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EXPLICIT FORMULAS TO THE SOLUTIONS OF SEVERAL
EQUATIONS OF MATHEMATICAL PHYSICS

Petar Popivanov

Abstract. Explicit formulas to the solutions of several equations of math-

ematical physics including semilinear multidimensional Klein-Gordon equa-

tion, the wave equation, Kadomtsev-Petviashvili equation and cubic first

order hyperbolic pseudodifferential equation are proposed.

1. Introduction

This paper deals with the above mentioned PDE of Mathematical Physics having
interesting applications in different areas (see [3], [6]). Concerning Klein-Gordon
(K-G), respectively multidimensional wave equations we can construct special
solutions via appropriate change of the unknown function u and by solving some
overdetermined systems of linear and nonlinear PDE. We remind that in the case
of 1D sin-Gordon equation solutions containing elliptic and hyperbolic functions
appear [10]. The wave solutions of Kadomtsev-Petviashvili (K-P) equation are
constructed via Hirota method [12,13,11] but their interaction can give rise to the
so called X and Y waves. In studying the linear first order multidimensional wave
equation (periodic case in (t, x)) the machinery of small denominators works [2],
while in the cubic case we are able to construct classes of Szegö type solutions
[14,15].
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2. Special solutions of semilinear K-G type equations in the mul-

tidimensional case

Consider the K-G PDE

(1) Lu+ (∇t,xu,
→
B) = f(u) in R

1
t ×R

n
x, n ≥ 2,

where L = ∂2t − ∑n
j=1

∂2

∂x2j
is the wave operator, the constant vector

→
B=

(b0, b1, . . . , bn) ∈ R
1
t ×R

n
x , the real-valued function f ∈ C1(R1).

According to the classical approach (see [8]), we look for a solution of (1) of
the form u = ϕ(G), ϕ ∈ C2(R1), G = G(t, x) ∈ C2.

Then (1) takes the form

(2) ϕ
′

LG+ ϕ
′′

(G2
t −

n
∑

j=1

G2
xj
) + ϕ

′

(∇t,xG,
→
B) = f(ϕ(G)).

Further on we shall assume that either
∣

∣

∣

∣

∣

LG+ (∇t,xG,
→
B) = −G

∑n
j=1G

2
xj

−G2
t = G2,

(3)

i.e.

(4) Gϕ
′

(G) +G2ϕ
′′

(G) = −f(ϕ(G))

or
∣

∣

∣

∣

∣

LG+ (∇t,xG,
→
B) = 0

∑n
j=1G

2
xj

−G2
t = 1,

(5)

i.e.

(6) ϕ
′′

(G) = −f(ϕ(G)) (pendulum equation).

The change G = et in the Euler ODE (4) leads to ϕ̃
′′

(t) = −f(ϕ̃(t)). Solving
the pendulum equation we get ϕ̃ = ϕ̃(t) ⇒ ϕ = ϕ̃(ln G), G > 0.

Example 1. We shall illustrate (1) with the following examples: a). f(u) =
e−2u, b). f(u) = −u(ln u + ln2 u), c). f(u) = −sh u, d). f(u) = ±sin u, e).
f(u) = −1

2e
u, f). f(u) = 3u2 − 3β2, β < 0.

In case a). we take u = ϕ(G) = ln G, > 0 which satisfies (6); in case b).
we take u = ϕ(G) = eG, which satisfies (4); in case c). (6) takes the form
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ϕ
′′

= sh ϕ ⇒ (ϕ
′

)2 = 2(ch ϕ + A) and therefore we take ϕ = 2ln|tgG2 | for
A = 1, ϕ = 2ln|cthG2 | for A = −1; in case e). the equation (6) is written as

ϕ
′′

= 1
2e
ϕ ⇒ ϕ

′

= ±eϕ
2 and we put u = ϕ(G) = −2ln|G2 |, g 6= 0; in case d).

f(u) = −sin u the equation (4) possesses the solution ϕ = 4arctg G, while if
f(u) = sin u we take ϕ = 4(arctgG− π

4 ). In case f). and after the change G = et

the equation (4) can be written as: ϕ̃
′′

= −(3ϕ̃2 − 3β2) ⇒

(7) (ϕ̃
′

)2 = −2(ϕ̃3 − 3β2ϕ̃+ 2β3),

the constant 2β2 being appropriate chosen after the integration. As ϕ̃ = β is a
double root of ϕ̃3 − 3β2ϕ̃ + 2β3 = 0 and ϕ̃ = −2β > 0 is a simple root we can

integrate (7) obtaining ϕ = β − 3βsech2(−
√

−3β
2 lnG), G > 0, β = const < 0.

