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SHIFT OPERATORS
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ABSTRACT. Shift operators play an important role in different areas of
Mathematics such as Operator Theory, Dynamical Systems and Compex
Analysis. In these lectures we discuss basic properties of these operators.
We present Beurling’s Theorem which describes the invariant subspaces of
the shift. The structure of the C*-algebra generated by the shift is described.
We also indicate how the shift operators appear in the analysis of isometries
on a Hilbert space: Wold decomposition and Coburn’s theorem.

1. Introduction. Shift operators play an important role in different
areas of Mathematics. They occur naturally in Operator Theory, in Dynamical
Systems and in Compex Analysis. In these lectures we discuss the following
topics: In section 3 we present Beurling’s Theorem which describes the invariant
subspaces of the shift. In section 4 we analyse the C*-algebra generated by the
shift. In the last section we prove Wold decomposition which essentially shows
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36 M. S. Anoussis

that any isometry on a Hilbert space is built from a unitary operator and a shift
of some multiplicity. Finally we present Coburn’s Theorem which shows that
the C*-algebra generated by a proper isometry is isomorphic to the C*-algebra

generated by the shift.
If H is a Hilbert space we will denote by B(H) the algebra of bounded

linear operators on H. We will denote by T the circle group, that is the multi-
plicative group of complex numbers of modulus 1.

2. Spectral properties of the shift. Let H be a separable Hilbert
space. Consider an orthonormal basis {e;, },—, of H.

The shift operator S is the operator on H defined by Se, = e,y for

n=0,1,2,.... The adjoint operator S* satisfies S*e,, = e,_1 for n =1,2,3,...
and S*eq = 0.
With respect to the basis {e, };=g the matrix of S is
[0 0 0 0 i
1 000
01 00
0 010

and the matrix of S* is

o O O O
o O O
SO = O
o= O O

Note that the operator S is 1—1 but not onto, and the operator S* is onto
but not 1 — 1. The operator SS™* is the orthogonal projection on the subspace
spanned by the vectors e, : n=1,2,... and S*S = 1.

An operator T in B(H) is an isometry if | Tx| = ||z|| for all x € H.

Theorem 2.1.
(1) The shift operator is a non-unitary isometry.

(2) N
() S™(H) = {0}.
n=0



Shift operators 37

(3) For every x € H we have (S*)"x — 0.

Theorem 2.2. The spectrum of S is equal to the set {\ € C: |\ <1},
Proof. Let A € C, |A| < 1. Then

S* (i )\"en) = i Ne,_1
n=0 n=1

_ iAn_'_len — Ai)\nen-
n=0 n=0

It follows that A is an eigenvalue of S* and so {A € C : |A\| < 1} is contained in
the spectrum sp(S™) of S*.

Since ||S*|| < 1 we have sp(S*) C {\ € C: |A\| < 1}. We obtain sp(S*) =
{AeC: |\ <1} Hencesp(S)={AeC: |\ <1} O

Note that S has no eigenvalues. In fact, if A is an eigenvalue of S, then A

o0
is different from 0 since S is 1 —1. Let Z anen be an eigenvector for A. We have
n=0
o0 o0 [o.¢] [o.¢]
S (Z anen) =A (Z anen> <= Z Gnentl = Z Aan€en
n=0 n=0 n=0 n=0
oo oo
= Zan_len = Z Ay €.
n=1 n=0
It follows that ag = 0 and a,,_1 = Aa, for n =1,2,.... Hence a,, = 0 for all n.

3. Invariant subspaces of the shift. Let H be a Hilbert space. We
will use the symbol | to denote orthogonality between vectors, subspaces of H
or between a vector and a subspace of H. If W is a closed subspace of a Hilbert
space H, we will denote by W+ the orthogonal complement of .

Let T'€ B(H). A subspace W of H is invariant by T (or T-invariant) if
Tz €W for all 2 € W. A subspace W of H reduces T if W and W+ are invariant
by T. In this case we say that W is reducing for T

Theorem 3.1. The shift S has no reducing subspaces.

Proof. Assume that W is a reducing subspace for S. Let S|y (resp.
S|yrL) be the restriction of S to W (resp. to W). Since S is 1 — 1 so are S|
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and S|y 1. Since the range of S has codimension 1, one of S|y and S|y ., say
S|w is onto and hence invertible. Then its inverse is (S| )" and it is an isometry.
Now take z in W. We have [|(S™)"z|| = ||((S|w)")"z| = ||z||. But (S*)"z — 0,
a contradiction. [

In what follows we will need another representation of the shift operator.

