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EXISTENCE RESULTS FOR SOME VARIATIONAL

INEQUALITIES INVOLVING NON-NEGATIVE,

NON-COERCITIVE BILINEAR FORMS

Georgi Chobanov

Abstract. In the present paper the existence of solutions to variational

inequalities for semi-coercive bilinear forms is studied. The result generalizes

a result by Lions-Stampacchia and is close to an abstract result by Fichera.

In the present paper we study the existence of solutions u of variational in-
equalities

a(u, v − u) ≥ (f, v − u)

for all v ∈ K, where a(u, v) is semi-coercive continuous bilinear form on a Hilbert
space H and K is a closed convex subset in H. In this direction central place
occupy the results in [3] (Theorem 2.I) and [6] (Theorem 5.1) (or [4], Ch. III,
theorem 2.3). Both give sufficient conditions for the existence of solutions involvig
the kernel of the bilinear form, the set of the so called unbounded directions
of the convex set and the right hand side f . In [6] is considered convex set
containing the origin, whereas in [3] more general convex set is considered, as well
as more elements in the right hand-side, but some projections of the convex set
are assumed closed. (Another paper treating similar problems and in particular
in more detail the relations between sufficient and necessary conditions is [1].)
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The result proposed in the present paper is in a sence intermediate. It gen-
eralizes the result in [6] and the proof is closer to the one given there. On the
other hand the formulations are along the lines of [3], but are more concize using
the notion of recession cone. Although the proposed sufficient conditions do not
include all the right hand-sides of [3], no conditions of closedness are imposed.
The results in [6] are obtained as a corollary. It seems that the proof we propose
gives more insight into the nature of the conditions imposed on f .

Notations. Let H be a real Hilbert space with scalar product (·, ·) and norm
‖ · ‖. Let a(u, v) be a continuous bilinear form on H. Let a be nonnegative, i.e.
a(u, u) ≥ 0. Let N be the kernel of a, i.e.

N = {u : a(u, u) = 0}.

The bilinear form defines an operator

L : H −→ H

according to
(Lu, v) = a(u, v) ∀v ∈ H.

The operator L thus defined is monotone and furthermore

N = ker(L+ L∗)

where L∗ is the adjoint of L and

kerL = kerL∗ ⊂ ker(L+ L∗).

Let K be a closed convex nonempty subset of H. Recession cone (or the set
of unbounded directions, or assymptotic cone) is the (possibly empty) set

K∞ =
⋂

λ>0

λ(K − k0)

where k0 ∈ K. The elementary facts we need about recession cones are collected
in the following

Lemma 1. If un ∈ K, ‖un‖ → ∞ and

w = lim
un
‖un‖

then w ∈ K∞.
If w ∈ K∞ then for every v0 ∈ K and t ≥ 0 we have

v0 + tw ∈ K.
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Let M be a closed subspace of H with N ⊂ M , let Q : H −→ H be the
orthogonal projection of H on M and let P = I−Q where I is the identity of H.

Theorem 1. Let a be as above and let furthermore

(i) M is finite dimensional

(ii) there is a positive constant α such that

α‖Pu‖2 ≤ (Lu, u).

Let f ∈ H be such that

(1) (f,w) < 0 ∀w ∈ kerL ∩K∞ (w 6= 0)

and for every w ∈ ker (L+ L∗) ∩K∞, w 6∈ kerL, (w 6= 0) there exists a vw ∈ K
such that

(2) (f,w) + (w,L∗vw) < 0.

Then the variational inequality

(3) (Lu, u− v) ≤ (f, u− v) ∀v ∈ K

has a solution.

Remark. In many applications and in particular in [3], M = N . This more
general case is needed in order to obtain the result in [6] as a direct corollary.

P r o o f. Let for R > 0

BR = {u : ‖Qu‖ ≤ R}

and

KR = K ∪BR.

