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NUMERICAL METHODS FOR DELAYED DIFFERENTIAL

EQUATIONS WITH DISCONTINUITES

T. Donchev, D. Kolev, A. Nosheen, M. Rapaqat, A. Zeinev

Abstract. The numerical approximation of higher order are used to solve

differential equations with discontinuous solutions and fixed time delay. The

accuracy of these methods is investigated.

1. Preliminaries

Many real problems are described by impulsive differential equations, e.g. popu-
lation dynamics, process in economy and nanoelectronic or electronic devises and
so on.

The basic theory of the systems of impulsive differential equations can be
found in [2, 16, 22], where the main qualitative properties of these systems are
considered. The optimal control of discontinuous systems is studied in [25]. In the
recent books [19, 20] single and multivalued discontinuous systems are studied,
and the attention is paid also to averaging techniques for such systems. The
papers [5, 13, 14] are devoted to monotone iterative technique for discontinuous
systems.

The numerical approximation of discontinuous systems with fixed impulsive
times is studied in [12, 18, 21]. The numerical approximation of time-varying
discontinuous systems is more difficult. The first successful attempt is [4], where
the first order approximation of multivalued discontinuous systems is investigated.
In [3] Runge-Kutta methods for such systems are studied.
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The systems studied in this paper have the form:

ẋ(t) = f(t, x(t), x(t− σ)) for t ∈ I = [0, T ], t 6= τi, x(s) = ψ(s), s ∈ [−σ, 0],(1)

∆x|t=τi(x(t)) = Si(x)) (i = 1, . . . , r).(2)

Here f : I × R
n × R

n → R
n is a sufficiently smooth function, τi : R

n → R and
Si : Rn → R

n are Lipschitz continuous switching surfaces and jump functions,
respectively. Assume for convenience that τ0 = 0.

The presence of delay makes the system more complicated. In general it is
difficult to study numerical approximations of delay systems even in the case of
absence of jumps, [6, 10, 15].

Recall that the piecewise continuously differentiable function x(·) is said to
be a solution of (1) if:

a) x(·) is right continuously differentiable function satisfying (1), and for all
t ∈ I for which τi((t)) 6= t, i = 1, . . . , r.

b) It possesses points of discontinuity (jumps) for all t ∈ I, such that τi(x) = t,
and defined in (2).

Note that in the case considered in [6], i.e., if the system with delay is con-
tinuous of classical type without being impulsive perturbed, then the solution is
continuous. Thus it turns out that in the case of discontinuous derivatives the
situation makes worse. There exist software like Maple, Mathematica, MatLab
and so on, established to solve delay DEs of classical type, but the system with
delay and jumps is different because the initial function may be discontinuous.

In the present paper we consider a method by which the problem under con-
sideration can be solved effectively. To illustrate this we restrict our consideration
only on discontinuous systems with fixed delay. Let assume that there exists con-
tinuous extension of the solution obtained with such a precision just as it is in the
Runge-Kutta methods. We discuss the existence of such a continuous extension
in Lemma 3 and Theorem 2. Our solving approach is characterized by Hermite
polynomials being applied here although it is possible to use other known methods
(cf. [6]).

Standing hypotheses (SH)

We suppose that f(·, ·) is sufficiently smooth (hence locally Lipschitz) with a
growth condition, i.e. there exists a continuous function v : I × R

+ → R
+ with

|f(t, x)| ≤ v(t, |x|) such that the maximal solution of ṙ = v(t, r) exists on I for
any initial condition r(0) ≥ 0.

A1. τi(·) are M -Lipschitz and Si : R
n → R

n are µ-Lipschitz.

A2. τi(x+ Si(x)) 6= τj(x), ∀ j 6= i and ∀ x ∈ R
n.
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Assume further that either A3 or A4 hold.

A3. τi(x) < τi+1(x) for every x ∈ R
n, and the following two conditions are

satisfied:

1) There exists a constant α < 1 such that 〈∂τi(x), f(t, x, y)〉 ≤ α for i =
1, . . . , r, and for every (t, x, y) ∈ I ×R

n, where the derivatives exist;

2) τi(x) ≥ τi(x+ Si(x)).

A4. τi(x) > τi+1(x) for every x ∈ R
n and the following two conditions are

satisfied:

1) There exists a constant β > 1 such that 〈∂τi(x), f(t, x, y)〉 ≥ β for i =
1, . . . , r and for every (t, x, y) ∈ I × R

n, where the derivatives exist;

2) τi(x) ≤ τi(x+ Si(x)).

The multiple hitting of one switching surface is called beating phenomena.
Furthermore, we show that if SH hold true, then the above stated phenomena
should be impossible.

Lemma 1. Let A1, A2 and A3 or A4 hold, and let x(·) be a solution of
(1)–(2). Then every equation τi(x(t)) = t admits no more than one solution.

The proof is given in [4].