To find a special solution into explicit form of the overdetermined system (3)
we put G = eψV , where the unknown linear function ψ =

∑n
j=1 ajxj −σt, σ 6= 0,

has real-valued coefficients and therefore V (t, x) should satisfy

(8) LV − 2((
→
a ,∇xV ) + σVt) + (σ2 + 1− |a|2)V+

+(< Vt − σV, (∇x+
→
a )V >,

→
B),

→
a= (a1, . . . , an)

n
∑

j=1

V 2
xj

− V 2
t + 2V ((

→
a ,∇xV ) + σVt) + V 2(|a|2 − σ2 − 1) = 0.

We shall assume further on that the following overdetermined system of 4
PDE holds:

∣

∣

∣

∣

∣

∣

∣

∣

LV = 0
∑n

j=1 V
2
xj

− V 2
t = 0 (eikonal equations)

∑n
j=1 ajVxj + σVt = 0

∑n
j=1 bjVxj + b0Vt = 0

(9)

under the additional assumptions:
∑n

j=1 a
2
j = σ2 + 1,

∑n
j=1 ajbj = b0σ.

Evidently, (9) ⇒ (8).

Consider now (5). We are looking for a solution having the form G = ψ +
W (t, x) and the linear function ψ is defined as above. Then (5) is rewritten as:

∣

∣

∣

∣

∣

(∇t,xψ,
→
B) + (∇t,xW,

→
B) + LW = 0

∑n
j=1(aj +Wxj)

2 − (Wt − σ)2 = 1.
(10)
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Suppose now that W satisfies

∣

∣

∣

∣

∣

∣

∣

∣

LW = 0
∑n

j=1W
2
xj

−W 2
t = 0

∑n
j=1 ajWxj + σWt = 0

∑n
j=1 bjWxj + b0Wt = 0

(11)

under the additional conditions
∑n

j=1 a
2
j = σ2 + 1,

∑n
j=1 ajbj = σb0. Certainly,

(11) ⇒ (10) and the systems (9), (11) coincide.

Remark. Let F ∈ C2(R1) be arbitrary and V = F (α(t, x)) verifies (9)
for some α ∈ C2. Evidently, then (F

′

)2(
∑n

j=1 α
2
xj

− α2
t ) = 0, F

′

Lα + F
′′

(α2
t −

∑n
j=1 α

2
xj
) = 0, F

′

(
∑n

j=1 ajαxj + σαt) = 0 etc. This way we conclude that if α
verifies the overdetermined system

∣

∣

∣

∣

∣

∣

∣

∣

Lα = 0
∑n

j=1 α
2
xj

− α2
t = 0

∑n
j=1 ajαxj + σαt = 0

∑n
j=1 bjαxj + b0αt = 0,

(12)

then for every F ∈ C2 the system (9) with V = F (α) holds.

To solve (12) we look for α(t, x) of linear form, i.e. α(t, x) = −∑n
j=1 x

0
jxj+ t,

x0j = const.

One gets immediately that

(13)

n
∑

j=1

x0j = 1,

n
∑

j=1

ajx
0
j = σ,

n
∑

j=1

bjx
0
j = b0

and moreover, |a|2 =
∑n

j=1 a
2
j = σ2 + 1,

∑n
j=1 ajbj = σb0 (σ 6= 0). If Sn−1

1

is the unit sphere in R
n
x and Bn

1 is the unit ball in R
n
x then the point X0 =

(x01, . . . , x
0
n) ∈ Sn−1

1 , a = (a1, . . . , an) 6∈ Bn
1 and X0 ∈ γ1σ ∩ γ2, γ1σ and γ2 being

the hyperplanes
∑n

1 ajyj = σ,
∑n

1 bjyj = b0 respectively. Put b = (b1, . . . , bn)

and assume that |b0| < |b|. Therefore, |cos(→a ,
→
b )| < 1, i.e.

→
a ,

→
b are not colinear

and parts of γ1σ, γ2 are contained inside Bn
1 .

