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STUDIA MATHEMATICA

ASYMPTOTIC BEHAVIOUR OF Y-LINKED GENES

THROUGH BISEXUAL BRANCHING PROCESSES
FOR GENETIC BALANCED SEX DETERMINATION

M. González, C. Gutiérrez, R. Mart́ınez, I. del Puerto*

The limiting genotype behaviour of Y-linked genes is studied in a two-sex

monogamous population, where the sex designation is balanced. To this end,

a multitype bisexual branching process is considered to model the evolution

of the numbers of females and males of each genotype. It is assumed perfect

fidelity mating with preference of females for males carrying certain allele

of the gene. From this model, conditions for having positive probability

of coexistence are investigated. Moreover, genotype growth rates on the

coexistence event are established. Hence, the dominant genotype is found.

Finally, the main results are illustrated by means of a simulated example.

1. Introduction

In last decades, mathematical population genetics is of increasing interest. Branch-

ing processes have a long history in population genetics theory (see, for example,

[10]–[13]), mainly, motivated by a serious limitation in some cases of the classical

Wright-Fisher model, which is the assumption that population size is constant.

In recent years, two new stochastic models ranging over the field of branching
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processes have been introduced to analyze the evolution of characters associated

to genes linked to Y chromosome (see [7] and [9]). Both models describe the

evolution of the number of carriers of two alleles (one implying the absence of

the other) of a Y-linked gene in a two-sex monogamic population. The so-called

Y-linked bisexual branching process with preference was introduced in [7]. In this

model it is assumed that characters controlled by a gene may have some influence

on the mating process of the species, in the sense that females have preference for

males carrying one of the alleles of the gene. On the other hand, in [9], females

were considered to choose their mates without caring about their genotypes since

some Y-linked characters are not decisive at the time of mating. It is done by

introducing the Y-linked bisexual branching process with blind choice. A more

general and complex stochastic process, in which the mutation of the gene is

considered, has been recently introduced in [5].

For these models, it has been developed the probabilistic theory to determine

conditions for the extinction/survival of Y-linked genes as well as for their asymp-

totic rate of growth in the population (see [1] and [7]-[9]). Moreover, different

approaches to inferential problems arising from these models can be found in [3],

[4] and [6].

It has been found in those previous studies that the probability of being born

female has, among other model parameters, the greatest influence on asymptotic

behaviour. In particular, the balanced sex case, i.e. when the probability of

being female is equal to the probability of being male, raises special difficulties.

This situation has been solved by applying complex mathematical tools from the

theory of branching processes (see [2], Chapter XI), for the Y-linked bisexual

branching process with blind choice (see [1]). However, this problem has not

been considered yet for the Y-linked bisexual branching process with preference.

Hence, it is the aim of this paper to deal with it.

Apart from this introduction, the paper is organized as follows. The definition

of the Y-linked bisexual branching process with preference is provided in Section

2. In the case of balanced sex designation, sufficient conditions to have a positive

probability of coexistence together with the asymptotic rates on this event, are

tackled in Section 3. Finally, in Section 4 the proofs of the results are provided.

2. The probability model

The model considered here was introduced in [7] to analyze the evolution genera-

tion-by-generation of the number of carriers of two alleles, labelled by R and

r (one can mean the absence of the other), of a Y-linked gene in a two-sex

monogamous population where the gene has some influence on the mating process
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of the species, with females having a preference for males carrying the R alleles.

Next, we give the mathematical definition.

Let {(FRni,MRni) : i = 1, 2, . . . ; n = 0, 1, . . .} and {(Frnj ,Mrnj) : j =

1, 2, . . . ;n = 0, 1, . . .} be two independent sequences of independent, identically

distributed, non-negative and integer-valued bivariate random vectors on the

same probability triple (Ω,F , P ). The sequences

{(ZRn, Zrn)}n≥0 and {(Fn+1,MRn+1,Mrn+1)}n≥0

are defined recursively, for each n ≥ 0, as follows:

(ZR0, Zr0) = (a, b) ∈ N
2
0,

Fn+1 =

ZRn
∑

i=1

FRni +

Zrn
∑

j=1

Frnj, MRn+1 =

ZRn
∑

i=1

MRni and Mrn+1 =

Zrn
∑

j=1

Mrnj ,

assuming that
∑

0

1
= 0; and

ZRn+1 = min{Fn+1,MRn+1} and

Zrn+1 = min{max{0, Fn+1 −MRn+1},Mrn+1}.