Let dx be the Lebesgue measure on [0, 27). We denote by dm the measure

d
% We consider the space LP(T) for p = 1,2 with respect to the measure dm.

T
That is, the space of equivalence classes of measurable functions f : T — C which
satisfy:

27 )
1FE = /0 F(e®)Pdm(z) < +00

For f € L'(T) define

2
fn)= [ f(€®e ™ dm(z), neZ
0

The map
Fif = (f(n))nez

is the Fourier transform.
The following theorem is well known [4, Theorem 2.7].

Theorem 3.2. If f € L(T) satisfies f(n) =0 foralln € Z then f =0

Note that L*(T) is a Hilbert space for the scalar product

27
(f.9) = i f(e®)g(e®)dm(x)

and the family
{Cu:n €7} where (,(e) =™

is orthonormal: ((,, () = dnm.-
Theorem 3.2 shows that no nonzero element of L?(T) can be orthogonal
to the family {¢, : n € Z}: hence it must be an orthonormal basis of L*(T).
Therefore for each f € L*(T) we have

+o0
f= Z f(n)(n (L*(T) convergence)

n=—oo
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+o0
and |[fll3= Y If()]*  (Parseval).

n=—oo

The Hardy space H*(T) is defined by:
H*(T)={f e L*(T) : f(~k) =0forall k =1,2,...}

and is a closed subspace of the Hilbert space L*(T).
We denote the function (; by (.
Let T, : H*(T) — H*(T) be the operator defined by

T.f=Cf=Gf  (f € L*(T)).

The Fourier trasform F is an isomorphism from L?(T) onto ¢*(Z) [4,
Theorem 5.5]. Let {e, }nez be the orthonormal basis of £*(Z) defined by

en(m) = dpm.-

Clearly F¢, = e,. Let H be the closed subspace of ¢*(Z) generated by the
vectors e, : m = 0,1,2,.... Denote by Fy : H*(T) — H the operator defined by
Foln = F(p = en. Then, Fy is a unitary operator and if S is the shift operator
on H with respect to the basis e, : n =0,1,2,... we have:

SFo = Folg.
From this equality and Theorem 2.1 we obtain:
Theorem 3.3. The operator Ty is a non-unitary isometry. Moreover,

M 72(H2(T)) = {0}.

n>0

A function ¢ € H*(T) with |¢(z)] = 1 for almost all z € T is called an
inner function. Examples are: " (n € N). Note that since |¢| = 1 a.e., ¢ defines
a bounded, in fact an isometric operator Ty on H 2 (T) by the formula

Tyf =of,  fe€ HT).

Therefore the set
¢H*(T) = {¢f : f € H*(T)}

is a closed subspace of H*(T) since T}, is isometric.
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Also, pH?(T) is T;-invariant because (H*(T) C H*(T) and so

T (¢H?(T)) = (pH*(T) = ¢CH*(T) C ¢H*(T).

Moreover,

(N T2 (eH*(T)) C () TE(H(T)) = {0}.

n>0 n>0

The following theorem shows that every invariant subspace of the operator T is
of the form ¢H?(T) where ¢ is an inner function.

Theorem 3.4 (Beurling). A closed nonzero subspace E C H*(T) is T¢-
invariant if and only if there exists ¢ € H?*(T) with |¢(z)| = 1 for almost all
z € T such that E = ¢H2(T). Moreover, ¢ is essentially unique in the sence

that if E = ¢ H?*(T) where || = 1 a.e. then g is a.e. equal to a constant of

modulus 1.
Proof. Suppose that £ C H*(T) is a closed nonzero T¢-invariant sub-
space. The space T¢(E) is a closed subspace of E because T¢ is isometric.
Moreover, T¢(E) C E because

ﬂTC ﬂTC (H*(T)) = {0}.

n>0 n>0

Thus there exists ¢ € E of norm 1, such that ¢ L T;(E).

Claim 1. The sequence {¢,T¢(¢), TC (¢),...} is an orthonormal sequence in E.

Proof. Since ¢ € E which is T-invariant we have T¢"(¢) € E for all
n € N. Moreover [T/ (¢)|l2 = [|4]l, = 1. Let m,n € N with m > n. We have
¢ L T¢(E) by construction and so T/"(¢) L T (T;(E)) since T is isometric. On
the other hand

T (¢) € TE(E) C T (E) = THT(E)).
Thus
TE (o) LT (9).

