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GLOBAL BEHAVIOR OF THE SOLUTIONS TO SIXTH

ORDER BOUSSINESQ EQUATION WITH LINEAR

RESTORING FORCE

N. Kutev, N. Kolkovska and M. Dimova

Abstract. Potential well method is established to sixth order Boussinesq
equation with linear restoring force and subcritical initial energy. For su-
percritical initial energy finite time blow up of the solutions is proved under
general structural conditions on the initial data. Numerical experiments,
illustrating the theoretical results, are presented.

1. Introduction

We study the Cauchy problem for a sixth order Boussinesq equation with linear
restoring force

β2utt − uxx − β1uttxx + uxxxx + β3uttxxxx +mu+ α(|u|p−1u)xx = 0,(1)

x ∈ R, t ∈ [0, T ), T ≤ ∞,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R,(2)

where

(3)
β1 ≥ 0, β2 > 0, β3 > 0, m > 0, p ≥ 2, α > 0,

u0 ∈ H1(R), (−∆)−1/2u0 ∈ L2(R), u1 ∈ H1(R), (−∆)−1/2u1 ∈ L2(R),
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and (−∆)−su = F
−1
(
|ξ|−2s

F(u)
)

for s > 0, F(u), F−1(u) are the Fourier trans-
formation and the inverse Fourier transformation, respectively.

Equation (1) describes the transverse deflections of an elastic rod on elastic
foundation, see [1, 7, 8, 9]. The term −uxx is responsible for the tension acting
along the axis of the rod which is subject to axial compression, while β1uttxx
represents the so-called rotational inertia. Equation (1) also occurs in the water
wave problems with nonzero surface tension, see [10].

The propagation of solitary wave solutions of (1), (2) with β3 = 0 is investi-
gated numerically for the first time in [1, 2]. Theoretically problem (1), (2) with
β3 = 0 is studied in [6] by the potential well method for subcritical initial energy,
0 < E(0) < d.

For a sixth order Boussinesq equation without linear restoring force, i.e. β3 >

0 and m = 0, the long-time behaviour of the solutions to (1),(2) for small data is
considered in [12, 13, 15]. In these papers the authors use the contraction mapping
theorem. In [5, 11, 14], for β3 > 0 and m = 0, global existence or finite time blow
up of the weak solutions with subcritical or critical initial energy E(0) ≤ d is
proved by means of the potential well method.

The aim of this paper is to fill up the lack of theoretical investigations of
problem (1), (2). For this purpose we apply the potential well method and com-
pletely investigate the global behaviour of the solutions to Boussinesq equation
(1), (2) for subcritical initial energy, 0 < E(0) < d. In the case of supercritical
energy, E(0) > d, we prove finite time blow up of the weak solutions under general
structural conditions for the initial data.

The paper is organized in the following way. In Section 2 some preliminary
definitions and results are given. In Section 3 we establish the potential well
method for (1), (2). By means of this method global existence or finite time
blow up of the solutions is proved when the initial energy is subcritical. Finite
time blow up of the solutions to (1), (2) with supercritical initial energy is proved
in Theorem 6 from Section 4. In Section 5 explicit choice of initial data with
arbitrary high positive energy satisfying the conditions of Theorem 6 is given. The
performed numerical experiment, supporting the theoretical results, are presented
in Section 6.

2. Preliminaries

Throughout the paper we use the following short notations:

(u, v) = (u(·, t), v(·, t)) =

∫

R

u(x, t)v(x, t) dx,
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‖u‖ = ‖u(·, t)‖L2(R), ‖u‖1 = ‖u(·, t)‖H1(R).

In the space {u ∈ H1(R) : (−∆)−1/2u ∈ L2(R)} we define the scalar product

〈u, v〉 = 〈u(·, t), v(·, t)〉 = β1(u, v) + β2

(
(−∆)−1/2u, (−∆)−1/2v

)
+ β3(ux, vx).