Suppose h : R → R is continuous function. Let r(·) be a real function with
h(τ) = r(p) = 0 (τ, p ∈ R), and |h(t)− r(t)| ≤ ε for some ε > 0.

Proposition 1. Let α > 0, then we conclude that:

(i) if (h(t)− h(s))(t− s) ≤ −α(t− s)2, then |τ − p| ≤
ε

α
;

(ii) if (t− s)(h(t)− h(s)) ≥ α(t− s)2, then again |τ − p| ≤
ε

α
.

2. Runge-Kutta approximation of the solution

In this section we study discrete approximation of the impulsive system (1) with
the Runge-Kutta scheme stated below. We refer the reader to [8] for general
theory and to [6] for Runge Kutta method for delay (nonimpulsive) differential
equations.

Given a natural number N , set h =
1

N
and let tj = jh be a uniform grid

on [0, 1], where j = 0, 1, . . . , N . An s-stage Runge-Kutta method (RK method)
computes iteratively the solution for the system (1) without jumps using the
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following relations:

ηh(tj+1) = ηh(tj) + h

s
∑

ν=1

bνkν ,(3)

kν = f

(

tj + cνh, ηh(tj) + h

ν
∑

l=1

aνlkl, νh(tj + clt− σ)

)

(ν = 1, . . . , s).(4)

The RK method is accurate up to order p, if it provides the exact approxi-
mation of a polynomial solution x(·) up to degree p. It is known that the grid
function ηh(·) of the RK approximation satisfies

(5) max
j=0,...,N

‖ηh(tj)− x(tj)‖ ≤ Chp,

under appropriate smoothness conditions on the right-hand side of the DDE and
with suitable choice of the coefficients bν , cν , aν,l in (3)–(4). Here x(·) is the
solution of (1) without jumps.

Notice however, that due to the delay terms we have discontinuity of the
derivatives of the solution x(·) (see eg. [6]). These points must be included in
the grid points. We first include in the grid the points σ, 2σ, . . . , kσ where either
k = p or kσ > T . If we find an impulsive point τ , then we include in the grid
τ, τ + σ, τ + 2σ, etc.

Furthermore, since we have delay term, then we must know the value of the
solution not only on the grid point, but for every t. There are different methods
to solve delay differential equations and we refer the reader to [6] for the theory.
In this paper we extend the solutions with their Hermite polynomials of degree 3
to the case when the method is of the second order or of degree 5 when it is of
fourth order.

The third order Hermite polynomial is defined for every coordinate xk of the
solution x on (tj , tJ+1) w.r.t. the values Hk(tj) = xk(tj). Ḣ

k(tj) = fk(tj, x(tj)),
Hk(tj+1 = xk(tj+1) and Ḣk(tj+1) = fk(tj+1, x(tj+1)).

Analogously Hermite polynomial of degree 5 is defined by using two successive
intervals (t2k, t2k+1) and (t2k+1, t2k+2). The reader can consult [15] for details.

We will now apply the Runge-Kutta method to discontinuous systems and set
then

ϕi(t) ≡ τi(x(t))− t, (t ∈ [0, T ]),

ϕi,h(tj) ≡ τi(ηh(tj))− tj, (j = 0, 1, . . . , N).

Calculate for this purpose some approximations by RK method to the differential
system in (1) and for subsequent grid points tj, j = 1, . . . , N . On each interval
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[tj , tj+1] we check, whether one of the functions ϕi,h(·) changes its sign. If it does
(for some i), then the discrete trajectory ηh(·) needs to jump within the interval
(tj , tj+1) which is close to the i-th jump of the exact solution x(·).

Although Runge–Kutta method provides the values of approximate solutions
only on the grid points, we will consider the approximate solutions as it is defined
on the whole interval [0, T ] with unknown values outside the grid. The following
theorem hold:

Theorem 1. Under (SH) the system (1)–(2) admits a unique solution defined
on [0, T ]. Furthermore, there exists a constant K such that the exact solution along
with the approximate solutions are K Lipschitzean on the intervals of continuity.
Moreover, there exists a constant λ > 0 such that τi+1(x(t)) − τi(x(t)) ≥ λ (i =
1, 2, . . . , r − 1) for every approximate solution x(·), t ∈ [0, T ].

Existence and uniqueness of the solution is proved in [7], and the existence of
λ is proved in [4].

Let us discuss some strategies to find the approximate jump time τ⋆i,h ∈
[tj , tj+1] of ηh(·), i. e. τi(ηh(τ

⋆
i,h)) = τ⋆i,h, where τi(ηh(·)) is the i-th jump point of

ηh(·).
This problem is studied in the literature in the case of numerical approxima-

tion of nonsmooth systems (events location). We refer to [1], where a review of
these studies was presented. Such a problem arises in case of delayed systems (see
[6] for instance). Notice also [11, 24].