Obviously KR is closed, convex and is nonempty for all sufficiently large R. The
operator L is coercitive on KR. Indeed from (ii) it follows that

α‖u‖2 ≤ (Lu, u) + α‖Qu‖2

whence

(Lu, u− k)

‖u‖
≥ α‖u‖ −

(Lu, k)

‖u‖
−

α‖Qu‖2

‖u‖
≥ α‖u‖ − c‖k‖ −

αR2

‖u‖
→ ∞
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for ‖u‖ → ∞ (u ∈ KR). Then the variational inequality

(4) (Lu, u− v) ≤ (f, u− v) ∀v ∈ KR

has a solution, say uR for every f ∈ H (cf. for instance [5], ch II, Th 8.2). As it is
well known this can be interpreted in term of subdifferentials of convex sets, i.e.

(5) −(LuR − f) ∈ ∂IKR
(uR)

Since BR has nonempty interior we have ([2, Proposition 5.7]),

∂IKR
(uR) = ∂IBR

(uR) + ∂IK(uR)

for R sufficiently large. It is easily seen that

∂IBR
(uR) = {λQuR : λ ≥ 0}

hence (5) becomes

(6) LuR + λRQuR + νR = f

for some λR ≥ 0 and νR ∈ ∂IK(uR) or

(7) (LuR + λRQuR, uR − v) ≤ (f, uR − v) ∀v ∈ K.

Let for every R we have ‖QuR‖ = R. Then the family λR is bounded. Indeed,
let R′ < R′′, u′ = uR′ , u′′ = uR′′ , λ′ = λR′ , λ′′ = λR′′ . From (7) we obtain

(Lu′ + λ′Qu′, u′ − u′′) ≤ (f, u′ − u′′)

(Lu′′ + λ′′Qu′′, u′′ − u′) ≤ (f, u′′ − u′)

whence adding

(Lu′′ − Lu′, u′′ − u′) + (λ′′Qu′′ − λ′Qu′, u′′ − u′) ≤ 0

and since L is monotone

(λ′′Qu′′ − λ′Qu′, u′′ − u′) ≤ 0

or

λ′′(Qu′′, u′′ − u′) ≤ λ′(Qu′, u′′ − u′)

= −λ′(Qu′′ −Qu′, u′′ − u′) + λ′(Qu′′, u′′ − u′)

= −λ′‖Qu′′ −Qu′‖2 + λ′(Qu′′, u′′ − u′)

≤ λ′(Qu′′, u′′ − u′).
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This implies

(λ′′ − λ′)(Qu′′, u′′ − u′) ≤ 0

and since

(Qu′′, u′′ − u′) = (Qu′′, u′′)− (Qu′, u′′) = (Qu′′, Qu′′)− (Qu′, Qu′′)

≥ ‖Qu′′‖2 − ‖Qu′‖‖Qu′′‖ = R′′(R′′ −R′) > 0

we get λ′′ ≤ λ′. This means that the family λR is bounded.

For an arbitrary fixed v ∈ K now (7) can be rewritten as

(8) (LuR + λRQuR, uR) ≤ (LuR, v) + λR(QuR, v) + (f, uR)− (f, v)

whence
(9)
(LuR, uR) + λR(QuR, uR) ≤ ‖L‖ ‖uR‖ ‖v‖ + λR‖QuR‖ ‖v‖ + ‖f‖ ‖uR‖+ ‖f‖ ‖v‖

and denoting by C various constants (since the family λR is bounded) we obtain

α‖PuR‖
2 ≤ C(‖PuR‖+ ‖QuR‖+ 1)

or

(10) ‖PuR‖
2 ≤ C(‖QuR‖+ 1)

Let now wR = uR/R. Then

‖QwR‖ = 1.

From (10) it follows that

(11) ‖PwR‖ → 0

and in particular ‖PwR‖ is bounded, hence

‖wR‖ ≤ C.

From (9) and (Lu, u) ≥ 0 it follows

λRR
2 ≤ C(R+ λRR+ 1)
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and since λR is bounded

(12) λRR ≤ C.

Now we can choose a sequence Rn → ∞, such that for λn = λRn
and wn = wRn

we have
λn → 0

wn → w weakly in H.