For simplicity we suppose that m = 1 in (1).
We need the following local existence result:

Theorem 1. (Local existence) If (3) holds then problem (1), (2) admits a
unique local solution u ∈ C1([0, Tm); H1(R)), where Tm is the maximal existence
time. Moreover, the conservation law E(t) = E(0) holds for every t ∈ [0, Tm),
where

E(t) := E(u(·, t)) =
1

2

(
〈ut, ut〉+ ‖u‖21 +

∥∥∥(−∆)−1/2u
∥∥∥
2
)

−
α

p+ 1

∫

R

|u|p+1(x, t) dx.

(4)

The proof of Theorem 1 is similar to the proofs of Theorem 2.3 and Theorem 2.4
in [14] and we omit it.

Let us introduce some important definitions related to problem (1), (2):

• Nehari functional I: I(u) = ‖u‖21 +
∥∥(−∆)−1/2u

∥∥2 − α
∫
R
|u|p+1 dx;

• Nehari manifold N: N = {u ∈ H1(R) : ‖u‖1 6= 0, I(u) = 0};

• critical energy constant d (mountain pass level) and functional J :

d = inf
u∈N

J(u), J(u) =
1

2
‖u‖21 +

1

2

∥∥∥(−∆)−1/2u
∥∥∥
2
−

α

p+ 1

∫

R

|u|p+1 dx.

When u depends on x and t, we use the short notations I(u(t)) = I(u(·, t)) and
J(u(t)) = J(u(·, t)).

We give two auxiliary lemmas which deal with the properties of the functionals
I(u), J(u) and the critical energy d.

Lemma 1. Let u ∈ H1(R), (−∆)−1/2u ∈ L2(R) and ‖u‖1 6= 0. Then:

(i) there exists a unique λ∗ = λ∗(u) ∈ (0,∞) such that for λ ∈ [0, λ∗] function
J(λu) is an increasing function of λ; for λ ∈ [λ∗,∞) J(λu) is a decreasing
function of λ and J(λu) takes its maximum at λ∗.
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(ii) I(λu) > 0 for λ ∈ (0, λ∗); I(λu) < 0 for λ ∈ (λ∗,∞) and I(λ∗u) = 0.

Lemma 2. Let u ∈ H1(R), (−∆)−1/2u ∈ L2(R) and r0 be the constant defined
as

r0 = α
− 1

p−1 (Cp)
− p+1

p−1 > 0 with

Cp = sup
v∈H1,‖v‖1 6=0

‖v‖Lp+1

‖v‖1
=

1√
2(p + 1)

(
(p− 1)(p + 3)

Γ( 4
p−1)

Γ2( 2
p−1)

) p−1
2(p+1)

.

Then the following assertions hold:

(i) If 0 < ‖u‖1 < r0 then I(u) > 0;

(ii) If I(u) < 0 then I(u) < (p+ 1)(J(u) − d);

(iii) If I(u) = 0 and ‖u‖1 6= 0 then ‖u‖1 ≥ r0;

(iv) The following lower bound for the critical energy constant d holds:

d ≥ d0 =
p− 1

2(p + 1)
r20.

The proofs of Lemma 1 and Lemma 2 are analogous to the proofs of Lemma 1
and Lemma 2 in [6] respectively and we omit them.

3. Potential well method

In the framework of the potential well method we introduce two important subsets
of H1(R) which are invariant under the flow of (1), (2):

W = {u ∈ H1(R) : I(u) > 0} ∪ {0}, V = {u ∈ H1(R) : I(u) < 0}.

Theorem 2. (Sign preserving property of I(u(t))) Suppose (3) holds,
E(0) < d and u(x, t) is the weak solution of (1), (2). Then the following assertions
hold:

(i) If u0 ∈ W then u(x, t) ∈ W for every t ∈ [0, Tm);

(ii) If u0 ∈ V then u(x, t) ∈ V for every t ∈ [0, Tm).

As a consequence of Theorem 2 we have the following global existence and
finite time blow up results.
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Theorem 3. (Global existence) Suppose (3) holds and E(0) < d. If
I(u0) > 0 or ‖u0‖1 = 0 then problem (1), (2) has a unique global weak solu-
tion u(x, t) defined for every t ∈ [0,∞).