One interesting approach used first in [9] and developed in [23] is to associate
to (1)–(2) also the equation

ϕ̇(t) = 〈∇τi(x(t)), f(t, x(t), x(t − σ))〉 − 1.

Next we start with τi and verify the function ϕi(0). In the case A3 it should
be the smallest i for which ϕi(0) > 0, if ϕi(0) < 0 then ϕi(t) < 0 on I. In
the case of A4 we start with the smallest i for which ϕi(t) < 0. Then find j

with ϕi(tj)ϕi(tj+1) < 0, and τi(x) ∈ (tj , tj+1). Further, we use the polynomial
extension of the approximate solution (in fact ϕi(·)), and then solve ϕi(t) = 0 in
order to find approximate τi.

We may use also successively Piecewise linear interpolation:, Newton method
interpolation: or Hermite approximation: depending on the smoothness of τi(·).

Remark. In practice we use combined strategies, depending on the smooth-
ness of τ(·). For instance use strategy A and with tj, approximated τi, and tj+1

define Hermite polynomial of degree 5. It is possible to use also C and then
starting from the approximated τi make iteratively use of B.
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Notice that the approximate jump times τi (founded with some strategy) and
also τi + σ, τi + 2σ, . . . , τi + pσ are included in the grid points, because the k-th
derivative of the solution at τi + kσ is discontinuous.

Furthermore, the strategies B, C are applicable in the case when τj(·) is suf-
ficiently smooth.

On every strategy the approximate jump point is the zero of the approximate
function. That motivates the stopping criterion resulting in the common estimate
O(hq) for all strategies, where q ≥ p+ 1.

Studying problem (1) we say that two solutions x(·) and y(·) are in distance
ρ(x(·), y(·)) ≤ ε (see [4, Definition 1]), if they intersect successively the impulsive

surfaces, i. e. τi(x) < τi+1(y) or vice versa. Moreover,
r
∑

i=1

(

τ+i − τ−i
)

< ε and

|x(t)− y(t)| < ε for every t ∈ I \

(

r
⋃

i=1

[τ−i , τ
+
i ]

)

. Here τ−i = min{τi(x), τi(y)} and

τ+i is the maximal one.

Lemma 2. Denote by τ⋆1 the first jump time of the solution x(·) and by τ⋆1,h
the jump time of ηh(·), and assume that x(·) is Lipschitz continuous on the interval
[a, τ⋆1 ] ⊂ I. Under assumption SH with A3 or A4 we have for sufficiently small
step sizes h that

|τ⋆1 − τ⋆1,h| ≤
NC

1− α
· hp, and |τ⋆1 − τ⋆1,h| ≤

NC

κ− 1
· hp ,

respectively.

Theorem 2. Under assumption SH the measure of distance between the exact
solution y(·) and the approximate solution ηh(·) is O(hp) for N being big enough.

3. Numerical example

In numerical calculations we use the implicit Runge–Kutta methods. Our calcu-
lations are realized by Maple 17.
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ẋ(t) = x+
cos2(x− 0.5) + sin2(y − 0.5)

2
− 0.1, t ∈ [0, 1]

ẏ(t) =
sin2(x− 0.5) + cos2(y − 0.5)

2
+ y + 0.1, t 6= τi(x, y),

x(t) ≡ y(t) ≡ 0, t ∈ [−0.5, 0],

τ1 : t = x+ y − 0.08, ∆1 =

(

sin2(x)

10
;
cos2(x)

10

)

τ2 : t = x+ y − 1, ∆2 =

(

cos2(y)

5
;
sin2(y)

5

)

In this case we are not able to find the exact solutions, however, if we set z = x+y
then the system for z becomes: ż = z + 1, z(0) = 0.

We use implicit Runge–Kutta method of order 4. Exact impulsive times are
τ1 = 0.3750188688 and τ2 = 0.9537208885. The approximate jump points are
τ1ap = 0.3750188689 and τ2ap = 0.9537208886. In the table we put the exact
values of z(t), and approximate values of x(·) and y(·). The error is r(t) =
|xap(t) + yap(t)− z(t)|.

t zex xap yap r(t)

0.10 0.105170918 0.031551338 0.073619790 0.00000021
0.20 0.221402758 0.066421558 0.154983635 0.00000244
0.30 0.349858808 0.104957779 0.244901484 0.00000045
0.40 0.594354274 0.178306460 0.416048408 0.00000059
0.50 0.762033976 0.228610421 0.533424317 0.00000076
0.60 0.947348707 0.284204896 0.663144758 0.00000095
0.70 1.152153158 0.345646293 0.806508017 0.00000115
0.80 1.378497081 0.413549166 0.964948053 0.00000014
0.90 1.628645804 0.488594230 1.140053203 0.00000163
1.00 1.905102899 0.571531441 1.333573363 0.00000191

Table 1 – Exact and approximate values with error terms
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