Claim 2. For all nonzero k € 7 we have /Ck\¢]2dm =0.
Proof. For k > 0 we have

[ autobam = [(Goraam = Guo,0) = (24(6).0) =0
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by the previous claim. For k = —n < 0,

/ Colof2dm = / SCad)dim = (6. Cud) = (6, T2()) = 0.

It follows from this claim that the function ¢ = |¢|?, which is in L*(T),
satisfies (k) = 0 for all k € Z except for k = 0. By Theorem 3.2, ¢ must be a
complex multiple of {y and hence a.e. equal to a constant. Hence so is |¢|. Since

/|¢]2dm = 1, the constant must be 1.

This shows that |¢(z)] =1 a.e.
Claim 3. E = ¢H*(T).

Proof. Since {{o, (1,2, } is an orthonormal basis of H*(T) and T is
an isometry, the set

{T¢C07T¢C17T¢C27 s } = {¢7Cl¢7€2¢7 s } = {¢7TC(¢)7TC2(¢)7 s }

is an orthonormal basis of ¢H?(T), and is contained in F since ¢ € E which is
Te-invariant. We conclude that ¢ H*(T) C E.

To prove that equality in fact holds, suppose f € FE is orthogonal to
$H?(T); we show that f = 0. Indeed, for all n = 0,1,2,... we have

fLloGn = / féludm =0 = / fol_pdm = 0.

On the other hand if k = 1,2,... then (uf = TF(f) € TF(E) C T,(E) while
¢ L T¢(E) by definition; thus ((x f, ¢) = 0 and hence

/ Cofddm = (uf.8) = 0.

The function f ¢ lies in L*(T) and has all its Fourier coefficients equal to 0. Hence
f¢ must vanish a.e. Since |¢| =1 a.e. this shows that f = 0.

Uniqueness

If pH*(T) = oy H*(T) where |¢| = || = 1 a.e. then YpH?*(T) = H?*(T),
so that ¢ = Yl € H*(T). Similarly ¢pypH?(T) = H*(T), so that ¢rp € H*(T).
Thus the function h = ¢ and its complex conjugate are both analytic, which
can only happen if h is a constant.

This concludes the proof of the Theorem. O
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4. The C*-algebra generated by the shift. If A is Hilbert space
we will denote by K(H) the algebra of compact operatorson H. If v € H,y € H
we will denote by = ®y the rank-one operator on H defined by z®y(z) = (z,x) y.

A C*-subalgebra A of B(H) is irreducible if there is no closed subspace
of H invariant for all operators in A, other than H and {0}.

An important property of an irreducible C*-algebra is the following [3,
Corollary 1.10.4]:

Theorem 4.1. An irreducible C*-subalgebra of B(H) that contains a
nonzero compact operator contains KC(H).

Theorem 4.2. Let m be an irreducible representation of a C*-algebra A
on a Hilbert space H. If J is an ideal of A and w(J) # {0}, then the restriction
|J of m to J is irreducible.

Proof. Let V={x € H: n(J)xr ={0}}. Then V is invariant by 7 and
since 7 is irreducible, V' = {0}. So if x € H, x # 0, we have 7(J)x # {0}. But,
m(J)x is invariant under 7w and so is 7(J)x. Hence 7(J )z equals H. This proves
that every non-zero vector of H is cyclic for 7|7 and hence 7|7 is irreducible. O

We will denote by L% (T) the space of equivalence classes of essentially
bounded functions f : T — C with respect to the measure dm, equipped with the
supremum norm.

Let g be a function in L>(T). The multiplication operator M, : L*(T) —
L?*(T) is defined by the formula M,h = gh.

The Toeplitz operator T, : H*(T) — H?(T) is defined by the formula
Tyh = Pgh, where P is the orthogonal projection from L*(T) onto H*(T).

Proposition 4.3. For g € L*(T), Tg* =Tz, T4l = ITglle = |90 -
Proof. We have for f € H*(T), h € H*(T)

(T f.h) = (f, Pgh) = (f,gh) = (gh, f) = (T5f.h).

Also it is clear that
[Tylle < 175l < [[Mgll = llglloo-

We show that ||g|lcc < [|T}]le-

Let € > 0. Since the trigonometric polynomials are dense in L*(T), there
N

exists a polynomial p = Z aCr with ||p|l2 = 1 such that ||gp|lz2 > ||g|lco — €
k=—N
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For all n > N the function ¢,p belongs to H?(T). Set

oo
gp="Y biG
k=—0oc0
Then -
TyGnp = PCagp = Y biCign
k=—n
and hence

Jim ([ TyCupll2 = llgpll2-

The sequence (,p converges weakly to 0. Hence, if K is a compact oper-
ator, the sequence K (,p converges to 0 and we have

Tim [[(T, + K)Guplls = T [TyGupll = llgpll-
On the other hand, for all n > N
1(Ty + K)Gupllz < 1Ty + K|l[|Mc,pll2 < [[Tg + K[| M, [llpll2 < [|Tg + K-

It follows that
lgpllz < [ITy + K|

and so
lgpllz < [|Tylle-

We conclude that
||9”oo —e< ||Tg||e

and hence
||9”oo < ”TgHe- O

The Hardy space H*(T) is defined by:

H®(T)={f € L%(T) : f(—k) =0 for all k =1,2,...}.

