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Abstract. This work includes a survey of most of the results concerning
EP elements in semigroups and rings with involution and in C∗-algebras

1. Introduction. Let T be a bounded linear operator on a complex
Hilbert space H. It is well known that when T is an operator with closed range
then its unique generalized inverse T † (known also as Moore-Penrose inverse) is
defined. If T has a closed range and commutes with T †, then T is called an EP
operator. EP operators constitute a wide class of operators which includes the
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self adjoint operators with closed range, the normal operators with closed range
and the invertible operators.

All the above have the origin to the notion of an EP matrix. An n × n

complex matrix A is an EP matrix if the range of A coincides with the range of the
adjoint A∗ of A. EP matrices were introduced by Schwerdtfeger in [35] (it should
be noted that Schwerdtfeger definition is not the one given in the beginning, but
an equivalent one).

The notion of an EP matrix was extended by Campel and Meyer to op-
erators on a Hilbert space in [5].

In this paper most of the results concerning EP elements in semigroups
and rings with involution and in C∗-algebras are presented. For simplicity the
notion of an EP operator is given first and then some more results are presented
in a particular section. Following EP elements in general which are arranged in
three sections for rings, for semigroups and for C∗-algebras correspondingly, are
studied.

2. Preliminaries and notation. Let H be a complex Hilbert space.
Then, B(H) denotes the algebra of bounded linear operators on H, and for T ∈
B(H), R(T ) denotes the range of T , and N (T ) the kernel of T .

To denote the direct sum of two subspaces M1 and M2 of H we will
use M1 ⊕ M2 and to denote the orthogonal sum of two orthogonal subspaces

M1 and M2 of H we will use M1

⊥
⊕M2. If M1 and M2 are subspaces of H

with M1 ⊕M2 = H, then we will say that M2 is a complement of M1 and we
will denote the projection onto M1 parallel to M2 by PM1‖M2

. The orthogonal
projection onto a subspace M of H will be denoted by PM.

The generalized inverse, known as Moore-Penrose inverse, of an operator
T ∈ B(H) with closed range, is the unique operator T † satisfying the following
four conditions:

(1) TT † = (TT †)∗, T †T = (T †T )∗, TT †T = T, T †TT † = T †

where T ∗ denotes the adjoint operator of T .

It is easy to see that R(T †) = N (T )⊥, TT † is the orthogonal projection
of H onto R(T ) and that T †T is the orthogonal projection of H onto N (T )⊥. It
is well known that R(T †) = R(T ∗). It is also known that T † is bounded if and
only if T has a closed range.

An operator T with closed range is called EP if [T, T † ] = 0. It is easy to
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see that we have the following equivalent conditions for T to be EP:

T EP ⇔ [T, T † ] = 0 ⇔ TT † = T †T ⇔ PT = PT ∗ ⇔ PN (T ∗) = PN (T )

⇔ N (T ) = N (T ∗) ⇔ R(T ) = R(T ∗) ⇔ R(T )
⊥
⊕N (T ) = H.

It is worthwhile to notice that in finite dimensional case, since N (T ),
N (T ∗), are equidimansional, if N (T ) is contained in N (T ∗) or vice versa then T

is EP. This is not in general true in the infinite dimensional case (e.g. Let T be
the left shift).

We note two things about the last equivalence in the characterization of
EP operators:
(1) This equivalence is not true if the sum is not an orthogonal one. To see that
let PM1‖M2

be a non-orthogonal projection. Then PM1‖M2
is not EP, since

PM1‖M2
is EP ⇔ N (PM1‖M2

) = N (PM⊥

2
‖M⊥

1

)

⇔ M2 = M⊥
1

⇔ PM1‖M2
= PM1‖M⊥

1

⇔ PM1‖M2
= PM1

⇔ PM1‖M2
is an orhtogonal projection

whereas
R

(

PM1‖M2

)

⊕N
(

PM1‖M2

)

= M1 ⊕M2 = H.

(2) For matrices we have the following stronger version of this equivalence: If A
is an n × n complex matrix, then A is EP if and only if there exist subspaces

M1 and M2 of Cn such that Cn = M1

⊥
⊕M2 and A(M1) = M1, A(M2) = {0}.

This is not true if we move to operators on a Hilbert space.
Obviously T is EP if and only if T ∗ is EP and T is EP if and only if T †

is EP.
Isomorphisms are EP. Moreover we have that if T is EP, then the following

are equivalent:

(1) T is an isomorphism.

(2) T is injective.

(3) T is surjective.

Normal operators with closed range are EP, since if T is normal, then

R(T ) = R((TT ∗)
1

2 ) = R((T ∗T )
1

2 ) = R(T ∗).
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Elementary examples with matrices show that there exist operators with closed
range which are EP, but are not normal (for example, let A = [ 1 1

0 1 ]).
For a bounded projection P we have, as we already saw, that P is EP if

and only if P is orthogonal. In particular the zero operator 0 is EP. Most of the
aforementioned are from [11].

Let R be a ring and a ∈ R. Then the element a is group invertible if there
is a♯ ∈ R such that

aa♯a = a, a♯aa♯ = a♯, aa♯ = a♯a.

We denote the set of all group invertible elements of R by R♯. The element a

is called regular if there exist an element a− ∈ R such that aa−a = a. The
element a− is called inner or 1-inverse of a. A ring R is called regular if every
element in R is regular or equivalently if for every a ∈ R, a ∈ aRa. Regular rings
are important in many branches of Mathematics and especially in matrix theory,
since regularity condition is a linear condition that solves linear equations and
take the place of canonical decomposition. A non zero element a ∈ R is called
anti-regular if there exist an element â ∈ R such that âaâ = â. The element â

is called outer or 2-inverse of a and similarly the ring R is called anti-regular if
every non-zero element is anti-regular. Any element a+ which is an inner and an
outer inverse of a is called a reflexive or 1-2 inverse of a.

The right and the left annilators of a ∈ R will be denoted by

a0 = {x ∈ R : ax = 0} 0a = {x ∈ R : xa = 0}

correspondingly.
An involution in R is an anti-isomorphism (·)∗ : R → R of degree 2, that

is,
(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

If a = a∗ the element a is called Hermitian and if a∗a = aa∗, is called
normal. A *-regular ring is a ring with involution * such that a∗a = 0 ⇒ a = 0 for
all a ∈ R. An important result in a *-regular ring is the global star cancellation
law: a∗ab = a∗ac ⇒ ab = ac. A ring R is called strongly regular if for every
a ∈ R, a ∈ a2R, unit regular if for every a ∈ R, there exists a unit u ∈ R such
that aua = a and faithful if aR = {0} implies a = 0. It is well known that
a ring R is strongly regular if and only if every a ∈ R is a group member. A
fundamental theorem concerning equivalences of the notion group member is the
following

Theorem 2.1 ([18], Th. 1, p. 450). Let S be a semigroup and a ∈ S.
The following are equivalent.
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1. a is a group member.

2. a has a group inverse a♯ in S which satisfies axa = a, xax = x, and
ax = xa.

3. a has a commutative inner inverse a− which satisfies axa = a and
ax = xa.

4. aS = eS, Sa = Se and a ∈ eSe for some idempotent e ∈ S.

5. a ∈ a2S ∩ Sa2.

6. a ∈ a−aSaA= for some inner inverses a−, a= in S.

7. aS = Sa+ for some reflexive inverse a+ in S.

7a. Sa = Sa+ for some reflexive inverse a+ in S.

8. aS = A−aS for some inner inverses a−, a= in S.

8a. Sa = Saa− for some inner inverses a−, a= in S.

If in addition S = R is a faithful ring, these are equivalent to

9. R = aR⊕ a0

9a. R = Ra⊕ 0a

In any of the above cases a♯ and e = aa♯ are unique and the maximal
subgroup containing a is given by

Ha = {x ∈ S : x♯exists,xx♯ = aa♯ = e} = {x ∈ S : xS = aS, Sx = Sa, x ∈ aSa}

3. EP operators. The theory of EP operators has been developed
considerably in the last 20 years and mainly since 1990. The first work in the
subject was the paper of S. L. Campbel and C. D. Meyer in 1975, [5], followed
by two papers of R. E. Hartwig [15], in 1976 and [16], in 1978, and a paper of R.
E. Hartwig and I. J. Katz [17], in 1976. Then there is a gap of 12 years till the
paper of K. G. Brock [4] in 1990.

The notion of an EP matrix was introduced by Schwerdtfeger in 1961.
The extension of this notion to the infinite dimensional case, namely the notion
of an EP operator was introduced by Campbel and Meyer in [5], in 1975 for
operators with closed range, acting on a Hilbert space.