Proposition 1. Consider the system (12) and suppose that: |b0| < |b|, there

exist a constant σ 6= 0, a vector a ∈ R
n such that: |a|2 = σ2+1, (

→
a ,

→
b ) = b0σ and

γ1σ ∩ γ2 ∩ Sn−1
1 6= {∅}. Then (12) possesses infinitely many solutions depending

on an arbitrary smooth function. It follows that (1) possesses infinitely many
solutions written into explicit form: u = ϕ(eψF (α(t, x)).
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Remark. In many cases points X0 ∈ Sn−1
1 ∩ γ1σ ∩ γ2 do not exist for some

σ 6= 0. Let n ≥ 3,
→
b 6= 0 and b0 = 0 ⇒→

a ⊥
→
b , the point P 0 = σ

σ2+1a ∈ intBn
1

and P 0 ∈ γ1σ ∩ σ2. The plane of codimmension 2 γ1σ ∩ γ2, σ 6= 0 will cross Sn−1
1 ,

certainly. If n = 3 γ1σ ∩ γ2 is a straight line crossing Sn−1
1 at two points only.

Otherwise, it is a smooth set of codimension 2 at Sn−1
1 .

We shall not discuss the case (5), respectively then u = ϕ(ψ + F (α(t, x)).

3. Interaction of 2 soliton type solutions of the K-P equation.

Resonances, non-resonances and X, Y shalow water waves in

the oceans

The K-P equation is given by the formula:

(14) (ut + 6uux + uxxx)x + αuyy = 0,

u = u(t, x, y), α2 = 1.
Later on we shall deal with α = 1. By using Hirota’s method [13,16] Satsuma

proved in [12] the existence of N -soliton solution of (14) having the form:

(15) u = 2(log f)xx, f =
∑

µ=0,1

exp[

N
∑

1≤i<j

µiµjAij +

N
∑

i=1

µiηi],

where ηi = ki(x+ piy − Cit), Ci = k2i + p2i , e
Aij =

3(ki−kj)
2−(pi−pj)

2

3(ki+kj)2−(pi−pj)2
.

We do not have resonances if eAij 6= 0. Resonances appear if for some (i, j):

eAij = 0. Thus, N = 1 ⇒ u =
k21
2 sech

2 η1
2 , sech x = 2

ex+e−x .

Let N = 2. Resonance exists iff
√
3(k1 − k2) = ±(p1 − p2). Further on we

shall take sign” + ” in front of p1 − p2, assuming p1 > p2 > 0 ⇒ k1 > k2 > 0.
The case of triple resonance N = 3

√
3(k1 − k2) = ±(p1 − p2)

√
3(k1 − k3) = ±(p1 − p2)

can be investigated in a similar way as the case of resonance for N = 2. Due to
the lack of space we omit it.

Suppose now that N = 2 and eA12
6= 0 (no resonance). Then the correspond-

ing solution of (14) given by formula (15) becomes
(16)

u = 2
k21e

η1 + k22e
η2 + eη1+η2 [(k1 − k2)

2 + eA12(k1 + k2)
2 + k22a

A12+η1 + k21e
A12+η2 ]

(1 + eη1 + eη2 + eA12+η1+η2)2
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and it is called X wave ( u(0) > 0). Fix η1, y. Then u ∼ k21
2 sech

2 η1+A12

2 for

t→ ∞, u ∼ k21
2 sech

2η1 for t→ −∞.
As it concerns the resonance case for N = 2, the solution is written as:

(17) u = 2
k21e

η1 + k22e
η2 + (k1 − k2)

2eη1+η2

(1 + eη1 + eη2)2
, u(0) > 0

and is called Y wave.
Exercise 1. Consider the function

f(x, y) =
x+ k2y + (1− k)2xy

(1 + x+ y)2
, x, y ≥ 0, 0 < k < 1

and k is parameter. Then f(x, y) ≤ 1
4 and f(x, y) = 1

4 ⇐⇒ x = 1, y = 0;
lim sup(x,y)→(∞,∞)f(x, y) can be studied easily.

Hint. Consider two cases a) y = 0 and b) y > 0. In case a) f(x, 0) < 1
4

for x 6= 1, x ≥ 0 and f(1, 0) = 1
4 . In case b) fix y > 0, x ≥ 0 and consider

the quadratic polynomial in k ∈ [0, 1] fxy(k) =
x+k2y+(1−k)2xy

(1+x+y)2
. The coefficient in

front of k2 is y(x+1)
(1+x+y)2

> 0, i.e. fxy(k) is strictly convex and therefore fxy(k) <

max(fxy(0), fxy(1)). As fxy(1) ≤ 1/4 according to a), one must prove only that
fxy(0) ≤ 1/4. Show that fxy(0) ≤ 1

4 ⇐⇒ 0 ≤ (1 + y − x)2. For this nice proof I
am undebted to N.Nikolov and A.Ivanov.