The two-dimensional process {(ZRn, Zrn)}n≥0 is called Y-linked bisexual bran-

ching process with preference.

The process {(ZRn, Zrn)}n≥0 is a homogeneous two-type Markov chain. In-

tuitively, for n fixed, the random vector (ZRn, Zrn) represents the total number

of couples of type R and r, respectively, at generation n, where the type of a

couple is determined by the type of its male. To describe the evolution of the

population from this generation on, two phases are considered: reproduction and

mating.

In the reproduction phase, each couple, independently of the others, generates

females and males of its type (mutation of the gene is not considered) accord-

ing to some probability distribution depending on its type. So, (FRni,MRni)

and (Frnj,Mrnj) denote the total number of females and males given by the ith
R-couple and the jth r-couple, respectively, at the generation n. Then, Fn+1,

MRn+1 and Mrn+1 denote the total number of females, R- and r-males at gen-

eration n+ 1.

In the mating phase, the total number of individuals in generation n + 1 is

known, i.e. the random vector (Fn+1,MRn+1,Mrn+1), and the number of couples

of each genotype formed in generation n + 1 is obtained taking into account

that generations do not overlap, the assumption of perfect fidelity (monogamous
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population) and that females prefer R-males as mates. Hence, since R-males

are chosen first as mates and each individual mates with only one individual of

the opposite sex provided that some of them are still available, the number of

R-couples is the minimum between the total number of females and the total

number of R-males. Then, females which do not mate with R-type males (if any)

mate with r-males.

Since in nature, R- and r-couples may have differences in their reproductive

abilities, in general, we allow for different reproduction laws for each genotype

and also assume that these reproduction laws have finite means and variances.

Let mR and mr denote the average number of offspring produced by the R- and

r-couple, respectively. Furthermore, an offspring will be female with probability

α, 0 < α < 1, and male with probability 1−α. These sex designations are made

independently following a binomial scheme among the offspring of any couple,

and it is assumed that the genotype has no influence on the sex determination,

so that α is the same for both genotypes. As a consequence of this reproduction

scheme, we derive that the average number of females and males generated by an

R-couple are αmR and (1 − α)mR, respectively, while the respective values for

an r-couple are αmr and (1− α)mr, respectively.

It is proved in [7] that each genotype shows the dual behaviour typical for

branching processes and known as the extinction-explosion dichotomy. This

means that the number of couples of any type is bound to undergo either ex-

tinction or indefinite growth. The events of extinction of the population and

the fixation of a genotype events have been studied for the balanced sex case

(see [7] and [8]). However, the event A∞,∞ = {ZRn → ∞, Zrn → ∞}, termed

simultaneous survival of both genotypes or coexistence, has not been considered

yet. The following section is devoted to the study of asymptotic genotype growth

rates on the coexistence event for the balanced sex case.

3. Growth rates on coexistence event

From now on, we write P(i,j)(·) for P (·|(ZR0, Zr0) = (i, j)), and we consider that

the following assumption holds:

B. α = 0.5 (balanced sex designation) and 1 < αmR < αmr.

First, we give conditions for survival of both genotypes.

Theorem 1. Let the initial states (i, j) be such that i, j > 0. If B holds, then

P(i,j)(A∞,∞) > 0.
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Hence, the event of the simultaneous survival of both alleles has positive

probability if the mean number of females per r-couple is greater than that of

females perR-couple and both are greater than unity. Since the sex determination

is balanced, then the mean number of females per couple is the same than that of

males and therefore this statement is in keeping with the one obtained in [7] (see

Theorem 4.6 therein) and in [8] (see Theorem 4.3 therein), when the probability

for an offspring to be female is different from 0.5. Notice that since R-males

are preferred by females and the sex designation is balanced, then the condition

mR < mr guarantees that there are enough females to mate with r-males on

A∞,∞.

