimum number of codewords in a q-ary ECWC satisfy the inequalities:

n

Bq(n;d,w)s Bq(n—l)d)w)a

n—w

By (n,d,w) < n(qw— 1)Bq(n—l,d,w—l).

The proof of the Theorem 6 is the same as the proof of Johnson bound for constant-weight
codes [15].

Theorem 7 [7] For k=1,2,..,n, if PZ(w) > P (d) P, (0), then

P2 (0) — P (d) P (0)
Bq (n,d,w) < p§ (w) = P, (d) P, (0)°

Here Py (z) is the Krawtchouk polynomial defined by
ko rz\ (n-z i k—i
P@ =3 (F) (R27) i @-p
i=0
and
n
P =(})@-D*
According to [10] there are no ECWC of order g, length ¢+ 1, distance q and weight

2
q — 1 which have more than qu-HQ codewords, regardless whether ¢ is even or odd.



Definition 1 A balanced incomplete block design with parameters (v,b,k,r,A) ( BIB
design (v,b,k,r, X)) is defined as an array of v different symbols or elements in b subsets
or blocks such that every block contains k < v different elements, each element occurs in
r blocks, and each pair of elements occurs in \ block. [16]

Definition 2 A BIB design is called resolvable (an RBIB design), if its b blocks can be
separated into r groups or repetitions of g blocks in such a way that each of the v elements
occurs ezactly once in each repetition. [16]

Theorem 8 [16] The optimal equidistant (n, gt, d)q codes and RBIB designs (v = gk, b, k,r, \)
are equivalent to one another and their parameters are connected by the conditions v =
M, b=ngq, k=t, r=n, A=n=d.

Theorem 9 If there ezists an (n, M ,d,w)q code, then there ezxists a
(An, M, Ad, Aw), code for all integers A > 1.
3 Some combinatorial bounds and constructions of ECWC

Proposition 10 There ezists a family of optimal ternary ECWC with parameters
(n,3,3,2;3) for every integer n > 3.

Proof: Let u be a fixed codeword with length n and weight 2. Consider how many
codewords are at distance exactly 3 from u we obtain that Bs (n,3,2) = 3. u

Proposition 11 For w =2,..,n, Pp(w)=(-1)*(¢g—1)""%¥ #0.

Proof:
= (w n—w i n—i
P =3(7)(nI7) e
For the validity of binomial coefficients the conditions:
1 <w
n—t1<n—w

must be satisfied. Therefore i = w and P, (w) = (-1)" (¢ — 1)"™" # 0. ]
Proposition 12 For w =3,..,n and k = n,

By (n,3,w) < (g —1)° +1.
Proof: By Theorem 7 with k = n and Proposition 11 we have

PZ (0) — Py (0) P (d)

By (n,d,w) = P? (w) — P (0) Py (d)°




Therefore

= i n-—1
n n n
PO=(1)@-1"=G-1)
and consequently
-1 2n _1\2n-3
Bq(n,d,w)g(q ) +le—1) <(g-1)°%+1.

P?(w) + (¢ - 1)7°

Corollary 13 There ezists a family of optimal ternary ECWC with parameters
(44 ),8,3,3+t;3) for every integer A >0 and 0 <t <n - 3.

Proof: From the Simplex code, which has parameters (4,9,3;3) we construct ECWC
C = {0111,0222,1012,2021,1201,2102,1120,2210}. From the code C we construct a
family of (4 + A, 8,3,3 +t;3) ECWC (' in the following way:

C = { (00...0 11...1,c) lc € C} ,

A-t t

where A > 0and 0 <t < n—3. Therefore B3 (n,3,w) > 8. For these parameters
Proposition 12 gives B3 (n,3,w) < 9. So

B3 (n,3,w) = 8.

4  New results for ternary and quaternary ECWC

For codes of small size we apply combinatorial reasoning. For the rest of the values
of M we use our own, specifically developed, computer algorithms.

If two indexes are given in a cell, then the upper one is the method used to find an
upper bound, and the lower one is method used to find a lower bound for B3(n,d, w) and
By(n,d, w) respectively.

In Table 1 and Table 2 are displayed the exact values of B3(n,d, w) and By(n,d, w)
for ternary and quaternary ECWC.