As usually, we shall study the profiles of the waves for t = 0, t =
±1

4 ,±1
2 ,±3

4 ,±1 etc. We shall concentrate at t = 0 as the other cases are treated
in a similar way.

Thus, N = 2, no resonance case, and denote by l1 : η1 = 0, l2 : η2 = 0
the straight lines passing through the origin in 0xy. Put for l an arbitrary line
through 0. Then u|l1 and u|l2 are kinks-antikinks, while u|l is a soliton if l 6= l1, l2.
Monotonically increasing (decreasing) bdd function v(s) on R

1 is called kink
(antikink) - see [5,10] if it possesses two horizontal asymptotes v = α, v = β,
α < (>)β. In our considerations here we assume that kinks possess two horizontal
asymptotes v = α, v = β at ±∞ but v(s) is not obliged to be strictly monotone
everywhere. Those are generalized kinks. In the case l1, l2 : α > 0. The definition
of soliton is standard.

One can easily see that

limy→−∞u|l1 =
2k21e

A12

(1 + eA12)2
= α1

limy→+∞u|l1 =
k21
2

= β1
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limy→+∞u|l2 = 2
k22e

A12

(1 + eA12)2
= β

limy→−∞u|l2 =
k22
2

= α

X waves are formed by u|l1 and u|l2 .
In the resonance case a new wave appears, namely l3 : x = −α0y, α0 =

p1 + k2
√
3, while l1 : x + p1y = 0, l2 : x + p2y = 0. More precisely, the linear

functions η1 = η2 ⇐⇒ x+ α0y = 0, i.e. η1|l3 = η2|l3 . We put l+1 = l1 ∩ {y ≥ 0},
l−2,3 = l2,3 ∩ {y ≤ 0}. Then u > 0, u|l1 , u|l2 , u|l3 are kinks with a horizontal
asymptote at u = α = 0 and the second one at βj , j = 1, 2, 3. Moreover,

limy→∞u|l1 =
k2
1

2 = β1, limy→−∞u|l2 =
k2
2

2 = β2, while limy→−∞u|l3 = (k1−k2)2

2 =
β3. In other words, the resonance gives rise of a new born wave kink with a

maximal amplitude (k1−k2)2

2 = β3, β3 < β1 but β3 < β2 ⇐⇒ k1 < 2k2. If
0 ∈ l 6= l1, l2, l3 is a straight line in 0xy then u|l is a soliton. l+1 , l−2 and l−3
form the configuration Y wave. Both X,Y waves can be observed in the oceans
(even in the Mediterranean see) during lowtides. We propose below a geometrical
interpretation of the Y wave and pictures ofX,Y waves taken from Mediterranean
see on May 25, 2014.
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4. Solutions of first order linear and cubic nonlinear first order

hyperbolic pseudodifferential equations in R
1
t ×R

n
x, n ≥ 2

This section is devoted to the equations (18), (19), where:

(18) (Dt − c|Dx|)u = f(t, x) ∈ D
′

(T1
t ×T

n
x)

with a solution u ∈ D
′

(T1
t ×T

n
x). As usual Tn

x stands for the n-dimensional 2π
torus, c ∈ R

1.
The cubic nonlinear first order hyperbolic equation (19) is given by the for-

mula:

(19) (−Dt + |Dx|)u = u|u|2

with x ∈ T
n, t ∈ [0, T ], 0 < T being possibly sufficiently small, Dt =

1
i
∂t. As

we know each L2(Tn
x) function f(x) can be developed in Fourier series: f →

∑

α∈Zn fαe
i<α,x>.

We define the Ψdo |Dx| as follows:

|Dx|f =
∑

α∈Zn

aα|α|ei<α,x>,
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the series being convergent in distribution sense in D
′

(Tn). We introduce now
the function

(20) f≥0 = P≥0(f) =
∑

α∈Zn
+

aαei<α,x>,

Z+ = N ∪ {0}. A function u satisfying the equation

(21) (−Dt + |Dx|)u≥0 = P≥0(|u≥0|2u≥0)

is called Szegö solution of (19).
Having in mind that f(x, t) =

∑

(τ,α)∈Zn+1 aτ,αe
i(tτ+<α,x>) if f ∈ D

′

(Tn+1)

we look for a solution of (18) of the form u =
∑

(τ,α)∈Zn+1 uτ,αe
i(tτ+<α,x>), i.e.