Theorem 4. (Finite time blow up) Suppose (3) holds and E(0) < d. If
I(u0) < 0 then the weak solution u(x, t) to problem (1), (2) blows up for a finite
time.

The proofs of Theorem 2, Theorem 3 and Theorem 4 follow the ideas of the
proofs of the corresponding results in [6, 11, 14] and we omit them. In fact, global
existence and finite time blow up of the solutions with subcritical initial energy for
a fourth order Boussinesq equation with linear restoring force (β3 = 0, m > 0) by
the potential well method are proved in [6]. For a sixth order Boussinesq equation
without linear restoring force (β3 > 0, m = 0) results analogous to Theorem 2,
Theorem 3 and Theorem 4 are obtained in [11, 14].

4. Finite time blow up for arbitrary high positive initial energy

As in Theorem 4 the finite time blow up of the solutions to (1), (2) with arbitrary
high positive initial energy is based on the sign preserving properties of the Nehari
functional I(u(t)). First we prove the following auxiliary lemma:

Lemma 3. Suppose (3) holds and

(5) 〈u0, u1〉 ≥ 0.

Let u(x, t) be a weak solution of problem (1), (2). If I(u(t)) < 0 for every t ∈
[0, T ], T < Tm, then the functions φ(t) = 〈u(t), u(t)〉, φ′(t) = 2〈u(t), ut(t)〉 and

h(t) = (φ′(t))2

φ(t) are strictly increasing ones in (0, T ]. Moreover, the function φ(t)

is strictly convex in (0, T ] and the inequality

(6) 〈u(t), u(t)〉 ≥ 〈u0, u0〉+ 2t〈u0, u1〉

holds for every t ∈ [0, T ].

P r o o f. Since φ′′(t) = 2〈ut, ut〉 − 2I(u(t)) > 0 for t ∈ [0, T ] it follows that
φ(t) is a strictly convex function and φ′(t) is a strictly increasing one for t ∈ [0, T ].
From (5) we get φ′(t) > 0 for t ∈ (0, T ], i.e. φ(t) is a strictly increasing function
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of t. Inequality (6) is a consequence of the convexity of φ(t). For h′(t) we get the
inequality

h′(t) =
2φ′′(t)φ′(t)φ(t)− (φ′(t))3

φ2(t)
=

φ′(t)

φ2(t)

(
2φ′′(t)φ(t) − (φ′(t))2

)

=
8〈u, ut〉

〈u, u〉2
(
〈u, u〉2〈ut, ut〉

2 − 〈u, u〉2I(u)− 〈u, ut〉
2
)
> 0,

i.e. h(t) is a strictly increasing function for t ∈ [0, T ]. �

Theorem 5. (Sign preserving property of I(u(t))) Suppose (3) and (5)

hold and m0 =
(
min

(
1
β1
, 1
β2
, 1
β3

)) 1
2
. If

(7)
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
> E(0) > 0

then I(u(t)) < 0 for every t ∈ [0, Tm). Moreover, if tb =
1

2(m0)2
(p+1)
(p−1)

〈u0,u1〉
〈u0,u0〉

< Tm

then the following inequality

(8) I(u(t)) ≤ −
p+ 1

2
〈ut, ut〉

holds for every t ∈ [tb, Tm) .

P r o o f. From the conservation law (4) we have

(9)
1

p+ 1
I(u(t)) = E(0)−

1

2
〈ut, ut〉 −

p− 1

2(p + 1)

(
‖u‖21 +

∥∥∥(−∆)−1/2u
∥∥∥
2
)
.

By means of (7) and (9) we get the following chain of inequalities for t = 0

I(u(0))

(p+ 1)
<
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
−

1

2
〈u1, u1〉

−
1

2

(p− 1)

(p+ 1)

(
β1

β1
‖u0‖

2 +
β3

β3
‖u′0‖

2 +
β2

β2

∥∥∥(−∆)−1/2u0

∥∥∥
2
)

≤
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
−

1

2
〈u1, u1〉 −

(m0)
2

2

(p− 1)

(p+ 1)
〈u0, u0〉

=−
1

2

〈
u1 −

〈u0, u1〉

〈u0, u0〉
u0, u1 −

〈u0, u1〉

〈u0, u0〉
u0

〉
≤ 0
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i.e. I(u(0)) < 0.