Proposition 4.4. For h € H*(T) the space H*(T) is invariant by M,.
If g € L*°(T) and h € H*(T) then

T, T, = Tyn

T5T, = Ty,
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Proof. We have h = Zhngn. Hence if k =0,1,2,... we have

n=0

oo
MGk = hGe = Me,h =~ Iy
n=0
which is in H*(T). Hence, the space H?(T) is invariant by Mj.
Now, if f € H*(T) we have T,Tyf = T,Phf = Tyhf since hf € H*(T).
Hence T T, f = Tyhf = Pghf =Ty, f.
The other equality follows by taking adjoints. O
Recall that we denote by ¢ the function (.

Proposition 4.5. If g € L°(T) the operator
TyTe =TT,

has rank at most one.

Proof. By the previous proposition we have Ty = T,T¢. So,
T.T, — Tyc = (PM¢PM,P — PM:M,P)|H*(T) = (PM;P*+M,P)|H*(T).

But P]WCPL is the rank one operator (_1 ® (y and hence the commutator has
rank at most one. O

We denote by C(T) the space of continuous functions f : T — C.

Proposition 4.6. For g € L>(T) and f € C(T), the operators TfTy—T¥,
and TyTy — T,y are compact.
N
Proof. Let ¢ > 0 and p(z) = Z arCr be a trigonometric polynomial

k=—N
such that || f — p|loc < €. As in the previous proposition we obtain

T,Ty — T, = PM,P+M;P|H?(T)

It suffices to show that PLMfP is compact. The range of PLMpP is contained
in the span of the set {(_x : 1 <k < N} and so it is a finite rank operator. Since
|PH(M; — M,)P|| < ||f = plloo < €, the operator PHM;P is a limit of finite rank
operators and hence it is compact.

The other assertion follows by taking adjoints. O
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Theorem 4.7. Let C*(T¢) be the C*-algebra generated by Ty. Let
T(C(T))={Ty+ K : f € C(T), K € K(H*(T))}.

Then
(1) The C*-algebra C*(1T¢) is equal to T (C(T)).
(2) The algebra C*(T¢) is irreducible and contains K(H?(T)) as its unique min-
imal ideal.
(3) We have the following exact sequence:

0 — K(H(T)) — C*(T;) = C(T) — 0

where 7 be the quotient map of C*(T;) onto C*(Ty)/K(H*(T)) and s :
C(T) = C*(T¢) is the map defined by s(f) =T}.
(4) The map s is a continuous section of the exact sequence.

Proof. Let Q be a projection commuting with 7. Then ) commutes
with I — TCTQik which is the rank-one operator (y ® {p. And so, Q(y = (y or
Q¢ = 0. If Q¢ = (o, then Q¢, = QTchO = TgnQCO =(, foralln =0,1,....
and hence Q = I. If Q(y = 0, similarly we see that Q = 0. Hence the C*-algebra
C*(T¢) is irreducible.

The C*-algebra C*(T¢) is irreducible and contains a compact operator.
It follows from Theorem 4.1 that it contains /C(H). On the other hand, since
Te—1 = T¢ the algebra C*(T;) contains T), for every trigonometric polynomial
p. The trigonometric polynomials are dense in C'(T) and the map f — Ty is
continuous (Proposition 4.3). It follows that C*(T;) contains T for every f €
C(T). So, C*(T¢) contains T (C(T)).

Let J be a non-zero ideal of C*(T¢). By Theorem 4.2 it acts irreducibly.
If X € J and XF = 0 for every finite-rank operator F', then X = 0. It follows
that X F' # 0 for some finite-rank operator F' and the ideal J contains compact
operators. Since J contains compact operators and acts irreducibly, it follows
from Theorem 4.1 that J contains all compact operators. Therefore KC(H?(T))
is the unique minimal ideal of C*(T¢).