Next, we consider the study of the limiting growth rates on the set of coex-

istence of both genotypes. The preference of R-males makes that we distinguish

this study by genotypes.

3.1. R genotype

It has been shown in [8] (see proof of Theorem 5.1) that, on the set A∞,∞, the

total number of R-couples is almost surely (a.s.) the total number of R-males,

which behaves as a standard Bienaymé-Galton-Watson process defined by the re-

production law of the R-males. Hence, applying the theory about the asymptotic

evolution of the Bienaymé-Galton-Watson process (see [2], Proposition 1.3 and

Theorem 2.1), the following result is derived.

Theorem 2. If B holds, then there exists a nonnegative and finite random

variable WR, which is positive on A∞,∞, such that a.s. on this event

lim
n→∞

ZRn

(αmR)n
= lim

n→∞

MRn

(αmR)n
= WR.

Intuitively, the total numbers of R-couples and R-males grow geometrically at

the same rate, defined by the mean number of females generated by an R-couple

(see Figure 1, left and middle). In fact, both sequences are the same.

3.2. r genotype

First we establish some preliminary results. The following one shows that, on a

subset of the event of survival of both genotypes, the asymptotic growth rate of

the number of R- and r-couples over one generation is determined by the average

number of females generated by each type of couples, respectively. Moreover, the

asymptotic behavior of the ratio between the total number of R-couples and the

total number of r-couples is zero.
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Proposition 1. Let the initial states (i, j) be such that i, j > 0. If B holds,

then there exists a set A ⊆ A∞,∞, with P(i,j)(A) > 0, such that, a.s. on A

lim
n→∞

ZRn+1

ZRn

= αmR and lim
n→∞

Zrn+1

Zrn
= αmr,

and
ZRn

Zrn
= O(an), as n → ∞, with 0 < a < 1.

The asymptotic behavior of the ratio between the number of males, respec-

tively females, and the number of couples in the previous generation on the same

subset of the coexistence event, is given in the following result.

Proposition 2. If B holds, then, for each 0 < ρ < 1/2, a.s. on A, as

n → ∞,

MRn+1

ZRn

= αmR +O(ZR−ρ
n ),

Mrn+1

Zrn
= αmr +O(Zr−ρ

n ),

and
Fn+1

mRZRn +mrZrn
= α+O(Z−ρ

n ),

with Zn = ZRn + Zrn, n ≥ 1, and A as in Proposition 1.

Then, we derive the asymptotic growth rate for the total number of r-couples
and r-males, as well as for the total number of females.

Theorem 3. If B holds, then there exists a nonnegative random variable Wr,

such that

lim
n→∞

Zrn
(αmr)n

= lim
n→∞

Mrn
(αmr)n

= lim
n→∞

Fn

(αmr)n
= Wr a.s. on A,

and A ⊆ {0 < Wr < ∞}, with A as in Proposition 1.

Intuitively speaking, the total numbers of r-couples, r-males and females grow

geometrically at the same rate, defined by the mean number of females generated

by an r-couple (see Figure 1, left and middle). Notice that a difference with R

allele case, is that now the sequences of total number of r-couples and r-males

could be different. Since mR < mr, then we derive that, in this situation, the r
allele is the dominant one, in spite of the preference of R allele (see Figure 1, left

and middle).

Finally, from Propositions 1 and 2, and Theorem 3, we derive the following

result about the asymptotic behavior of the ratio between the total number of

females and males, which shows the balanced sex designation (see Figure 1, right).
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Figure 1: A simulated path from a Y-linked bisexual branching process with

preference, where ZR0 = 100 and Zr0 = 10, α = 0.5, and reproduction laws

following Poisson distributions with parameters mR = 2.4 and mr = 2.8. Left:

ZRn (solid line) and Zrn (dash line). Middle: MRn (solid line), Mrn (dash line)

and Fn (dotdash line). Right: Fn/Mn (dash line).

Corollary 1. If B holds, then

lim
n→∞

Fn

Mn

= 1 a.s. on A,

with A as in Proposition 1 and Mn = MRn +Mrn, n ≥ 1.