An operator A ∈ B(H) is called EP if its rangeR(A) is closed andR(A) =
R(A∗). Notice that this definition is equivalent to the one given on page 84.

In [5] several relationships between EP operators, generalised inverses,
normal operators and binormal operators are given.
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Theorem 3.1 ([5], Th. 2, p. 328). Let A ∈ B(H). Then each one of the
following conditions implies the next.

1) A is normal.

2) A is EP.

3) A2 is EP.

4) (A†)2 = (A2)†.

5) AA†, A†A commute.

Furthermore all the implications are proper (None of these implications
reverse).

It is worthwhile to mention that the proof of the implication 2) ⇒ 3)
is based on the fact that an EP operator A, has a simple canonical form A =
[

T 0
0 0

]

relative to the orthogonal decomposition H = R(A) ⊕ N (A), of the

Hilbert space H.

With the same proof we can prove the following

Proposition 3.2. If An is EP then (A†)n = (An)†.

Remark 3.3. Note that to each statement which characterizes a normal
operator if the adjoint operation (∗) is replaced by the generalized inverse oper-
ation (†) then the resulting statement is called the dual statement and, in most
cases, is a characterization for EP operators. For example the dual statement
of the statement “A is a normal operator if and only if A∗A = AA∗” is “A is
EP operator if and only if A†A = AA†” which is true. In [5] it is proved that
Embry’s result for matrices ([12]) which states that both A∗A and AA∗ commute
with A+A∗ then A is normal, it is true for operators in Hilbert space.

Theorem 3.4 ([5], Th. 6, p. 331). Let A ∈ B(H). If AA† and A†A both
commute with A+A†, then A is EP.

4. EP elements in rings with involution. Hartwig in [15] defined
and studied EP elements in a *-regular ring R.

Definition 4.1. An element a ∈ R is called EP if aR = a∗R.

Hartwig in 1975 using properties of the four types of inverses (1-2,1-3,1-
4, and 1-2-3-4 inverses) and techniques analogous to the complex case of EP
matrices proved many equivalent formulations for an element a ∈ R to be EP.
Such formulations are seen in the following
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Proposition 4.2 ([15], Prop. 25, Prop. 26, Lem. 6). Let R be a *-regular
ring. The following are equivalent

(i) aR = a∗R

(ii) aa† = a†a

(iii) Ra = Ra∗

(iv) a0 = (a∗)0

(v) 0a =0 (a∗)

(vi) a2a† = a = a†a2

(vii) a(aa† − a†a) = (aa† − a†a)a

(viii) (a2)† = (a†)2, aR = a2R, and Ra = Ra2

(ix) a† ∈ {a}′′ = {x|ar = ra ⇒ xr = rx} (the bicommutant of a.)

It is evident now that if a is an EP element then a† is the group inverse
of a and hence R = aR⊕ a0.

Now since a normal element (aa∗ = a∗a) is EP, we have that a† ∈ {a}′′

and hence a†a∗ = a∗a† ⇒ (a∗)†a = a(a∗)†.
Conversely if aa† = a†a and (a∗)†a = a(a∗)† then a† ∈ {a}′′ ⇒ a†(a∗)† =

(a∗)†a† and hence aa∗ = a∗a i.e. a is a normal element. Therefore

Proposition 4.3.

(i) aa∗ = a∗a ⇔ aa† = a†a and (a∗)†a = a(a∗)† ([15], Prop. 27, p. 243)
(ii) a is an EP element ⇔ b = a(a∗a)k is an EP element for some k ≥ 1

([15], end p. 243)
(iii) If a is an EP element so is any product of a’s and a∗’s ([15], end p.

243)

The following proposition generalizes various results of Basket & Katz
[1], [19] in matrices. It also characterizes the set Ba = {x|xx† = x†x, aa† = xx†}.

Proposition 4.4 ([15], Prop. 30, and Corollary p. 245–246 ). Let R be
a *-regular ring and let a, b be EP elements in R.

(α) The following conditions are equivalent

(i) aR = bR

(ii) (ab)† = b†a†, abR = aR, Rab = Rb

(iii) ab is EP, and abR = aR, Rab = Rb

(iv) (ab)† = b†a†, (ba)† = a†b†, abR = aR, baR = bR

(v) ab, ba are EP, and abR = aR, baR = bR.
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(β) If (ab)† = a†b† and abR = aR, Rab = Rb then aR = bR, ab is an EP
element, and ab = ba.

(γ) If ab = ba, then ab, ba, a∗b, and ab∗ are EP elements.

(δ) If moreover R has a unity, then there exist units u and v such that
a∗ = au = va.

Remark 4.5. Part (δ) of the above Proposition 4.4 it is proved in [16],
theorem 3, p.59 under weaker conditions. The ring R does not have to be regular.
It is enough R to be a ring with unity and with involution.

The following result is Corollary 2 in [17], p. 17.

Theorem 4.6. Let R be a regular ring with involution, and suppose that
a and b are EP elements of R. If u = (1− aa†)b, v = a(1− bb†), w = b(1− aa†),
and z = (1− bb†)a, then any of the following conditions

(α) u∗u = 0 ⇒ u = 0, v∗v = 0 ⇒ v = 0, (ab)† = b†a†, abR = aR,
Rab = Rb

(β) ww∗ = 0 ⇒ w = 0, z∗z = 0 ⇒ z = 0, (ba)† = a†b†, baR = bR,
Rab = Ra

(γ) vv∗ = 0 ⇒ v = 0, ww∗ = 0 ⇒ w = 0, (ab)† = b†a†, (ba)† = a†b†,
abR = aR, baR = bR.

imply the equivalent conditions:

(i) ab is EP and abS = aS, Sab = Sb,

(ii) aS = bS and aa∗S = aS,

(iii) aS = bS and b∗bS = b∗S,

(iv) aS = bS and aS = a2S,

(v) aS = bS and Sb = Sb2,

(vi) ab and ba are EP and abS = aS, baS = bS.

In a recent paper [31] Mosic and Djordjevic studying the reverse order
law in rings with involution proved various equivalent conditions that imply that
the product of two elements in a ring with involution is EP. In the following three
theorems we summarize by restating these results

Theorem 4.7 ([31], Cor. 2.1, p. 277). Let R be a ring with involution,
a, b ∈ R† and ab ∈ R♯. If any of the following four equivalent conditions

(i) b† = (ab)♯a,

(ii) b = a†ab = baa† and abb† = b†ba,

(iii) bR ⊂ a∗R, a†ab = baa† and abb† = b†ba,
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(iv) (a∗)0 ⊂ b0, a†ab = baa† and abb† = b†ba,

or any of the following four equivalent conditions

(i) a† = b(ab)♯,

(ii) a = abb† = b†ba and a†ab = baa†,

(iii) aR ⊂ b∗R, a†ab = baa† and abb† = b†ba,

(iv) (b∗)0 ⊂ a0, a†ab = baa† and abb† = b†ba,
is satisfied then ab is EP and (ab)♯ = b†a†.

Theorem 4.8 ([31], Th. 2.7, p. 279). Let R be a ring with involution.
Suppose that a, b ∈ R† and ab ∈ R♯. Then ab is EP and (ab)♯ = b†a† if and only
if one of the following equivalent conditions holds:

(i) a†ab ∈ R† and b(ab)♯ = bb†a† = (abb†)†,

(ii) abb† ∈ R† and (ab)♯a = b†a†a = (a†ab)†,

(iii) ab, a†ab† ∈ R†, (ab)♯ = (a†ab)†a† and (a†ab)† = b†a†a,

(iv) ab, abb† ∈ R†, (ab)♯ = b†(abb†)† and (abb†)† = bb†a†,

(v) ab, a∗ab ∈ R†, (ab)♯ = (a∗ab)†a∗ and (a∗ab)† = b†(a∗a)♯

(vi) ab, abb∗ ∈ R†, (ab)♯ = b∗(abb∗)† and (abb∗)† = (bb∗)♯a†,

Theorem 4.9 ([31], Th. 2.8, p. 281). Let R be a ring with involution. If
a, b ∈ R†, then the following conditions are equivalent:

(i) ab ∈ R† ∩R♯, ab is EP and (ab)† = b†a†,

(ii) (a†)∗b ∈ R† ∩R♯ and [(a†)∗b]♯ = b†a∗ = [(a†)∗b]†,

(iii) a(b†)∗ ∈ R† ∩R♯ and [a(b†)∗]♯ = b∗a† = [a(b†)∗]†.