Let us suppose that there exists some t0 ∈ (0, Tm) such that I(u(t)) < 0 for
every t ∈ [0, t0) and I(u(t0)) = 0. From Lemma 3, (5), (7) and (9) we have the
following impossible chain of inequalities:

0 =
I(u(t0))

(p+ 1)
<
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
−

(m0)
2

2

(p − 1)

(p + 1)
〈u(t0), u(t0)〉

−
1

2
〈ut(t0), ut(t0)〉

=
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
−

(m0)
2

2

(p − 1)

(p + 1)
〈u(t0), u(t0)〉

−
1

2

〈
ut(t0)−

〈u(t0), ut(t0)〉

〈u(t0), u(t0)〉
u(t0), ut(t0)−

〈u(t0), ut(t0)〉

〈u(t0), u(t0)〉
u(t0)

〉

−
〈u(t0), ut(t0)〉

2

〈u(t0), u(t0)〉
+

1

2

〈u(t0), ut(t0)〉
2

〈u(t0), u(t0)〉

≤ −
(m0)

2

2

(p− 1)

(p+ 1)
(〈u(t0), u(t0)〉 − 〈u0, u0〉)

−
1

2

(
〈u(t0), ut(t0)〉

2

〈u(t0), u(t0)〉
−

〈u0, u1〉
2

〈u0, u0〉

)
≤ 0.

Hence I(u(t0)) < 0 which contradicts our assumption, i.e. I(u(t)) < 0 for every
t ∈ [0, Tm).

If tb < Tm then repeating the above calculations we obtain from Lemma 3,
(6) and (9) that the inequalities

I(u(t))

(p + 1)
≤
(m0)

2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
−

1

2
〈ut(t), ut(t)〉

−
(m0)

2

2

(p− 1)

(p+ 1)
〈u(t), u(t)〉

≤
1

2

〈u0, u1〉
2

〈u0, u0〉
−

1

2
〈ut(t), ut(t)〉 − (m0)

2t
(p− 1)

(p+ 1)
〈u0, u1〉

=−
1

2
〈u0, u1〉

(
2(m0)

2 (p− 1)

p+ 1
t−

〈u0, u1〉

〈u0, u0〉

)
−

1

2
〈ut(t), ut(t)〉

≤ −
1

2
〈ut(t), ut(t)〉

are valid for every t ∈ [tb, Tm). Thus Theorem 5 is proved. �
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As a consequence of the sign preserving properties of the Nehari functional
I(u(t)) we have the following finite time blow up result.

Theorem 6. (Finite time blow up) Suppose (3) holds, 〈u0, u1〉 ≥ 0 and

m0 =
(
min

(
1
β1
, 1
β2
, 1
β3

)) 1
2
. If

(m0)
2

2

(p− 1)

(p+ 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉
> E(0) > 0

then every weak solution of problem (1), (2) blows up for a finite time t∗. If
〈u0, u1〉 > 0 then

either t∗ ≤ tb =
1

2(m0)2
(p + 1)

(p − 1)

〈u0, u1〉

〈u0, u0〉
or t∗ ≤ Tb =

2〈u(tb), u(tb)〉

(p− 1)〈u(tb), ut(tb)〉
.

P r o o f. Let us assume the contrary, i.e. Tm = ∞. From Theorem 5 and
(8) it follows that for every t ≥ tb the function φ(t) = 〈u(t), u(t)〉 satisfies the
inequalities

φ′′(t) = 2〈ut(t), ut(t)〉 − 2I(u(t)) ≥ (p+ 3)〈ut(t), ut(t)〉

φ(t)φ′′(t)−
p+ 3

4
(φ′(t))2 ≥ (p+ 3)

(
〈ut(t), ut(t)〉〈u(t), u(t)〉 − 〈u(t), ut(t)〉

2
)
≥ 0.