All the numbers in column d = 3 for ¢ = 3 are obtained by Corollary 13.

Some of the values in Table 1 and Table 2 are represented by the next proposition.



Proposition 14 There ezist optimal ECWC with parameters:
a) (5+,5,4,3;3) for A=0,1
(5,5,4,3;3) : {00111, 01022, 10202, 12010, 21100}.

b) (6+ A,6,4,4+ A;3) for A=0,1,2
(6, 6,4,4;3) : {001111, 010122, 012201, 100221, 102102, 220101}.

c) (T+X\7,4,3+13) for A=0,1,2,3 andt=0,1
(7,7,4,3;3) : {0000111, 0011001, 0101010, 0110100, 1001100, 1010010, 1100001 }.

d) (8+A,8,4,5+1¢;3) for A\=0,1,2
t=0, for A=0
t=0,1, for A=d,2
(8,8,4,5;3) : {00011111, 00012222, 00101122, 00102211, 01001212, 01002121, 10001221, 10002112}

e) 8+ A,8,4,7+1;3) forA=0,1,2and0<t< A
(8,8,4,7;3) : {01111111, 01112222, 01221122, 01222211, 02121212, 02122121, 02211221, 02212112}

£) (7+ X, 7,5,4+1¢;3) for A=0,1,2,3 and
t=0,2, forih=0
1=0,1,2,:for X=1,2.3

(7,7,5,4; 3) : {0001111, 0110012, 0121200, 1010201, 1022010, 1100120, 1201002}.

g) 8+ A,8,5,5+¢;3) for A=0,1,2and2 <t < A+2
(8,8,5,7;3) : {01111111, 10111222, 11122012, 11212120, 11221201, 12012211, 12120121, 12201112}.

h) (6+A,9,3,4+t;4) for A=0,1,2,3,4,5 and 0 <t < A
(5,9,3,4;4) : { 01111, 01222, 01333, 02123, 02231, 02312, 03132, 03213, 03321}.

i) (5+A,15,4,4+1¢;4) for A=0,1,2,3,4,5 and 0 <t < A

(5,15,4,4;4) : { 01111, 02222, 03333, 10123, 11032, 12301, 13210, 20231, 21320, 22013, 23102,
30312, 31203, 32130, 33021}.

j) 8+ A,11,5,5+t;4) for A=10,1,2 and
t=10,2;xfor A=0
t=0,1,2, forA=1
t=0,1,2,3, for A=2

(8,11, 5,5;4) : {00011111, 00022222, 00101233, 00210323, 00323013, 01002313, 02013203, 03020133,
10003123, 20012033, 30021303 }.



k) (84 A,12,6,6+t;4) for A\=0,1and0<t< A+1

(8,12,6,6;4) : {00111111, 01012222, 01103333, 02220123, 02332310, 10031323, 11310013, 12013130,
12102021, 21301120, 33002113, 33110320 }.

1) 94+ X11,7,6+¢t;4) for A\=0,1 and 0 <t <\ +2

(9,11,7,6;4) : {000111111, 001022222, 010033333, 022200123, 023313200, 101301303, 102133020,
110202210, 212021100, 221003011, 320122003 }.

Remark : All (n+ k,M,d,w + t;q) codes in the previous proposition, which codewords
are not explicitly listed are obtained from (n,M,d,w;q) codes by Theorem 4 and the
construction from corollary 13.

We can construct the corresponding EC of an ECWC by adding the all 0’s codeword
according to Theorem 1. Corresponding EC of some the ECWC that we found are
equivalent to RBIB designs according to Theorem 8.

Proposition 15 There ezist optimal EC with parameters:

a) (4,9,3;3). This code is equivalent to (9,12,4,4,1) design.
(4,9, 3;3) : {0000, 0111, 0222, 1012, 1120, 1201, 2021, 2102, 2210 }.

b) (5,6,4;3). This code is equivalent to (6,15,2,5,1) design.
(5,6,4;3) : {00000, 01111, 10122, 12201, 21220, 22012}.

c) (5,16,4;4). This code is equivalent to (16,20,4,5,1) design.