In [22] Koliha and Patricio used the notion of spectral idempotent of an
element in a ring R with unit 1 6= 0 and the notion of the generalized Drazin
inverse to give new characterizations of EP elements in a ring with involution. For
their needs they gave the following definition: An element α ∈ R is generalized
Drazin invertible (g-Drazin invertible for short) if there exists an element αD =
b ∈ R such that

b ∈ {a}′′, ab2 = b, a2b− a ∈ Rqnil,

where Rqnil is the set of quasinilpotent elements of R. α ∈ R is quasinilpotent if
for every x ∈ {α}′, 1 + xα is invertible. The set of g-Drazin invertible elements
of R is denoted by RgD and the set of Moore-Penrose invertible elements of R is
denoted by R†.

An element α ∈ R is quasipolar if there exists p ∈ R such that

p2 = p, p ∈ {a}′′, αp ∈ Rqnil, α+ p is invertible
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Any idempotent p satisfying the above conditions is called spectral idempotent
of α and is denoted by απ. Any quasipolar element α ∈ R has a unique spectral
idempotent.

An element α of a ring R with involution is said to be EP if α ∈ RgD∩R†

and αD = α†. Of course this definition is equivalent to the previous one Definition
4.1 and the well known characterization of EP elements which is the condition
(ii) of Proposition 4.2. An element α is generalized EP (or gEP for short) if there
exists k ∈ N such that αk is EP.

The main result in [22] that plays an important role to characterize EP
elements in a ring with involution is the following

Theorem 4.10 ([22], Th. 7.2, p. 149). For α ∈ R the following conditions
are equivalent:

(i) α is EP

(ii) α is group invertible and απ = (α∗)π

(iii) α ∈ RgD ∩R† and απ = (α∗α)π

(iv) α ∈ RgD ∩R† and απ = (αα∗)π

(v) α ∈ Rdag and (α∗α)π = (αα∗)π

More over:

Theorem 4.11 ([22], Ths 7.3, 7.4 pp. 150–152 ). An element α ∈ R is
EP if and only if

(α) α is group invertible and one of the following equivalent conditions holds

(i) α♯α is symmetric

(ii) α(α♯)∗ = αα♯(α♯)∗

(iii) (α♯)∗ = (α♯)∗α♯α

(iv) α♯(απ)∗ = απ(α♯)∗

or

(β) α is g-Drazin invertible and one of the following equivalent conditions holds:

(i) α∗απ=0

(ii) απα∗=0

(iii) α∗ = α∗αDα

(iv) α∗ = αDαα∗

From the above Theorem 4.11 the authors proved analogous results for
gEP elements.
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Patricio and Puystjens in [34] in order to distinguish between various
conditions on an element in a ring with involution, introduced new terminology.
In a ring with involution * they defined the following notions

Definition 4.12. 1. An element α in a ring R with involution * is called
*-EP if αR = α∗R.

2. An element α in a ring R with involution * is called *-group-Moore-
Penrose (*-gMP in short) invertible if α† and α♯ exist and α† = α♯.

Note that in a *-regular ring an element is *-EP if and only if it is *-gMP
(see also the comment following Proposition 4.2).

In a *-regular ring every element has a *-MP inverse but this is not true
in an arbitrary ring R with involution * . Not every element in R has a *-MP
inverse. For this reason the authors firstly characterize the elements in R which
have a group inverse α♯ and a Moore-Penrose inverse α† such that α♯ = α† and
then they connected it with the notions of *-EP and *-gEP. Namely:

Proposition 4.13 ([34], Prop. 2, p. 162). Given α in a ring R with
involution * the following conditions hold:

1. If αR = α∗R then α† exists with respect to * if and only if α♯ exists,
in which case α† = α♯

2. If α† exists with respect to *, α♯ exists and α† = α♯ then αR = α∗R

Proposition 4.14 ([34], Corol. 3, p. 163). The following conditions are
equivalent:

1. α is *-gMP

2. α is *-EP and α♯ exists

3. α is *-EP and α† exists with respect to *

In 2006, Castro-Gonzalez and Velez-Cerrada [7], used perturbations of
generalized Drazin inverse and the equivalence of α ∈ R is EP if and only if α
is group inverse and απ = (α∗)π (see theorem 4.10(ii)) to study perturbations of
EP elements in rings with involution. They gave equivalent conditions ensuring
that if α is EP then an element b = α + e is again EP with spectral idempotent
bπ = απ + s where s is given. In fact we have the following

Theorem 4.15 ([7] Part of Th. 4.1, p. 391). Let R is a ring with unity 1
and with involution and s ∈ R such that 1−s2 is invertible. If α is EP and απ+s

is idempotent, then the following conditions on b = a+ e ∈ R are equivalent:

1. b is EP and bπ = απ + s

2. b ∈ RgD ∩R†, and b† = bD = (1 + s+ α†e)−1α†(1− s)
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3. b ∈ RgD ∩R†, and b† = bD, and (1 + s)b† − α†(1− s) = −α†eb†.

Finally from Theorem 4.2 in [7] the authors derived, putting s = 0, the
new equivalent condition that α is EP if and only if α∗ is group invertible and
(α∗)π = απ.

Mosic and Djordjevic in [26] and in a recent paper (2012) [27] as far as
concern EP elements in a ring R with involution gave necessary and sufficient
conditions for a Moore-Penrose invertible element or for a group and Moore-
Penrose invertible element in R to be a partial isometry and EP. In [26] they also
gave equivalent conditions for two elements α, b ∈ R such that αbα = α and α be
EP and in [27] they gave equivalent conditions for an element α ∈ R such that
α be EP and satisfies the condition (α∗)n = (α†)n for some n ∈ N. The next
theorem summarizes the aforementioned equivalent conditions

Theorem 4.16 ([26], Th. 2.3, p. 764 and [27] Th. 2.2, p. 462). Let R be
a ring with involution.
(α) If α ∈ R be Moore-Penrose invertible then α is a partial isometry and EP if
and only if α is group invertible and one of the equivalent conditions holds:

(i) α is a partial isometry and normal

(ii) α∗ = α♯

(iii) αα∗ = α†α

(iv) α∗α = αα†

(v) αα∗ = αα♯

(vi) α∗α = αα♯

(vii) α∗α† = α†α♯

(viii) α†α∗ = α♯α†

(ix) α†α∗ = α†α♯

(x) α∗α† = α♯α†

(xi) α∗α♯ = α♯α†

(xii) α∗α† = α♯α♯

(xiii) α∗α♯ = α†α†

(xiv) α∗α♯ = α♯α♯

(xv) αα∗α† = α†

(xvi) αα∗α† = α♯

(xvii) αα∗α♯ = α†

(xviii) αα†α∗ = α†
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(xix) α∗α2 = α

(xx) α2α∗ = α

(xxi) αα†α∗ = α♯

(xxii) α∗α†α = α♯

(β) If α ∈ R is Moore-Penrose invertible and group invertible and n ∈ N then α

is a partial isometry and EP if and only if one of the equivalent conditions holds:

(i) α is a partial isometry and α∗αn = αnα∗

(ii) αnα∗ = α†αn

(iii) α∗αn = αnα†

(iv) αnα∗ = αnα♯

(v) α∗αn = αnα♯

(vi) α∗(α†)n = α†(α♯)n

(vii) (α†)nα∗ = (α♯)nα†

(viii) (α†)nα∗ = α†(α♯)n

(ix) α∗(α†)n = (α♯)nα†

(x) α∗(α♯)n = (α♯)nα†

(xi) α∗(α†)n = (α♯)n+1

(xii) α∗(α♯)n = (α†)n+1

(xiii) α∗(α♯)n = (α♯)n+1

(xiv) αα∗(α†)n = (α♯)n

(xv) αα∗(α♯)n = (α†)n

(xvi) α∗αn+1 = αn

(xvii) αn+1α∗ = αn

(xviii) α(α†)nα∗ = (α♯)n

(xix) α∗(α†)nα = (α♯)n

In 2009, [32] Mosic, Djordjevic and Koliha generalized well known neces-
sary and sufficient conditions in matrices and operators on Hilbert space in the
setting of a ring with involution characterizing EP elements. They introduced 34
necessary and sufficient conditions for an element α of a ring with involution to
be EP. Very recently 2012, in [30] Mosic and Djordjevic gave 20 more necessary
and sufficient conditions involving powers of their group and Moore-Penrose in-
verse characterizing EP elements. These 54 conditions are included in the next
theorem
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Theorem 4.17 ([32], Th. 2.1, p. 529 and [30], Th. 2.1, p. 6703). Let R
be a ring with involution and let n,m ∈ N. An element a ∈ R is EP if and only
if α is group invertible and Moore-Penrose invertible and one of the following
equivalent conditions holds:

1. αα†α♯ = α†α♯α

2. αα†α♯ = α♯αα†

3. α∗αα♯ = α∗

4. αα♯α∗ = α∗αα♯

5. αα♯α† = α†αα♯

6. αα♯α† = α♯α†α

7. α†αα♯ = α♯α†α

8. (α†)2α♯ = α†α♯α†

9. α†α♯α† = α♯(α†)2

10. α†(α♯)2 = α♯α†α♯

11. α†(α♯)2 = (α♯)2α†

12. (α♯)2α† = α♯α†α♯

13. α(α†)2 = α♯

14. α∗α† = α∗α♯

15. α†α∗ = α♯α∗

16. α†α† = α♯α†

17. α†α† = α†α♯

18. (α†)2 = (α♯)2

19. αα♯α† = α♯

20. α♯α† = (α♯)2

21. α†α♯ = (α♯)2

22. α†αα♯ = α†

23. α♯α†α = α†

24. αα†α∗α = α∗ααα†

25. α†ααα∗ = αα∗α†α

26. αα†(αα∗ − α∗α) = (αα∗ − α∗α)αα†

27. α†α(αα∗ − α∗α) = (αα∗ − α∗α)α†α

28. α∗α♯α + αα♯α∗ = 2α∗

29. α†α♯α + αα♯α† = 2α†

30. ααα† + α†αα = 2α

31. ααα† + (ααα†)∗ = α+ α∗

32. α†αα+ (α†αα)∗ = α+ α∗

33. αα†α∗ = α∗αα†

34. α∗α†α = α†αα∗
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35. (α♯)n+m−1 = (α†)m(α♯)n−1(or (α♯)n+m−1 = (α♯)n−1(α†)m)

36. (α∗)nαα♯ = (α∗)n

37. αα♯(α∗)n = (α∗)nαα♯

38. α(α♯)n(α†)m = α†α(α♯)n+m−1

39. (α†)2(α♯)n = α†(α♯)nα† (or (α†)(α♯)nα† = (α♯)n(α†)2)

40. α†(α♯)n = (α♯)nα†

41. α(α†)n+1 = (α♯)n

42. α∗(α†)n = α∗(α♯)n (or (α†)nα∗ = (α♯)nα∗)

43. (α†)n+1 = (α♯)nα†(or(α†)n+1 = α†(α♯)n)

44. (α†)n = (α♯)n

45. αα†(α∗)n = (α∗)nαα† (or (α∗)nα†α = α†α(α∗)n)

46. αα†(α∗)nαm = (α∗)nαmαα† (or α†ααm(α∗)n = αm(α∗)nα†α)

47. αα†(αm(α∗)n − (α∗)nαm) = (αm(α∗)n − (α∗)nαm)αα†

(or α†α(αm(α∗)n − (α∗)nαm) = (αm(α∗)n − (α∗)nαm)α†α)

48. (α∗)nα♯α+ αα♯(α∗)n = 2(α∗)n

49. α†(α♯)nα+ αα♯(α†)n = 2(α†)n

50. αnαα† + α†ααn = 2αn

51. αnαα† + (αnαα†)∗ = αn + (α∗) (or α†ααn + (α†ααn)∗ = αn + (α∗))

52. αn = αnαα†(or αn = α†ααn)

53. αnα† = α†αn

54. [(α♯)∗]n = αα♯[(α♯)∗]n(or [(α♯)∗]n = [(α♯)∗]nα♯α)

Moreover

Theorem 4.18 ([30], Th. 2.3, p. 6706). Let n ∈ N and α ∈ R such that α
is group and Moore-Penrose invertible and αn is Moore-Penrose invertible. Then
α is EP if and only if α(αn)† = (αn)†α.

Patricio and Araujo in 2010, in [33], Th. 2.3, p. 449, studied necessary
and sufficient conditions for αα† = bb† where α, b are Moore-Penrose invertible
and then used them to get new characterizations of EP elements in a ring R

with involution. Note that in the condition αα† = bb† if we take b = α† we have
αα† = α†α which means that α is EP. From their Theorem 2.3 for b = α† we get
the following

Proposition 4.19. Let α ∈ R be Moore-Penrose invertible. Then α is
EP if and only if one of the following conditions holds:

(i) α = α†α2 and v = αα∗ + 1− α†α is invertible

(ii) α = α†α2 and w = αα∗ + 1 − α†(α†)− is a unit for one and hence for all
choices of (α†)−
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(iii) [αα†, α†α] = 0 and both k = α†(α†)∗ + 1− α†α and v = αα∗ + 1− α†α are
units.

Similar considerations for EP elements could be drawn correspondingly,
by using in Theorem 2.3, [33], p. 449 b = α∗, α = b† and α = b∗.

Very recently, in June 2012 Chen in [8] gives new characterizations of EP
elements in rings with involution. These characterizations are presented in the
following three statements.

Proposition 4.20 ([8], Prop. 2.3, p. 556). Let R be a ring with involu-
tion. Then a ∈ R is EP if and only if a ∈ R♯ ∩R† and satisfies the following two
conditions:

(i) (a†)2a♯ = a♯(a†)2,

(ii) aa† = a2(a†)2

To prove this Chen uses also Theorem 7.3 of [22].

Theorem 4.21 ([8], Th. 2.4, p. 556). Let R be a ring with involution.
Then a ∈ R is EP if and only if a ∈ R♯ ∩ R† and satisfies one of the following
conditions:

(i) ana† = a†an, for some n ≥ 1,

(ii) (a♯)na† = a†(a♯)n, for some n ≥ 1,

(iii) (a†)n = (a♯)n, for some n ≥ 1.

Corollary 4.22 ([8], Cor. 2.5, p. 557). Let R be a ring with involution.
Then a ∈ R is EP if and only if a ∈ R♯ ∩ R† and satisfies the following two
conditions:

(i) a† ∈ R♯,

(ii) (a†)2a♯ = a♯(a†)2.

It is well known that 1−αb is EP does not imply in general that 1− bα is
EP. Castro-Gonzalez, Mendes-Araujo and Petro Patricio in [6], Cor. 3.8, 3.9, p.
163 gave necessary and sufficient conditions for if 1− αb is EP (correspondingly
gEP) then 1− bα is EP (correspondingly gEP).

Remark 4.23. For any regular ring, we could define an element a to
be EP if there exists a 1-2 inverse a+ such that either a+R = aR or Ra+ = Ra

(see Hartwig, [16], p. 60). For *-regular rings (or when conditions a∗aR =
a∗R, aa∗R = aR are valid), the two definitions coincide since the Moore-Penrose
inverse a† exists and so a†R = a∗R.

Hartwig and Luh in [18] showed that an element of a ring R with unity is
regular if and only if there exists a unit u ∈ R and a group G such that a ∈ uG
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and derived that an EP element α is a group member in R which means that α
is contained in a subgroup of R with respect to multiplication.

In the next section, we will see some of the result in Proposition 4.4
are valid under much more weaker conditions, in the more abstract setting of
semigroups. Moreover, Meenakshi and Anbalagan in [25] defined and studied EP
elements in the more abstract setting of an incline.

Now we will see an extension of the definition of an EP element to an
EkP, k ≥ 1 element ([15], p. 243 and [24] ).

Definition 4.24. Let R be a *-regular ring. Hartwig defined the notion
of EkP, k ≥ 1 elements. An element a ∈ R is EkP, k ≥ 1, if the following hold

(i) aka† = a†ak, (ii) (a†)ka = a(a†)k.

The following relations are a consequence of this definition.
ak+1a† = ak = a†ak+1 ⇒
ak(aa† − a†a) = (aa† − a†a)ak = a(aka† − a†ak) = (aka† − a†ak)a.
Also ak+1R = akR, Rak+1 = Rak, ak(a†)kak = ak.
By symmetry, using relation (ii) of the Definition 4.24, we get analogous

relations with a and a† interchanged.
It is easy to see that if a is EkP element then (a†)k = (ak)# is the group

inverse of ak and hence R = akR⊕ (ak)0.
Also Meenakshi in [24] studied EkP elements in *-regular rings. He investigated
connections between EkP and EP elements and applied them to give sufficient
conditions for two EkP elements to satisfy the reverse order law for the Moore-
Penrose inverse.

5. EP elements in semigroups with involution. Let S be a
regular semigroup with two-sided zero 0 and with involution. Moreover we assume
S to be reflexive, that is, for all a ∈ S,

(2) 0((Sa)0) ⊆ Sa,

but we do not assume the global star-cancellation law. In such semigroups the
Moore-Penrose inverse does not exist in general, but in the study of EP elements
its existence is very helpful. For this reason we give first a list of equivalent
relations which ensure the existence of Moore-Penrose inverse.

Theorem 5.1 ([17], Th. 1, & Corollary p. 14–15). Let S be a regular
reflexive semigroup with involution and let a be a fixed element of S. The following
are equivalent:
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(α)

(i) there is a solution a13 to axa = a, (ax)∗ = ax,

(ii) there is a solution to a∗ax = a∗

(iii) a∗aS = a∗S

(iv) (a∗a)0 = a0,

(v) aS ∩ (aS)⊥ = (0).