It follows from Proposition 4.6 that the product of Toeplitz operators
with continuous symbol is a Toeplitz operator plus a compact operator. Thus
T(C(T)) is a *-algebra. We show that it is norm-closed. Suppose that Ty, + K,
converges to an operator X, where f, is in C(T) and K, is compact. Since

1fn = frlloo = I Tpn = Tralle < 1T + Kn = (Ty, + K|
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the sequence f, is a Cauchy sequence and converges to some limit f € C(T).
It follows that K, is also a Cauchy sequence and converges to some compact
operator K. Hence X = Ty + K. And so T(C(T)) is a C*-algebra. Since it
contains T¢ and is contained in C*(T¢), we have C*(T¢) = T(C(T)).

Let 7 be the quotient map of C*(1;) onto C*(T)/K(H?(T)). By Proposi-
tion 4.6 this quotient algebra is abelian. The map s is surjective and by Propo-
sition 4.3 it is isometric. By Proposition 4.6 it is a *-homomorphism. Hence
it is a x-isomorphism. With this identification, s is a continuous section of the
quotient map. O

The C*-algebra generated by the Toeplitz operators Ty with continuous
symbol, which by the above Theorem is equal to 7 (C(T)), is called the Toeplitz
algebra.

5. Wold decomposition and Coburn’s theorem. In this section
we define the shift of arbitrary multiplicity and prove that an isometry is decom-
posed as a sum of a unitary operator and a shift of some multiplicity. Finally
we present Coburn’s Theorem which shows that the C*-algebra generated by a
proper isometry is isomorphic to the C*-algebra generated by the shift.

Let H be a Hilbert space. An operator S acting on H is called a shift

oo

of multiplicity o if there exists a decomposition H = Z @®H; of H into a direct

1=
sum of mutually orthogonal subspaces H;, ¢ = 0,1,2,... of the same dimension
a and and S maps H; isometrically onto H;+;. The common dimension of the

H,’s is the multiplicity of the shift.

Theorem 5.1 (Wold decomposition). If V € B(H) is an isometry, there
exists a unique decomposition H = Hgy & H,, into V-reducing subspaces such that
the restriction Vi of V' to Hy is a shift of some multiplicity (if nonzero) and the
restriction Vi, of V' to H,, is unitary (if nonzero).

Set L = HoV(H). Let z € L,y € L and n > m > 0. We have
(VP2 V™y) = (V" ™z,y) = 0 since y € L and V" ™z € VH. Thus the family
{V*(L) :n € Z} is a family of closed mutually orthogonal subspaces.

We set

Hy =Y aoV™(L).

n>0

Then H, is invariant by V and since V(V"(L)) = V"*!(L), V restricted
to Hy is a shift of multiplicity dim L.
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Observe that V(L) = V*(H) © V" (H). Indeed let w € V*(H) ©
V" H(H). There exists © € H such that w = V"z. Write 2 =y 4 2z with y € L,
2z € VH. Since V"z € V" Y(H) we have (V"y + V"2, V") = (V"2,V"2) =
(w,V"z) = 0.

Since V preserves orthogonality, (V"y, V"z) = 0. Hence (V"z,V"z) = 0.
It follows that z = 0, and so w =V"y € V"L.

Set

H, = ﬂ V*(H).

n>0

It is clear that H,, is invariant by V. Let x € H. Then x is orthogonal
to H if and only if x is orthogonal to V(L) for every n > 0, if and only if
x € V"(H) for every n > 1, that is if and only = € H,. Hence H = H, ® H,.
Finally it is clear that H,, is invariant by V and V restricted to H,, is surjective.
Since it is also isometric it is unitary. O

An isometry which is not a unitary operator is called proper.

Theorem 5.2 (Coburn [2]). Let V' be a proper isometry and C*(V') the
C*-algebra generated by V. Then there is a unique x-isomorphism ¢ of C*(1¢)
onto C*(V') such that ¢(T;) = V.

Proof. It follows from Theorem 5.1 that V is unitarily equivalent to

T¢ & U where T¢ is a shift of multiplicity a and U is a unitary operator. We
identify V' with T¢ @ U. Define ¢ from C*(T) into C*(V') by

(T +K)=(Tr+K) @ f(U)

for f € C(T), K € K(H*(T)). The map from C*(T;) to C(T) taking T} +
K to f is a *-homomorphism and by the normal functional calculus the map
taking f to f(U) is a *-homomorphism. It follows that the composition map
T+ K — f — f(U) is a +-homomorphism from C*(T¢) onto C*(U). Thus ¢
is a *-monomorphism and ¢(7¢) = V. As the image of ¢ is a C*-algebra, it is
surjective. [
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