(5,16, 4;4) : {00000, 01111, 02222, 03333, 10123, 11032, 12301, 13210, 20231, 21320, 22013, 23102,
30312, 31203, 32130, 33021}.



TABLE 1. BOUNDS FOR OPTIMAL TERNARY ECWC

n|lw| d=3| d=4| d=5| d=6 |d=7|d=8|d=9|d=10
3 12 3
4 | 2 3 2
3 8: 2
5 | 2 3 2
3 8 5 2
4 8 92 2
6 | 2 3 3
3 8 5 4 2
4 8 6 4 3
5 8- 6 3 2
Teril a2 3 3
3 8 Tt 4 2
4 8 Tt Tt 3 2
5 8 6 6 3 2
6 8 6 Tt 2 2
8 | 2 3 4
3 8 T 4 2
4 8 Tt Tt 5 2 2
5 8 8t 7t 8 3 2
6 8 6 Tt 8P 2 2
7 8 8¢ 8¢ 4 2 2
9 | 2 3 4
3 8 Tt 4 3
4 8 Tt Tt 9 3 2
5 8 8t Tt 9 5 3 2
6 8 8¢ Tt 11 6’ 3 3
7 8 8¢ 8¢ 12 5 3 2
8 8 8¢ 8¢ 9 3 2 2
10 | 2 3 5
3 8 Tt 4 3
4 8 Tt Tt 15 5 2
5 8 8t Tt 12 8 4 2 2
6 8 8¢ Tt 14 8 5 3 2
7 8 8t 8t 12 9 5 3 2
8 8 8¢ 8t 15 10 5P 2 2
9 8 8¢ 8¢ 10 5 2 2P 2

Key to Table 1:

r - ternary constant weight codes; t - Proposition 14; z - Theorem 8;

d - Theorem 3; p - Plotkin bound; j - Theorem 6;

no index -exhaustive search




TABLE 2. BOUNDS FOR OPTIMAL QUATERNARY ECWC

n|lw| d=3| d= d=5| d=6 |d=7|d=8|d=9|d=10
4 12 3 2
3 8 4
5 |2 3 2
3 8 10" 2
4 9 15, 3
6 | 2 3 3
3 8 10 4 2
4 9 157 9’ 3
5 9 157 8 3
7|2 3 3
3 8 10 i 2
4 9 15¢ 9; 5’ 2
5 9 15¢ 9¢ 7 3
6 9 15¢ 9¢ 7 3
8 | 2 3 B
3 8 10 7 2
4 9 15¢ 9 8 2 2
5 9 15¢ 11 10 5 2
6 9 15¢ 9 12 5 4c
7 9 15¢ 11 12 4 3
9 |2 3 4 :
3 8 10 7 3
4 9 15¢ 9 9 3 2
5 9 15¢ 11, 10, 97 3 2
6 9 15 11¢ 12, 11 5 3
7 9 15¢ 11; 12¢ 11 5 3
8 9 15¢ 11, 12, 11 4 3
10 | 2 3 5
3 8 10 7 3
4 9 15¢ 9 15 5 2
5 9 15¢ 11¢ 12, 10¢ 67 2 2
6 9 15¢ 114 14, 11¢ 107 57 2
7 9 15¢ 11¢ 12¢ 11, 14, 5’ 3
8 9 15¢ 11¢ 15 11¢ 157 5’ 3
9 9 15 11, 12¢ 11¢ 8 4 3

Key to Table 2:

c - Theorem 9; | - lexicographic codes;

r - ternary equidistant codes; t - Proposition 14; z - Theorem 8; h - see [10]; j - Theorem 6;

no index -exhaustive search




5 Lexicographic codes

Let B be an ordered base bi,bs,...,bn over Zg and let £ = A1by + A2b2 + ... + Anbn and y =
paby + pabz + ... 4+ pnbn be vectors from Z7.

Definition: We say that z precedes y in lexicographical order if (A1, A2, .., An) precedes (ui1, p2, .., fn)
in lexicographical order, i.e. A1 < p1,A2 < p2,.,An < pn.

Lezicographic codes of length n and Hamming distance d are obtained by considering all g-ary
vectors with weight w in lexicographic order, and adding them to the code if they are at a distance exactly
d from the words that have been added earlier.