Moreover

(β)

(i) there is a solution a14 to axa = a, (xa)∗ = xa,

(ii) there is a solution to aa∗x∗ = a

(iii) aa∗S = aS

(iv) (aa∗)0 = (a∗)0,

(v) a0 ∩ (a0)⊥ = (0).

(γ) The Moore-Penrose inverse a† exists if and only if (α) and (β) hold
and is then given by a† = a14aa13.

Definition 5.2. An element a of a regular semigroup with involution is
called EP if aS = a∗S.

For the next two results S will be a regular reflexive semigroup with
involution.

Theorem 5.3 ([17], Lem. 1, Lem. 3, p. 15). If a and b are EP elements
in S, then

(α) aS = bS ⇔ a∗S = b∗S ⇔ Sa = Sb ⇔ a0 = b0

(β) If a ∈ S is EP then the following are equivalent:

(i) a2S = aS

(ii) aa∗S = aS

(iii) Sa2 = Sa

(iv) a∗aS = aS

In any case a† exists and aa† = a†a.

Theorem 5.4 ([17], Th. 2, p. 16). Let a and b be EP elements of a
regular reflexive semigroup S with involution. Then the following are equivalent:

(i) ab is EP and abS = aS, Sab = Sb,
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(ii) aS = bS and aa∗S = aS,

(iii) aS = bS and b∗bS = b∗S,

(iv) aS = bS and aS = a2S,

(v) aS = bS and Sb = Sb2,

(vi) ab and ba are EP and abS = aS, baS = bS.

In any case a†, b†, (ab)†, and (ba)† exist, each commutes with its commutes with
its Moore-Penrose inverse, and

(ab)† = b†a†, (ba)† = a†b†.

The Theorem 5.4 remains true if we omit the hypothesis that b is EP.
Also a consequence of the Theorem 5.4 is the following

Corollary 5.5. Let S be as in Theorem 5.4 and a and b EP elements
of S. If abS = aS = a2S and Sab = Sb = Sb2, then a†, b†, and (ab)† exist. If,
addition, (ab)† = a†b†, then aS = bS, ab and ba are EP, and ab = ba.

X. Mary in [23] studies generalized inverses introducing a new generalized
inverse that is the inverse along an element of a semigroup based on Green’s
suitable relations. From this point of view someone could find (indirectly) in his
work reformulations in the new setting of equivalent conditions concerning EP
elements (see for example proposition 13 and theorem 14, [23], pp. 1842-1843
and compare them with Propositions 4.13 and 4.14).

6. EP elements in C
∗-algebras. Let A be a C∗-algebra. Then every

regular element α ∈ A has a Moore-Penrose inverse (see [13], Theorem 6) which
is denoted by α†, it is uniquely determined and α† ∈ {α, α∗}′′. By uniqueness it
is clear that (α∗)† = (α†)∗. It is also well known that (see [13], Theorem 2 and
8) a necessary and sufficient condition for an element α ∈ A to be regular is that
the range ideal αA be closed i.e. αA = clαA. An element α ∈ A is called EP if
it commutes with its Moore-Penrose inverse α†.
Harte and Mbekhta in [14], referred to EP elements in a C∗-algebra indirectly
through their Theorem 10, which is the following

Theorem 6.1 ([14], Th. 10, p. 137). If α ∈ αAα is a regular element of
a C∗-algebra A then the following are equivalent:

(i) αα† = α†α

(ii) α0 = (α∗)0

(iii) 0α =0 (α∗)
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(iv) α ∈ A−1α∗

(v) α ∈ α∗A−1

Compare the above Theorem 6.1 with Proposition 4.2 which is referred
to *-regular rings.

We remark here that if α is a regular element in a C∗-algebra A then
there exists b ∈ A such that α = αbα, b = bαb. Indeed the generalized inverse b

of α (α = αbα) can be normalized: If we put c = bαb then α = αcα and c = cαc,
and the passage from b to c does not change the idempotents p = p2 = bα and
q = q2 = ab.

Let A be a Banach algebra with unit e. We say that an element α ∈ A is
Drazin invertible if there exists an element x ∈ A such that

x ∈ {α}′, αx2 = x, α(e− αx) ∈ QN(A),

where QN(A) denotes the set of quasinilpotent elements of A. Such x, when it
exists, it is unique and it is denoted by x = αD. We also denote the set of all
Drazin invertible elements of A by AD (see e.g [20]).
Koliha in [20] generalizes a well known result for matrices to C∗-algebras which
is another equivalent condition for an element α ∈ A to be EP. Let A be a unital
C∗-algebra. Then

Proposition 6.2 ( [20], Prop. 2.2, p. 19). Let α ∈ A be Moore-Penrose
invertible. Then

α†α = αα† ⇐⇒ [α ∈ AD and α† = αD] =⇒ α is simply polar.

It is proved in [20] that an element α in A is Moore-Penrose invertible if
and only if it is regular and α is Drazin invertible if and only if it is quasipolar.
Taking these into account AD, A† denote also the sets of all quasipolar and
regular elements of A respectively. A−1 denotes the set of all invertible elements
of A. α ∈ A is quasipolar if 0 is isolated (possibly removable) singularity of the
resolvent of α and polar if 0 is at most a pole of the resolvent. If α is quasipolar,
then so is α∗ and (α∗)π = (απ)∗.

It is also well known (see [21], proposition 1.1) that

α ∈ AD ⇔ there exists x ∈ A s.t. αx = xα, xαx = x, αxα = α+ u, u ∈ QN(A)

⇔ there exists p = p2 ∈ A s.t. αp = pα ∈ QN(A) and α+ p ∈ A−1

The idempotent p above is the spectral idempotent of α ∈ AD at 0, denoted by
p = απ
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α is polar ⇔ αkαπ = 0 for some non negative integer k.

If ααπ = 0 then α is simply polar. It is known that απ = e − αDα and
αD = (α+ απ)−1(e− απ).

In [21], a number of new characterizations is given, in terms of spectral
idempotents, of the EP elements of a C∗-algebra.

Theorem 6.3 ([21], Th. 2.1, p. 83). Let α ∈ A†. Then α†α = αα† if and
only if α is simply polar with a selfadjoint spectral idempotent at 0. In this case

απ = (α∗)π = (α∗α)π = (αα∗)π.

A consequence of the above Theorem 6.3 and its proof is the following

Corollary 6.4 ([21], Cor. 2.2, p. 84). The following conditions are equiv-
alent

(i) α ∈ A† and α†α = αα†

(ii) α ∈ A† ∩ AD and α† = αD

(iii) α is simply polar and (α∗)π = απ

(iv) α is simply polar and απ = (α∗α)π (respectively απ = (αα∗)π)

(v) α ∈ A† and (α∗α)π = (αα∗)π

Another interesting result is the following corollary in which it is given
one more necessary and sufficient condition for an element α ∈ A† to be EP.

Corollary 6.5 ([21], Cor. 2.3, p. 84). Let α ∈ A†. Then α is EP
(equivalently α†α = αα†) if and only α† = f(α) for some function f holomorphic
in a neighbourhood of the spectrum σ(α).

The Theorem 3.1 in [21] extends and generalizes well known characteriza-
tions of EP elements to C∗-algebras. Since some of these characterizations have
already been stated in previous theorems, we will state only the new ones in the
next theorem.

Theorem 6.6 ([21], Th. 3.1, p. 84–85). If α ∈ A†, then the following are
equivalent.

(i) α ∈ A is EP.

(ii) α2α† = α = α†α2

(iii) (α∗α)πα = 0 = α(αα∗)π

(iv) αA = α∗A
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(v) Aα = Aα∗

(vi) α ∈ α†A ∩Aα†

(vii) α ∈ α†A−1 ∩ A−1α†

As we have seen in Proposition 4.2 some of these relations are valid in the
more abstract situation of *-regular rings.

In Proposition 4.4 and Theorem 4.6 we have seen conditions where the
product of two EP elements is again EP. In the following theorem we have anal-
ogous results in C∗-algebras.

Theorem 6.7 ([21], Th. 4.3, p. 87). Let A†
com be the set of all EP

elements of A, α, b ∈ A†
com and α0, b0 be finite dimensional vector subspaces of

A. Then the following conditions are equivalent:

(i) αb ∈ A†
com

(ii) (αb)απ = 0 and bπ(αb) = 0

(iii) α0 ⊂ (αb)0 and 0b ⊂ 0(αb)

(iv) (αb)0 = α0 + b0 and 0(αb) = 0α+ 0b

Beńıtez in [2] gives a new characterization for an element α ∈ A, where
A is a C∗-algebra with unit, to be EP and uses it to study the commutativity
of two elements of A in the case when one of them is EP. Moreover he uses a
representation of A with respect to a projection p ∈ A and the aforementioned
results to get a kind of “simultaneous diagonalization” when α ∈ A is EP, b ∈ A,
αb = bα and α, b is written according to this representation.