4. Proofs

In this section we provide the proofs of the results in the paper.

Proof of Theorem 1

First notice that, since every pair of states of the set {(i, j) : i, j > 0} are com-

municating (see Proposition 3.1 in [7]), we can assume without loss of generality

that the starting state (i, j), is such that i ≤ j.

Let ε > 0 and η1 = α(mR − ε), η2 = α(mR + ε), η3 = α(mr − 3ε), η4 =

α(mr + 3ε). One can fix ε small enough in order that η4 > η3 > η2 > η1 > 1.

Denote by An = {η1ZRn < ZRn+1 < η2ZRn, η3Zrn < Zrn+1 < η4Zrn}, for
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all n ≥ 0. Then one has that

P(i,j)(A∞,∞) ≥ P(i,j)

(

∞
⋂

n=0

{η1ZRn < ZRn+1 < η2ZRn, η3Zrn < Zrn+1 < η4Zrn}

)

= lim
n→∞

P(i,j)

(

n
⋂

l=0

Al

)

= lim
n→∞

P(i,j) (A0)

n
∏

l=1

P(i,j)

(

Al

∣

∣

∣

∣

l−1
⋂

k=0

Ak

)

.(1)

Since {(ZRn, Zrn)}n≥0 satisfies the Markov property, one further infers that,
for any n ≥ 1,

P(i,j)

(

An

∣

∣

∣

∣

n−1
⋂

k=0

Ak

)

= P(i,j)



An

∣

∣

∣

∣

⋃

i′,j′>0

{(ZRn, Zrn) = (i′, j′)} ∩

n−1
⋂

k=0

Ak





≥ inf
ηn1 i < i′ < ηn2 i
ηn3 j < j′ < ηn4 j

P(i,j)

(

An

∣

∣

∣

∣

{(ZRn, Zrn) = (i′, j′)} ∩
n−1
⋂

k=0

Ak

)

= inf
ηn1 i < i′ < ηn2 i
ηn3 j < j′ < ηn4 j

P(i′,j′) (A0) .(2)

Since η2 < η3 and i ≤ j, we deduce that ηn
2
i < ηn

3
j for any n ≥ 1 and

consequently i′ < j′ for all i′, j′ such that ηn1 i < i′ < ηn2 i and ηn3 j < j′ < ηn4 j.
Therefore, a suitable lower positive bound for P(i′,j′) (A0), with i′ < j′, needs to
be found in order to conclude that P(i,j)(A∞,∞) > 0. Towards this end, one first
notes that

Ac
0 = {ZR1 ≤ η1ZR0} ∪ {ZR1 ≥ η2ZR0} ∪ {Zr1 ≤ η3Zr0} ∪ {Zr1 ≥ η4Zr0}

⊆ {ZR1 ≤ η1ZR0,MR1 > η1ZR0, FR1 > η1ZR0}

∪ {ZR1 ≥ η2ZR0,MR1 < η2ZR0}

∪ {Zr1 ≤ η3Zr0, FR1 > η1ZR0,MR1 < η2ZR0, F r1 > η5Zr0,Mr1 > η5Zr0}

∪ {Zr1 ≥ η4Zr0,Mr1 < η4Zr0}

∪ {|MR1 − αmRZR0| ≥ αεZR0} ∪ {FR1 ≤ η1ZR0}

∪ {|Mr1 − αmrZr0| ≥ αεZr0} ∪ {Fr1 ≤ η5Zr0},(3)

where η5 = α(mr − ε).
Since R-males are preferred by females at mate, then we deduce that, a.s.

on the event {MR1 > η1ZR0, FR1 > η1ZR0}, ZR1 > η1ZR0, and therefore, we
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have that

P(i′,j′)({ZR1 ≤ η1ZR0,MR1 > η1ZR0, FR1 > η1ZR0}) = 0.

Moreover, ZR1 < η2ZR0 a.s. on the event {MR1 < η2ZR0}, and then

P(i′,j′)({ZR1 ≥ η2ZR0,MR1 < η2ZR0}) = 0.