In order to find lezicographic codes we can start the search in the following ways:

e Without seeds. As a result, we construct lezicographic code where the first codeword is the first
word in the vector space Z,.

e With seeds. In this case, it is important to choose a proper seed from one or more vectors. We apply
the following methods: exhaustive search, consecutively choosing the possible seeds from restricted
area of Z, and random search.

6 Computer search results of lexicographic equidistant constant
weight codes

We apply greedy search beginning with an empty array and while looping through all possible codewords,
we add one if it has weight w and distance d from every member of the current code.

For improving the results we use lezicographic codes with seed. Lezicographic codes with a seed are
obtained in a similar way as the standard lexicographic codes. The difference is that we use an initial set
of vectors (called a seed) instead of the empty set.

We obtain bounds for equidistant constant weight codes using standard lexicographic codes or
lexicographic codes with seeds. Improved tables for lexicographic equidistant constant weight codes for
qg=3,q=4and ¢=>5 and for 2 < w < n < 10 are presented in Table 3, Table 4 and Table 5.



Table 3. Bounds on Bs (n,d,w) for n < 10.

10

d=

8|d=9

71d

10

6| d

d=

11
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15
11
14
12
12
10

d=5

d=4

10

10



Table 4. Bounds on By (n,d,w) for n < 10.

n|lw| d=3|d=4| d=5| d=6|d=7|(d=8|d=9|d=10
4 | 2 3 2
3 8 4
4 9 3
5 | 2 3 2
3 8 10 2
4 9 15 3
5 9 6 3
6 | 2 3 3
3 8 10 4 2
4 9 15 9 3
5 9 15 8 3
6 9 7 4 3
712 3 3
3 8 10 7 2
4 9 15 9 5 2
5 9 15 9 7 3
- 6 9 15 9 7 3
7 9 8 7 3 3
8 | 2 3 4
3 8 10 7 2
4 9 15 9 8 2 2
5 9 15 11 10 5 2
6 9 15 9 12 5 4
7 9 15 11 12 4 3
8 9 8 8 9 3 3
9| 2 3 4
3 8 10 7 3
4 9 15 9 9 3 2
5 9 15 11 10 9 3 2
6 9 15 11 12 11 5 3
7 9 15 11 12 11 5 3
8 9 15 11 12 11 4 3
9 9 8 8 12 6 3 3
10 | 2 3 5
3 8 10 7 3
4 9 15 9 15 5 2
5 9 15 11 10 10 6 2 2
6 9 15 11 14 11 10 5 2
7 9 15 11 12 11 14 5 3
8 9 15 11 12 11 15 5 3
9 9 15 11 12 11 10 P 3
10 9 8 8 9 10 6 3 3

11




Table 5. Bounds on Bs (n,d,w) for n < 10.

n|lw| d=3|d=4| d=5| d=6|d=7|d=8|d=9
4 2 3 2
3 8 4
4 9 4
5 2 4 2
3 8 10 2
4 9 15 5
5 9 16 4
6 2 3 3
3 8 10 4 2
4 9 15 9 3
5 9 16 24 -4
6 9 16 9 4
71 2 4 3
3 8 10 7 2
4 9 15 13 6 2
5 9 16 24 12 3
6 9 16 24 14 4
7 9 16 10 8 4
8 ] 2 4 4
3 8 10 7 2
4 9 15 13 9 2 2
5 9 16 24 9 6 2
6 9 16 24 | 12 7 4
7 9 16 24 10 4 4
8 9 16 10 12 5 4
9 2 4 4
3 8 10 7 3
4 9 15 13 11 3 2
5 9 16 24 9 8 3 2
6 9 16 24 11 10 6 3
7 9 16 24 10 4 6 4
8 9 16 24 12 4 4 4
9 9 16 10 12 4 4 4
10 | 2 4 5
3 8 10 7 3
4 9 15 13 15 5 2
5 9 16 24 9 9 6 2 2
6 9 16 24 11 10 10 3 2
7 9 16 24 10 4 9 6 3
3 9 16 24 12 4 4 5 5
9 9 16 24 12 -4 4 4 4
10 9 16 10 12 -4 10 4 4
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