Theorem 6.8 ([2], Th. 2.1 and Cor. 2.3, pp. 766–767). Let A be a
C∗-algebra with unit 1 and α ∈ A
(α) The following conditions are equivalent

(i) α is EP
(ii) There exists a unique projection p ∈ A such that α + p ∈ A and

αp = pα. (Note here that the unique projection is p = απ = 1− αα†)

(β) If α has a Moore-Penrose inverse and k ∈ N, then the following conditions
are equivalent

(i) αk = α†

(ii) α is EP and αk+1 + απ = 1

Now if p ∈ A is a projection, then every x ∈ A has the following matrix
representation which preserves the involution in A

(3) x =

[

pxp px(1− p)
(1− p)xp (1− p)x(1− p)

]
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According to this representation when α ∈ A is EP, b ∈ A and p = απ we
get

α =

[

0 0
0 α

]

, b =

[

απbαπ απb(1− απ)
(1− απ)bαπ (1− απ)b(1− απ)

]

Then:

Theorem 6.9 ([2], Th. 3.1 and Cor. 3.3 and Th. 3.6, p. 768). Let A be
a C∗-algebra with unit 1, α ∈ A is EP and b ∈ A. Then
(α) ‖(1− απ)bαπ‖ ≤ ‖αb − bα‖ ‖α†‖, ‖απb(1− απ)‖ ≤ ‖αb − bα‖ ‖α†‖
(β) If α, b commute then bαπ = βπb and if moreover b is also EP then

(i) απbπ = bπαπ

(ii) αb† = b†α and bα† = α†b

(iii) α†b† = b†α† = (αb)†

(γ) If αb = bα = 0 then

(i) απb = b = bαπ

(ii) α†b = bα† = 0

(iii) b ∈ A† implies αb† = bα† = 0

(iv) b ∈ A† implies α+ b ∈ A† and (α+ b)† = α† + b†

(v) b is EP implies α+ b is also EP and (α+ b)π = απ + bπ − 1

In [9], characterizations of EP elements of a C∗-algebra A through dif-
ferent kind of factorizations of α ∈ A (for operators in B(H) see [11]) such as
α = bα∗, α = ucw and a = bc where the factors satisfy certain conditions, are
introduced. Boasso also studied in [3] EP Banach space operators and EP Ba-
nach algebra elements using factorizations. In this work, he derived new results
for EP elements in the frame of unital C∗-algebras. All these results referred to
C∗-algebras from both papers [9] and [3] we will be presented later on.

Firstly we will see a characterization from [9] in terms of the existence of
projections in A, namely

Theorem 6.10 ([9], Th. 1.4 p. 588). An element α ∈ A is EP if and
only if there exists a projection p ∈ A such that pα = α = αp, α ∈ (pAp)−1

The characterizations of EP elements using factorizations are summarized
in the following three theorems

Theorem 6.11 ([9], Ths 1.5, 1.7, 1.8, 1.10 and Lems 1.6, 1.9 pp 589–591).
Let α ∈ A be regular. The following conditions are equivalent:

(i) α is EP
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(ii) α = bα∗ = α∗c for some α, c ∈ A

(iii) α∗α = b1α
∗ and αα∗ − c1α for some b1, c1 ∈ A

(iv) α∗α = b2α
† and α† = c2α for some b2, c2 ∈ A

(v) α = ucu∗ for some c, u ∈ A satisfying c0 = (c∗)0 and u0 = {0}

(vi) α = ucw = w∗d∗v∗ for some c, d, u, v, w ∈ A satisfying c0 = d0

and u0 = v0 = {0}

(vii) α∗α = u1c1w1 and αα∗ = v1d1w1 for some c1, d1, u1, v1, w1 ∈ A

satisfying c01 = d01 and u01 = v01 = {0}

(viii) α = u2c2w2 and α† = v2d2w2 for some c2, d2, u2, v2, w2 ∈ A

satisfying c02 = d02 and u02 = v02 = {0}

(ix) α = ucw = w∗d∗u∗ for some c, d, u, w ∈ A with c0 ⊂ d0,

(c∗)0 ⊂ (d∗)0 and u0 = (w∗)0 = {0}

(x) α = bc, b ∗ A = A = cA for some b, c ∈ A and one of the

following conditions holds:

1.bb† = c†c, 2.b(b∗b)−1b∗ = c∗(cc∗)−1c 3.(b∗)0 = c0

Theorem 6.12 ([3], Ths 3.10, 3.11 pp. 250–251). Let A be a unital
C∗-algebra and consider α ∈ A such that α† exists. Suppose that there exist
b, c ∈ A such that α = bc, b0 = 0 and cA = A. Then, the following statements
are equivalent.

(i) α ∈ Ais EP,

(ii) α ∈ c∗A∩Ab∗,

(iii) (b∗)0 = c0,

(iv) bA = c∗A,

(v) 0b = 0(c∗),

(vi) Ac = Ab∗,

(vii) bA−1 = c∗A−1,

(viii) A−1c = A−1b∗,

(ix) ∃x ∈ A−1 : c = xb∗,

(x) ∃y ∈ A : y0 = 0, and c = yb∗,

(xi) ∃z1, z2 ∈ A : c = z1b
∗ and b∗ = z2c,

(xii) ∃v ∈ A : vA = A and b = c∗v,
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(xiii) ∃s1 ∈ A : s0 = 0 and b∗ = s1c,

(xiv) ∃s2 ∈ A : s2A = A and c∗ = bs2,

(xv) α∗α = c∗b∗bcbb† and α∗α = c∗b∗c†cbc,

(xvi) αα∗ = bcc∗b∗c∗(c∗)† and αα∗ = bcbb†c∗b∗,

(xvii) α∗α = c∗b∗bcbb† and α∗α = c∗b∗bcbb†,

(xviii) αα∗ = c†b†bcbcc∗b∗ and α∗α = c∗b∗bcbb†,

(xix) α∗α = bcc†b†b∗c∗bc and αα∗ = bcc∗b∗c∗(c∗)†,

(xx) αα∗ = c†b†bcbcc∗b∗ and α∗α = bcc†b†b∗c∗bc

Theorem 6.13 ([3], Th. 4.2 p. 252). Let A be a unital C∗-algebra and
consider α ∈ A such that α† exists. Then, the following statements are equivalent.

(i) α ∈ A is EP,

(ii) ∃ s ∈ A such that s0 = 0 and α∗ = sα,

(iii) ∃ s1, s2 ∈ A such that α∗ = s1α and α = s2α
∗,

(iv) ∃ u ∈ A such that uA = A and α∗ = αu,

(v) ∃ u1, u2 ∈ A such that α∗ = αu1 and α = α∗u2,

(vi) ∃ t ∈ A such that 0t = 0 and α∗ = αt,

(vii) ∃ x ∈ A such that Ax = A and α∗ = xα,

(viii) ∃ v ∈ A−1 such that α∗α = vαα∗,

(ix) ∃ v1 ∈ A such that v01 = 0 and α∗α = v1αα
∗,

(x) ∃ v2 and v3 ∈ A such that α∗α = v2αα
∗ and αα∗ = v3α

∗α,

(xi) ∃ w ∈ A−1 such that α∗α = αα∗w,

(xii) ∃ w1 ∈ A such that w1A = A and α∗α = αα∗w1,

(xiii) ∃ w2 and w3 ∈ A such that α∗α = αα∗w2 and αα∗ = α∗αw3,

(xiv) ∃ z1 and z2 ∈ A such that α∗α = αz1α
∗ and αα∗ = α∗z2α,

(xv) ∃ h1 ∈ A−1 such that α∗α = αh1h
∗
1α

∗,

(xvi) ∃ h2 ∈ A such that h02 = 0 and α∗α = αh2h
∗
2α

∗,

(xii) ∃ h3 ∈ A such that h3A = A and α∗α = αh3h
∗
3α

∗w1.

Note that in [10] it is deduced (Theorem 4.1, p.6) the well known result
that selfadjoint C∗-elements are EP.
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Mosić and Djordjević in two recent papers [28],[29] defined and studied
weighted-EP elements in C∗-algebras. In [28], sixty six equivalent conditions for
a regular element α ∈ A, where A is a unital C∗-algebra, to be weighted-EP,
are given. These conditions are based on analogous conditions for weighted-EP
complex square matrices which have been studied by Tian and Wang in [36]. In
[29], weighted-EP elements in C∗-algebras in terms of factorizations following the
motivations of the papers [3], [9] and [11], are studied. For completeness we will
give the definition of weighted-EP element and of the weighted Moore-Penrose
inverse and we will present all these results in the sequel.