Similar arguments give

P(i′,j′)({Zr1 ≥ η4Zr0,Mr1 < η4Zr0}) = 0.

Also, we deduce that

P(i′,j′)({Zr1 ≤ η3Zr0, FR1 > η1ZR0,MR1 < η2ZR0, F r1 > η5Zr0,Mr1 > η5Zr0}) = 0,

since MR1−FR1 < 2εZR0 a.s. on the set {FR1 > η1ZR0,MR1 < η2ZR0} and

Fr1 − (MR1 − FR1) > η5Zr0 − 2εZR0 > η3Zr0 a.s. on the set

{FR1 > η1ZR0,MR1 < η2ZR0, F r1 > η5Zr0, ZR0 < Zr0},

and therefore Zr1 > η3Zr0 a.s. on the set

{Zr1 ≤ η3Zr0, FR1 > η1ZR0,MR1 < η2ZR0, F r1 > η5Zr0,Mr1 > η5Zr0, ZR0 < Zr0}.

Finally, since α = 1−α = 0.5 and the reproduction laws are assumed to have
finite variances, it follows with the help of Chebyshev’s inequality that

P(i′,j′)(|MR1 − αmRZR0| ≥ αεZR0) = P(i′,j′)





∣

∣

∣

∣

∣

∣

i′
∑

k=1

(MRk0 − (1− α)mR)

∣

∣

∣

∣

∣

∣

≥ αεi′





≤
C1

i′
,(4)

for some positive constant C1. Similar arguments give

P(i′,j′)

(

FR1 ≤ η1ZR0

)

≤
C2

i′
, P(i′,j′)

(

Fr1 ≤ η5Zr0
)

≤
C3

j′

and

(5) P(i′,j′)(|Mr1 − αmrZr0| ≥ αεZR0) ≤
C4

j′
,

for suitable positive constants C2, C3, and C4.
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By combining (3)–(5), for all i′ < j′, one finds that

P(i′,j′)(A0) = 1− P(i′,j′)(A
c
0) ≥ 1−

C5

i′
−

C6

j′
,

for some positive constants C5 and C6.

Since η1, η3 > 1, it finally follows from (1) and (2) that

P(i,j)(A∞,∞) ≥ P(i,j) (A0) lim
n→∞

n
∏

l=1

inf
ηl1i < i′ < ηl2i
ηl3j < j′ < ηl4j

P(i′,j′) (A0)

≥ P(i,j) (A0) lim
n→∞

n
∏

l=1

(

1−
C5

ηl
1
i
−

C6

ηl
3
j

)

> 0,

which completes the proof.

Proof of Proposition 1

First notice again that, since every pair of states of the set {(i, j) : i, j > 0}
are communicating (see Proposition 3.1 in [7]), we can assume without loss of

generality that the starting state (i, j), is such that i ≤ j.
Let ε > 0 and η1 = α(mR − ε), η2 = α(mR + ε), η3 = α(mr − 3ε), η4 =

α(mr + 3ε) be such that η4 > η3 > η2 > η1 > 1. Also, for all n ≥ 0, let

An = {η1ZRn < ZRn+1 < η2ZRn, η3Zrn < Zrn+1 < η4Zrn}, and A = ∩∞
n=0

An.

It was shown in the proof of Theorem 1 that A ⊆ A∞,∞ and P(i,j)(A) > 0. By

definition of A we derive that

lim
n→∞

ZRn+1

ZRn

= αmR and lim
n→∞

Zrn+1

Zrn
= αmr a.s. on A.

Moreover, it is verified that, for n ≥ 1, ηn1 i < ZRn < ηn2 i and ηn3 j < Zrn < ηn4 j
a.s. on A. Consequently, since η2 < η3, then, we derive that,

0 ≤ lim inf
n→∞

ZRn

Zrn
≤ lim sup

n→∞

ZRn

Zrn
≤ lim

n→∞

ηn2 i

ηn
3
j
= 0 a.s. on A,

and therefore ZRn/Zrn = O(an), a.s. on A as n → ∞, with some 0 < a < 1.