From (11) we get
lim
n→∞

‖Pwn‖ = 0,

Since M is finite-dimensional we obviously have

lim
n→∞

Qwn = Qw.

All this imply
lim
n→∞

wn = lim
n→∞

Pwn + lim
n→∞

Qwn = Qw,

i.e. the convergence is strong. Moreover we have Qw = w, i.e. w ∈ M . From
(10) it is easy to see that ‖un‖/Rn → 1 since

Rn −
√

C(Rn + 1)

Rn

≤
‖Qun‖ − ‖Pun‖

Rn

≤
‖un‖

Rn

≤
‖Qun‖+ ‖Pun‖

Rn

≤
Rn +

√

C(Rn + 1)

Rn

whence

lim
n→∞

un
‖un‖

= lim
n→∞

un
Rn

Rn

‖un‖
= w

so w ∈ K∞. From (7) it follows for arbitrary v0 ∈ K

(13) (Lwn + λnQwn, wn −
v0
Rn

) ≤ R−1

n (f,wn −
v0
Rn

)

or
(Lw,w) ≤ 0.

Together with ‖w‖ = 1 this implies w ∈ ker(L+ L∗)\{0}.
On the other hand (13) gives

(Lwn + λnQwn, wn) ≤ R−1

n (f,wn) +R−1

n (Lwn + λnQwn, v0) +R−2

n (f, v0).
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Since
0 ≤ (Lwn + λnQwn, wn)

passing to limit gives

0 ≤ (f,w) + (Lw, v0) ∀v0 ∈ K.

Since ‖w‖ = 1 this contradicts (1) or (2). �

Remark. The following condition is sufficient for (2) to hold. For every
w ∈ ker (L+ L∗) ∩K∞, w 6∈ kerL, (w 6= 0) there exists a kw ∈ K∞ such that

(Lw, kw) < 0.

Indeed, in this case we have

(f,w) + (Lw, v + tkw) → −∞

as t → ∞ for arbitrary v ∈ K.
Now we give the theorem of Lions-Stampacchia ([6], Theorem 5.1).

Theorem 2. We assume that the norm ‖ · ‖ is equivalent to p0(·) + p1(·),
where p0(·) is a norm with respect to which H is a pre-Hilbert space, and p1(·) is
a semi-norm on H. the space M = {v ∈ H|p1(v) = 0} has finite dimension, there
exists a constant c1 > 0 such that

inf
ζ∈M

p0(v − ζ) ≤ c1p1(v) ∀v ∈ H.

Let a(u, u) be a continuous bilinear form on H which is semi-coercive, i.e.

a(v, v) ≥ α(p1(v))
2

for some α > 0.
Let K be a closed convex set containing 0 and let f ∈ H ′ be such that f =

f0 + f1 with fi ∈ H ′, i = 0, 1 satisfying if M ∩K 6= {0} the following conditions

(14) |〈f1, v〉| ≤ c2p1(v) ∀v ∈ H

(15) 〈f0, ζ〉 < 0 ∀ζ ∈ M ∩K, ζ 6= 0.

Then the variational inequality

a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ K

has a solution.
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P r o o f. Let P : H → M⊥ be the orthogonal projection on the orthogonal
complement of M . We have

‖Pv‖ = inf
ζ∈M

‖v − ζ‖.

Let ζ0 be the element for which the infimum infζ∈M p0(v − ζ) is attained. Since
the norm is equivalent to p0 + p1, we have

‖Pv‖ ≤ ‖v−ζ0‖ ≤ c0(p0(v−ζ0)+p1(v−ζ0)) ≤ c0(c1p1(v)+p1(v)+p1(ζ0)) ≤ Cp1(v)

whence
a(v, v) ≥

α

C
‖Pv‖2

and we can apply the theorem. Indeed, since 0 ∈ K (14) and (15) imply (1) and
(2) with vw taken to be 0 for every w ∈ ker(L+ L∗) ∩K∞, (w 6= 0). �
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