Definition 6.14. Let A be a unital C∗-algebra.
(i) An element α ∈ A is said to be weighted-EP with respect to two

invertible positive elements e, f ∈ A (or weighted-EP w.r.t. (e,f)) if both eα and
αf−1 are EP, that is α is regular, eαA = (eα)∗A, and αf−1A = (αf−1)∗A.

(ii) The element α ∈ A has the weighted MP-inverse with weights e and
f if there exists b ∈ A such that

αbα = α, bαb = b, (eαb)∗ = eαb, (fbα)∗ = fbα.

The unique weighted MP-inverse with weights e and f will be denoted by α
†
e,f

We also need the definition of the following mapping: x → x∗e,f = e−1x∗f ,
for all x ∈ A. Notice that this map is not an involution, because in general
(xy)∗e,f 6= y∗e,fx∗e,f .

Theorem 6.15 ([28], Th. 2.2, p. 9.16 and Cor. 2.3, p. 929). Let A be a
unital C∗-algebra, and let e and f be invertible positive elements in A. If α ∈ A
is regular, then the following statements are equivalent:

1. α is weighted-EP w.r.t. (e, f),

2. α is weighted-EP w.r.t. (f, e),

3. α is both weighted-EP w.r.t. (e, e) and (f, f),

4. eαA = fαA = α∗A,

5. e−1α∗A = f−1α∗A = αA,

6. α
†
e,fA = αA and (α†

e,f )
∗A = α∗A,

7. α∗ is weighted-EP w.r.t. (e−1, f−1),

8. αα
†
e,f = α

†
e,fα,

9. α ∈ A♯ and αk = α
†
e,fαα

k = αkαα
†
e,f , for any/some integer k ≥ 1,

10. α
†
e,f = α(α†

e,f )
2 = (α†

e,f )
2α,
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11. α ∈ A♯ and α♯ = α
†
e,f ,

12. α ∈ A♯ and both eαα♯ and fαα♯ are Hermitian,

13. α ∈ A♯ and α♯α
†
e,f = α

†
e,fα

♯,

14. α ∈ A♯ and αα♯α
†
e,f = α

†
e,fα

♯α,

15. α ∈ α
†
e,fA

−1 ∩ A−1α
†
e,f ,

16. α ∈ α
†
e,fA∩Aα

†
e,f ,

17. αA−1 = f−1α∗A−1 and A−1α = A−1α∗e,

18. A−1α∗ = A−1αf−1 and α∗A−1 = eαA−1,

19. ∃ x ∈ A such that α = e−1α∗xα∗f,

20. α = (αe−1)†αe−1αfα(fα)†,

21. α ∈ A♯ and αk is weighted-EP w.r.t. (e, f),

for any/some integer k ≥ 1,

22. αα∗α is weighted-EP w.r.t. (e, f),

23. α0 = [(eα)∗]0 and (α∗)0 = (αf−1)0,

24. A = e−1α∗A⊕ (α∗)0 = α∗A⊕ (α∗f)0,

25. α† is weighted-EP w.r.t. (e−1, f−1),

26. α
†
e,f is weighted-EP w.r.t. (e, f),

27. α ∈ A♯ and α2k−1 = α
†
e,fα

2k+1α
†
e,f , for any/some integer k ≥ 1,

28. α ∈ A♯ and αα
†
e,fα

†
e,fα = α

†
e,fααα

†
e,f ,

29. α ∈ A♯ and α♯ is weighted-EP w.r.t. (e, f),

30. α ∈ A♯ and αα♯ = αα†
e,e = αα

†
f,f (or αα♯ = α†

e,eα = α
†
f,fα),

31. α ∈ A♯ and αα♯ = αα
†
e,f = αα

†
f,e (or αα

♯ = α
†
f,eα = α

†
e,fα),

32. α ∈ A♯, αα†
e,ee

−1α∗α = e−1α∗ααα†
e,e and αα

†
f,ff

−1α∗α = f−1α∗ααα
†
f,f ,

33. α ∈ A♯, αα
†
e,fe

−1α∗α = e−1α∗ααα
†
e,f and αα

†
f,ef

−1α∗α = f−1α∗ααα
†
f,e,

34. α ∈ A♯, α†
e,eααα

∗e = αα∗eα†
e,eα and α

†
f,fααα

∗f = αα∗fα
†
f,fα,

35. α ∈ A♯, α
†
f,eααα

∗e = αα∗eα
†
f,eα and α

†
e,fααα

∗f = αα∗fα
†
e,fα,

36. α ∈ A♯ and αkαα
†
e,f + α

†
e,fαα

k = 2αk for any/some integer k ≥ 1,

37. α ∈ A♯ and α
†
e,fα

♯α+ αα♯α
†
e,f = 2α†

e,f ,
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38. α ∈ A♯ and α∗e,f = α∗e,fαα♯ = α♯αα∗e,f ,

39. α ∈ A♯ and α∗e,fαα♯ + α♯αα∗e,f = 2α∗e,f ,

40. α ∈ A♯ and αkαα
†
e,f + (αkαα

†
e,f )

∗ = α
†
e,fαα

k + (α†
e,fαα

k)∗ = αk + (αk)∗,

for any/some integer k ≥ 1,

41. αα
†
e,f (α+ λα

†
e,f) = (α+ λα

†
e,f )αα

†
e,f and α

†
e,fα(α+ λα

†
e,f ) =

(α+ λα
†
e,f )α

†
e,fα, for any/some complex number λ 6= 0,

42. αb = bα ⇒ α
†
e,fb = bα

†
e,f ,

43. α
†
e,f = ϕ(α), for some function ϕ holomorphic in a neighborhood

of σ(α),

44. (α+ λα†
e,e)A = (α+ λα

†
f,f )A = (λα+ α3)A and A(α+ λα†

e,e) =

(α+ λα
†
f,f ) = A(λα+ α3), for any/some complex number λ 6= 0,

45. (α+ λα
†
e,f )A = (λα+ α3)A and A(α+ λα

†
e,f ) = A(λα+ α3),

for any/some complex number λ 6= 0,

46. (α+ λα†
e,e)

0 = (α+ λα
†
f,f )

0 = (λα+ α3)0 and 0(α+ λα†
e,e) =

0(α+ λα
†
f,f ) =

0 (λα+ α3), for any/some complex number λ 6= 0,

47. (α+ λα
†
e,f )

0 = (λα+ α3)0 and 0(α+ λα
†
f,e) =

0(λα+ α3),

for any/some complex number λ 6= 0,

48. α ∈ A♯ and (α†
e,f )

2α♯ = α
†
e,fα

♯α
†
e,f = α♯(α†

e,f )
2,

49. α ∈ A♯ and α(α†
e,f )

2 = α♯ = (α†
e,f )

2α,

50. α ∈ A♯, α∗f,eα
†
e,f = α∗f,eα♯ and α

†
e,fα

∗f,e = α♯α∗f,e,

51. α ∈ A♯ and (α†
e,f )

2 = (α♯)2,

52. α∗e,f = α∗e,fα
†
e,fα = αα

†
e,fα

∗e,f ,

53. α ∈ A♯ and (α♯)∗e,f = αα♯(α♯)∗e,f = (α♯)∗e,fα♯α (or (α♯)∗e,f =

αα♯(α♯)∗e,f = (α♯)∗e,fα♯α),

54. α ∈ A♯ and α
†
e,f(α

♯)2 = (α♯)2α†
e,f ,

55. α ∈ A♯ and αkα
†
e,f = α

†
e,fα

k, for any/some integer k ≥ 1,

56. αα
†
e,f (α+ λα∗e,f ) = (α+ λα∗e,f )αα†

e,f and α
†
e,fα(α + λα∗e,f ) =

(α+ λα∗e,f )α†
e,fα, for any/some complex number λ 6= 0,
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57. α ∈ A♯, αα†
e,e(αα

∗e− e−1α∗α) = (αα∗e− e−1α∗α)αα†
e,e and

αα
†
f,f (αα

∗f − f−1α∗α) = (αα∗f − f−1α∗α)αα†
f,f ,

58. α ∈ A♯, αα
†
e,f (αα

∗e− e−1α∗α) = (αα∗e− e−1α∗α)αα†
e,f

and αα
†
f,e(αα

∗f − f−1α∗α) = (αα∗f − f−1α∗α)αα†
f,e,

59. α ∈ A♯, α†
e,eα(αα

∗e− e−1α∗α) = (αα∗e− e−1α∗α)α†
e,eα

and α
†
f,fα(αα

∗f − f−1α∗α) = (αα∗f − f−1α∗α)α†
f,fα,

60. α ∈ A♯, α
†
f,eα(αα

∗e− e−1α∗α) = (αα∗e− e−1α∗α)α†
f,eα

and α
†
e,fα(αα

∗f − f−1α∗α) = (αα∗f − f−1α∗α)α†
e,fα,

61. α ∈ A♯ and (as+t)† = (αs)†e,1(α
t)†1,e = (αs)†f,1(α

t)†1,f ,

for any/some integers s, t ≥ 1,

62. α ∈ A♯ and (as+t)†e,f = (αs)†f,f (α
t)†e,f = (αs)†e,f (α

t)†e,e,

for any/some integers

63. α∗f,eA = α∗e,fA = αA (or α∗f,eA = αA and Aα∗f,e = Aα,

64. (α∗f,e)0 = α0 and 0(α∗f,e) = 0α,

65. αA−1 = α∗f,eA−1 and A−1α = A−1α∗f,e,

66. A−1α∗ = A−1(α∗f,e)∗ and α∗A−1 = (α∗f,e)∗A−1

In the next theorem, weighted-EP elements through the factorizations
α = bα∗e,f , α∗f,e = sα and α = e−1ucvf , are characterized.