(22) (τ − c|α|)uτ,α = fτ,α,∀(τ, α) ∈ Z
n+1.

Thus, τ0 = c|α0| for some (τ0, α0) ∈ Z
n+1 ⇒ fτ0,α0

= 0, while τ 6= c|α|, ∀(τ, α) ∈
Z
n+1 ⇒ uτ,α =

fτ,α
τ−c|α| . (18) is nonlovable in D

′

(Tn+1) if τ0 = c|α0| but fτ0,α0
6= 0;

c = τ0
|α0|

∈ Q \ 0 ⇐⇒ |α0| ∈ N, |α0| 6∈ N ⇐⇒ |α0| 6∈ Q.

The operator Dt − c|D| possesses an infinite dimensional kernel and is not
C∞(Tn+1) hypoelliptic if τ = c|α| for infinitely many (τ, α) ∈ Z

n+1. For example,
c = 1 ⇒ τ = |α| → τ2 = |α|2 and the Pytagorean numbers are infinitely many.

Assume now that c2 > 0 satisfies the small denominators condition [2]:

(23) |c2 − p

q
| ≥ K

|q|2+σ

for each p, q ∈ Z \ 0 and for some σ > 0, K = K(c2, σ) > 0. Let c > 0. Then (23)

implies that |τ − c|α|| ≥ K̃
(|α|+|τ |)2σ+3 , (τ, α) ∈ Z

n+1 \ 0, K̃ = const > 0.

Proposition 2. For almost all c ∈ R
1 in the sense of Lebesgue measure the

operator Dt − c|Dx| is C∞, analytic and Gevrey hypoelliptic on T
n+1.

The Cauchy problem for (18) with initial condition u0(x) can be easily studied
in D

′

([0, T ) × T
n
x) as then f =

∑

α fα(t)e
i<α,x>, u =

∑

α uα(t)e
i<α,x>, u0(x) =

∑

u0αe
i<α,x> and therefore

∣

∣

∣

∣

u
′

α(t)− ic|α|uα(t) = ifα(t)
uα(0) = u0α.

(24)

Our second step is to investigate (21) (see [14,15]). We look for a solution having
the form

(25) u =
a(t)

1− c(t)ei[<α,x>+βt]
, 0 6= α ∈ Z

n, β ∈ R
1.
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If |c(t)| < 1 the geometric progression formula shows that u = u≥0 = P≥0(u).
Put z = ei[<α,x>+βt], w = c(t)z. From (25) we obtain that

(26) i
∂u

∂t
=

ia
′

1− w
+ ia

(c
′

+ iβc)z

(1− w)2
,

where a(t), c(t), α and β are unknown, |c| < 1.

On the other hand,

|Dx|(
1

1 − cz
) =

∞
∑

k=1

ck(t)|Dx|(zk) =
∞
∑

k=1

ck(t)|α|kzk.

As |w| = |c| < 1 we have

∞
∑

k=0

wk =
1

1− w
,

∞
∑

k=1

kwk−1 =
1

(1− w)2
⇒

∞
∑

k=1

kwk =
w

(1− w)2
.

This way we conclude that

(27) |Dx|(
a(t)

1− w
) = |α| aw

(1 − w)2
.

Combining (26), (27) we get for β = |α|:

(28) i
∂u

∂t
+ |Dx|u =

ia
′

(t)

1− w
+
ia(t)c

′

(t)z

(1−w)2
=

= i(
a

c
)
′ c

1− cz
+ i

a

c

c
′

(1− cz)2
.

V.Georgiev, N.Tzvetkov and N.Visciglia have shown the following algebraic lemma
[15].

Lemma. Consider the function 1
1−cz , |c| < 1, c ∈ C

1 , z = eiΘ, Θ ∈ [0, 2π].
Then

P≥0((
1

1− cz
)2

1

1− c̄z̄
) =

1− |c|2cz
(1− cz)2(1− |c|2)2 =

a|a|2
(1− |c|2(1− cz)2

+
a|a|2|c|2

(1− |c|2)2(1− cz)
=

=
h(t)− h(c̄)

z − c̄
, h =

z

(1− cz)2
.
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Due to (28) and the Lemma equation (21 leads to the ODE system

∣

∣

∣

∣

∣

i(a
c
)
′

= a
c

|a|2|c|2

(1−|c|2)2

ic
′

= c|a|2

1−|c|2
.