From Lemma 3 we have φ(tb) = 〈u(tb), u(tb)〉 > 0, φ′(tb) = 2〈u(tb), ut(tb)〉 > 0
when tb > 0, i.e. 〈u0, u1〉 > 0. Since p+3

4 > 1 it follows from Lemma 1.1 in [3]
that

〈u(t), u(t)〉 → ∞ for t → t∗, t∗ ≤
4φ(tb)

(p− 1)φ′(tb)
=

2〈u(tb), u(tb)〉

(p− 1)〈u(tb), ut(tb)〉
.

If tb = 0, i.e. 〈u0, u1〉 = 0, then the same argument holds if tb is replaced by some
t0 > 0. This contradicts our assumption and Theorem 6 is proved. �

Remark. The comparison between Theorem 4 and Theorem 6 shows that
for positive subcritical initial data, i.e. 0 < E(0) < d, Theorem 4 gives a better
result than the one of Theorem 6. Indeed, if the conditions of Theorem 6 hold
then I(u0) < 0 and hence the conditions of Theorem 4 are also satisfied. The
main advantage of Theorem 6 is the validity of the blow up result not only for
subcritical initial energy but also for arbitrary high positive initial energy.
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5. Choice of initial data

In this section we choose explicitly initial data with arbitrary high positive energy
and satisfying all conditions of Theorem 6.

Let w, v be arbitrary H2(R) functions such that

‖w‖H2(R) 6= 0, ‖v‖H2(R) 6= 0, (w, v) = 0, (w′, v′) = 0, (w′′, v′′) = 0.

For example, a possible choice of w, v is when w is an even function and v is an
odd one.

We define the initial data in the following way:

(10) u0(x) =
r

σ
(w(σx))′x, u1(x) =

r

σ
(qw(σx) + µv(σx))′x,

where the constants r > 0, σ > 0, q ≥ 0 and µ > 0 will be chosen below.
Straightforward computations give us the following formula for the energy

E(0) in terms of norms of w and v:

E(0) =
r2

2σ

(
µ2

(
β1‖v

′‖2 +
β2

σ2
‖v‖2 + β3σ

2‖v′′‖2
)
−R(σ, r, q)

)
, where

R(σ, r, q) =
2αrp−1

p+ 1

∫

R

|w′|p+1 dx− q2
(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)

− ‖w′‖2 −
1

σ2
‖w‖2 − σ2‖w′′‖2.

It is clear that initial data (10) satisfy conditions (3) and 〈u0, u1〉 ≥ 0. One
has to choose constants r, σ, q and µ so that the inequalities

(11) K ≤ E(0) <
(m0)

2

2

(p − 1)

(p + 1)
〈u0, u0〉+

1

2

〈u0, u1〉
2

〈u0, u0〉

hold for arbitrary positive fixed constant K and m0 =
(
min

(
1
β1
, 1
β2
, 1
β3

)) 1
2
. In-

equality (11) is equivalent to

(12)

2σK

r2
≤ µ2

(
β1‖v

′‖2 +
β2

σ2
‖v‖2 + β3σ

2‖v′′‖2
)
−R(σ, r, q)

<

(
(m0)

2 p− 1

p+ 1
+ q2

)(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)
.

We propose the following algorithm for determining the constants r, σ, q and
µ:
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Step 1: Choose arbitrary constants σ > 0, q ≥ 0 and K > 0.

Step 2: Fix constant r so that

r ≥ max{r0, r1}, where

r0 = (2σK)
1
2

(
(m0)

2 p− 1

p+ 1
+ q2

)− 1
2
(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)− 1

2

,

r1 =

(
q2
(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)
+ ‖w′‖2 +

1

σ2
‖w‖2

+ σ2‖w′′‖2

) 1
p−1

×

(
2α

p+ 1

∫

R

|w′|p+1 dx

)− 1
p−1

.

This choice of r guarantees that

2σK

r2
<

(
(m0)

2 p− 1

p+ 1
+ q2

)(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)

and that R(σ, q, r) > 0.