Proof of Proposition 2

Since the first two assertions are obtained in a similar manner, we confine our-

selves to the proof of the first one. For n ≥ 0 and 0 < ρ < 1/2, define

An = {|MRn+1 − (1− α)mRZRn| ≥ ZR1−ρ
n }.



Asymptotic behaviour for balanced sex determination 31

Let Gn = σ(ZR0, Zr0, FRk,MRk, F rk,Mrk, k = 1, . . . , n, ZRn, Zrn), n ≥ 1

(G0 = σ(ZR0, Zr0)). By an appeal to Chebyshev’s inequality and Proposition 1,

we infer that

∞
∑

n=0

P (An|Gn) ≤
∞
∑

n=0

V ar(MRn+1|Gn)

ZR
2(1−ρ)
n

≤ C
∞
∑

n=0

1

ZR1−2ρ
n

< ∞ a.s. on A,

for some positive constant C. Hence, since α = 1 − α, by the conditional Borel-

Cantelli lemma,

A ⊆

{

∞
∑

n=0

P (An|Gn) < ∞

}

= lim inf
n→∞

{∣

∣

∣

∣

MRn+1

ZRn

− αmR

∣

∣

∣

∣

< ZR−ρ
n

}

a.s.,

which is the desired conclusion.

To prove the last assertion, we define

An = {|Fn+1 − (αmRZRn + αmrZrn)| ≥ Z−ρ
n (mRZRn +mrZrn)},

for n ≥ 0 and 0 < ρ < 1/2. Applying Chebyshev’s inequality and Propositon 1,

it follows that, for some positive constant C,

∞
∑

n=0

P (An|Gn) ≤
∞
∑

n=0

V ar(Fn+1|Gn)

Z−2ρ
n (mRZRn +mrZrn)2

≤ C
∞
∑

n=0

1

Z1−2ρ
n

< ∞ a.s. on A,

where we have also used that V ar(Fn+1|Gn) ≤ C(mRZRn +mrZrn) a.s. for all

n ≥ 0. Therefore, the conditional Borel-Cantelli lemma yields

A ⊆

{

∞
∑

n=0

P (An|Gn) < ∞

}

= lim inf
n→∞

{∣

∣

∣

∣

Fn+1

mRZRn +mrZrn
− α

∣

∣

∣

∣

< Z−ρ
n

}

a.s.,

and this gives the desired result.

Proof of Theorem 3

Since Fn −MRn > 0 a.s. on A ⊆ A∞,∞, then, we obtain, for all n ≥ 1, that

(6) Zrn =

{

Mrn, if Fn > Mn

Fn −MRn, if Fn ≤ Mn

a.s. on A,

with Mn = MRn +Mrn.
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On A, we can write

Fn+1

Zrn
=

Fn+1

mRZRn +mrZrn

mRZRn +mrZrn
Zrn

and
MRn+1

Zrn
=

MRn+1

ZRn

ZRn

Zrn
,

for all n ≥ 0. Since ZRn ≤ Zn = ZRn+Zrn, then, we infer, by using Propositions

1 and 2, that, for each 0 < ρ < 1/2,

Fn+1 −MRn+1

Zrn
= (α+O(Z−ρ

n ))(mr +O(an))− (αmR +O(ZR−ρ
n ))O(an)

= αmr +O(an) +O(ZR−ρ
n ) a.s. on A, as n → ∞,(7)

with 0 < a < 1.

Then, from (6), (7) and Proposition 2, we obtain that

Zrn+1

Zrn
= αmr +O(an) +O(ZR−ρ

n ) +O(Zr−ρ
n ) a.s. on A, as n → ∞.

Since, furthermore,

ZrN
(αmr)N

= Zr0

N−1
∏

n=0

Zrn+1

αmrZrn

for each N ≥ 0, a combination of Proposition 1 and Theorem 7.28 in [14] allows

us to conclude

0 <

∞
∏

n=0

Zrn+1

αmrZrn
< ∞ a.s. on A,

and thereby the first assertion of Theorem 3. From this and Propositions 1 and

2, the same result for Mrn and Fn can be deduced.
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