Theorem 6.16 ([29], Theorems 2.1, 3.1, 3.2, 4.1, p. 5385–5387). Let A
be a unital C∗-algebra, and let e and f be invertible positive elements in A. If
α ∈ A is regular, then the following statements are equivalent:

1. α is weighted − EP w.r.t. (e, f),

2. α = bα∗f,e = α∗f,ec for some b, c ∈ A,

3. α∗f,eα = b1α
∗f,e = αc1 and αα∗f,e = α∗f,eb2 = c2α

for some b1, b2, c1, c2 ∈ A,

4. α∗f,eα = b3α
†
e,f , αα

∗f,e = α
†
e,fb4 and α

†
e,f = c3α = αc4

for some b3, b4, c3, c4 ∈ A,

5. ∃ s, t ∈ A : s0 = 0t = {0} and α∗f,e = sα = αt,
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6. ∃ s1, s2, t1, t2 ∈ A : α∗f,e = s1α = αt1 and α = s2α
∗f,e = α∗f,et2,

7. ∃ u, v ∈ A : uA = A = Av and α∗f,e = αu = vα,

8. ∃ x, y ∈ A−1 : α∗f,eα = xαα∗f,e = αα∗f,ey,

9. ∃ x1, y1 ∈ A : x01 =
0y1 = {0} and α∗f,eα = x1αα

∗f,e = αα∗f,ey1,

10. ∃ x2, y2 ∈ A : Ax2 = A = y2A and α∗f,eα = x2αα
∗f,e = αα∗f,ey2,

11. ∃ x3, x4, y3, y4 ∈ A : α∗f,eα = x3αα
∗f,e = αα∗f,ey3

and αα∗f,e = x4α
∗f,eα = α∗f,eαy4,

12. ∃ z1, z2 ∈ A : α∗f,eα = αz1α
∗f,e and αα∗f,e = α∗f,ez2α,

13. ∃ g1, h1 ∈ A−1 : α∗f,eα = αh1h
∗f,e
1 α∗f,f and αα∗f,e = α∗e,fg

∗f,f
1 g1α,

14. ∃ g2, h2 ∈ A : g02 = 0h2 = {0}, α∗f,eα = αh2h
∗e,f
2 α∗f,f

and αα∗f,e = α∗e,fg
∗f,f
2 g2α,

15. ∃ g3, h3 ∈ A : Ag3 = A = h3A, α∗f,eα = αh3h
∗e,f
3 α∗f,f

and αα∗f,e = α∗e,fg
∗f,f
3 g3α,

16. ∃ s, t ∈ A : s0 = 0t = {0} and α
†
e,f = sα = αt,

17. ∃ s1, s2, t1, t2 ∈ A : α
†
e,f = s1α = αt1 and α = s2α

†
e,f = α

†
e,f t2,

18. ∃ u, v ∈ A : uA = A = Av and α
†
e,f = αu = vα,

19. ∃ x, y ∈ A−1 : α
†
e,fα = xαα

†
e,f = αα

†
e,fy,

20. ∃ x1, y1 ∈ A : x01 =
0y1 = {0} and α

†
e,fα = x1αα

†
e,f = αα

†
e,fy1,

21. ∃ x2, y2 ∈ A : Ax2 = A = y2A and α
†
e,fα = x2αα

†
e,f = αα

†
e,fy2,

22. ∃ x3, x4, y3, y4 ∈ A : α
†
e,fα = x3αα

†
e,f = αα

†
e,fy3

and αα
†
e,f = x4α

†
e,fα = α

†
e,fαy4,

23. ∃ z1, z2 ∈ A : α
†
e,fα = αz1α

†
e,f and αα

†
e,f = α

†
e,fz2α,

24. ∃ c, d, u, v ∈ A : α = e−1ucvf = e−1fv∗d∗u∗e−1f, vA = A = Au,

cA = dA and Ac = Ad,

25. ∃ c, d, u, v ∈ A : α = e−1ucvf = e−1fv∗d∗u∗e−1f, u0 = {0} = 0v, c0 = d0

and 0c = 0d,

26. ∃ c, d, u, v ∈ A : α = e−1ucvf, α†
e,f = e−1udvf, vA = A = Au, cA = dA

and Ac = Ad,

27. ∃ c, d, u, v ∈ A : α = e−1ucvf, α†
e,f = e−1udvf, u0 = {0} = 0v, c0 = d0
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and 0c = 0d,

28. ∃ c, d, u, v ∈ A : α∗f,eα = ucv, αα∗f,e = udv, vA = A = Au, cA = dA

and Ac = Ad,

29. ∃ c, d, u, v ∈ A : α∗f,eα = ucv, αα∗f,e = udv, u0 = {0} = 0v, c0 = d0

and 0c = 0d.

Characterizations of weighted-EP elements in terms of the factorization
of α ∈ A of the form

(4) α = bc, f−1b∗A = A = cA

where b, c, f ∈ A and f is a positive and invertible element, are included in the
following

Theorem 6.17 ([29], Th. 5.1 p. 5389). Let e, f, h be invertible positive
elements in A. If α ∈ A has a factorization (4) then α is regular and the following
conditions are equivalent

1. α is weighted − EP w.r.t. (e, h),

2. bb
†
e,f = c

†
f,hc,

3. c0 = [(eb)∗]0 and (b∗)0 = (ch−1)0,

4. 0c∗ = 0(eb) and 0b = 0(h−1c∗),

5. c∗A = ebA and bA = h−1c∗A,

6. Ac = Ab∗e and Ab∗ = Ach−1,

7. ∃ u ∈ A−1 : c = ub
†
e,f and b = c

†
f,hu,

8. ∃ x, y ∈ A−1 : c = xb∗e and b∗ych−1,

9. A−1c = A−1b∗e and A−1b∗ = A−1ch−1,

10. c∗A−1 = ebA−1 and bA−1 = h−1c∗A−1,

11. ∃ x, y ∈ A : x0 = y0 = {0}, c = xb∗e and b∗ = ych−1,

12. ∃ x, x1, y, y1 ∈ A : c = xb∗e, b∗e = x1c, b
∗ = ych−1 and ch−1 = y1b

∗,

13. ∃ x, y ∈ A : xA = yA = A, c∗ = ebx and b = h−1c∗y,

14. α ∈ h−1c∗A ∩Ab∗e (or α ∈ c
†
f,hA ∩Ab

†
e,f ),

15. α
†
e,h ∈ bA ∩Ac,

16. b(b∗eb)−1b∗e = h−1c∗(ch−1c∗)−1c,
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17. b = c
†
f,hcb, c = cbb

†
e,f , b

†
e,f = b

†
e,fc

†
f,hc and c

†
f,h = bb

†
e,fc

†
f,h,

18. A−1c = A−1b
†
e,f and bA−1 = c

†
f,hA

−1,

19. ∃ u ∈ A : u0 = 0u = {0}, c = ub
†
e,f and b = c

†
f,hu,

20. ∃ u ∈ A : Au = uA = A, c = ub
†
e,f and b = c

†
f,hu,

21. ∃ v ∈ A : v0 = 0v = {0}, b†e,f = vc and c
†
f,h = bv,

22. ∃ v ∈ A : Av = vA = A, b
†
e,f = vc and c

†
f,h = bv,

23. ∃ u, u1, v, v1 ∈ A : c = ub
†
e,f , b

†
e,f = vc, b = c

†
f,hu1 and c

†
f,h = bv1.
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