Step 3: Choose constant µ such that µ ∈ [µ0, µ1), where

µ0 =

(
2σK

r2
+R(σ, q, r)

) 1
2
(
β1‖v

′‖2 +
β2

σ2
‖v‖2 + β3σ

2‖v′′‖2
)− 1

2

,

µ1 =

(
β1‖v

′‖2 +
β2

σ2
‖v‖2 + β3σ

2‖v′′‖2
)− 1

2

×

((
(m0)

2 p− 1

p+ 1
+ q2

)(
β1‖w

′‖2 +
β2

σ2
‖w‖2 + β3σ

2‖w′′‖2
)
+R(σ, q, r)

) 1
2

.

Let us note that if we set µ = µ0 in (12) then the lhs of this condition
becomes an equality, while for µ = µ1 the rhs of (12) becomes an equality. Hence
for µ ∈ [µ0, µ1) condition (12) is satisfied.

Moreover, it is easy to check that E(0) = K for µ = µ0 and E(0) > K for
µ ∈ (µ0, µ1). In this way we find a wide class of initial data (10) with arbitrary
high positive energy K which satisfy all conditions of Theorem 6.
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(a) (b)

Figure 1 – Profiles of the numerical solution of (1), (10) with σ = 0.8, r = 13.5, q = 0.3, µ = 0.15

computed at evolution times: (a) – t = 0; (b) – t=1.65; t̃∗ = 1.66.

6. Numerical experiments

The aim of the presented numerical experiments is to illustrate the blow up result
from Theorem 6 applying the algorithm for choosing of initial data proposed in
Section 5.

We solve equation (1) with initial data (10), where

w(x) =
1

cosh(x)
, v(x) = w′(x) = −

sinh(x)

cosh2(x)
.

Let us note that w(x) is an even function, while v(x) is an odd one.
For the numerical solution of problem (1), (10) we use conservative, implicit

with respect to the nonlinearity, finite difference schemes. These schemes are
modifications of the numerical schemes proposed and studied in [5] (for case m =
0) and in [6] (for case β3 = 0). Following the ideas and technique from [4] we
can prove that these schemes have second order of convergence in space and time.
In a similar to [4] way we introduce a discrete energy functional Eh(v

n
i ), where

vni is a discrete approximation to u on a regular mesh. This discrete functional
approximates the energy functional E(t) in (4) and the discrete energy Eh(v

n
i ) is

conserved in time.
Numerical experiments are performed for β1 = 1, β2 = 1, β3 = 1, m = 1, α =

2 and p = 2. In order to demonstrate the validity of Theorem 6 for supercritical
initial energy, i.e. E(0) > d, we need an upper bound for d. Since d = infu∈N J(u),
we may take for an upper bound of d the value d0 = J(z) for an arbitrary function
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z ∈ N. Here we find out that z(x) = δu0(0.8x) with δ ≈ 2.8941 belongs to N and
d0 = J̃(z) ≈ 6.7332. That is why we have to choose the constant r, σ, q and µ not
only to satisfy conditions of Theorem 6 but also to ensure that E(0) > d0 ≥ d.

Following the algorithm proposed in Section 5 we chose:

Step 1: σ = 0.8, q = 0.3 and K = 7.

Step 2: r = 13.5 ≥ max{r0, r1}, r0 ≈ 2.4552, r1 ≈ 12.4550.

Step 3: µ = 0.15 ∈ [µ0, µ1), µ0 ≈ 0.1416, µ1 ≈ 0.6969.

In that way we construct initial data satisfying all conditions of Theorem 6
with discrete initial energy Eh(0) ≈ 8.0803 > K. Profile of the numerical solution
at t = 0 is presented on Fig. 1(a) whereas Fig. 1(b) shows the typical blow
up profile of the numerical solution at time t = 1.65 which is very close to the
computed blow up time t̃∗ = 1.66. One can see that the behaviour of the numerical
solution is fully consistent with the statements of Theorem 6. The computed blow
up time t̃∗ = 1.66 is greater then tb = 3

2q = 0.45 but is bounded above by the

computed value of Tb, T̃b = 4.3086 (see Theorem 6).
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