(29)

Thus, with some c0 ∈ (0, 1) the function c(t) = c0e
−ip1t, p1 =

a20
1−c2

0

> 0, c(0) = c0,

a(0) = a0 6= 0 and a(t) = a0e
−ip2t, p2 =

a2
0

(1−c2
0
)2

satisfy (29).

Proposition 3. For each α ∈ Z
n
+ and β = |α| the equation (21) possesses

the solution

u≥0 =
a0e

−ip2t

1− c0ei[<α,x>+t(|α|−p1)]
.

5. Possible generalizations of Proposition 3

Consider the same equation (21) and look for a solution having the form

u≥0 =
N
∑

m=1

am(t)

1− cm(t)z
, z = ei[<α,x>+βt],

0 6= α ∈ Z
n
+, β = |α|, 0 < |c1(0)| < |c2(0)| < . . . < |cN (0)| < 1.

Then

(i
∂

∂t
+|Dx|)u≥0 = i

N
∑

m=1

(
am
cm

)
′ cm
1− cmz

+i

N
∑

m=1

am
cm

c
′

m

(1− cmz)2
, |cm(t)| < 1, 1 ≤ m ≤ N.

Evidently,

|u≥0|2u≥0 = u2≥0|ū≥0 =

N
∑

j,k=1

a2j āk

(1− cjz)2(1− c̄kz̄)
+2

∑

1≤j<k≤N

N
∑

l=1

ajakāl
(1− cjz)(1 − ckz)(1− c̄lz̄)

Moreover, cj(0) 6= ck(0) for j < k; for l 6= j, k ck(0) 6= c̄l(0), cj(0) 6= c̄l(0).
Certainly, we must find P≥0(|u≥0|2u≥0). We observe that P≥0(

1
(1−cjz)2

1
1−c̄k z̄

) =

P≥0(
z

(1−cjz)2
1

z−c̄k
) =

fj(z)−fj(c̄k)
z−c̄k

, where fj(z) =
z

(1−cjz)2
.

In fact, 1
z−c̄k

=
∑∞

p=0
c̄
p
k

zp+1 , on the other hand,

P≥0(
1

1− cjz

1

1− ckz

1

1− c̄lz̄
) =
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P≥0(
z

(1 − cjz)(1 − ckz)

1

z − c̄l
) =

gjk(z)− gjk(c̄l)

z − c̄l
,

where gjk(z) =
z

(1−cjz)(1−ckz)
, cj 6= ck. Certainly, z

(1−cjz)(1−ckz)
− c̄l

(1−cj c̄l)(1−ck c̄l)
=

= z−c̄l
cj−ck

[
cj

(1−cjz)(1−cj c̄l
)− ck

(1−ckz)(1−ck c̄l)
]. As in the previous case, we compare the

coefficients participating in the left hand side and in the right hand side of (21)
and in front of 1

1−cmz
, 1
(1−cmz)2

, 1 ≤ m ≤ N .

The corresponding complex system of ODE takes the form:

∣

∣

∣

∣

∣

i(am
cm

)
′

cm = Pm(a, c, ā, c̄), 1 ≤ m ≤ N

ic
′

m
am
cm

= Qm(a, c, ā, c̄), 1 ≤ m ≤ N,

Qm, Pm being algebraic functions of the arguments a = (a1, . . . , aN ), c =
(c1, . . . , cN ), ā = (ā1, . . . , āN ).

Separating the real and imaginary parts of aj , cj , Pm, Qm we obtain a real-
valued system of 4N ODE in normal form with 4N unknown functions Re aj,
Im aj , Re cj , Im cj. Taking the Cauchy data cj(0), aj(0) such that 0 < |c1(0)| <
. . . < |cN (0)| < 1, aj(0) 6= 0. 1 ≤ j ≤ N we construct a local in t solution, i.e.
|t| ≤ T , 0 < T ≪ 1. Unfortunately, it does not have the elegant form proposed

in Proposition 3. Put P̃N =
∏N
m=1(z − 1

cm(t)), Pj(z, t) = P̃N (z,t)

z− 1

cj
(t)

, Q̃(z, t) =

(−1)N
∑N

m=1
am(t)
cm(t)Pj(z, t). Then the local in t solution u≥0 = Q̃(z,t)

P̃N (z,t)
, where Q̃,

P̃N are polynomials in z of degrees N − 1, N respectively having coefficients
depending on am(t), cm(t) or on 1

cm(t) , 1 ≤ m ≤ N only. Therefore, we can find

rational solution u≥0 of (21) and z = ei[<α,x>+|α|t], 0 6= α ∈ Z
n
+.
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