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STATISTICAL ESTIMATION IN BRANCHING PROCESSES
WITH BIVARIATE POISSON OFFSPRING DISTRIBUTION*

Ana Staneva, Vessela Stoimenova

We consider two-type branching stochastic processes with offspring distribu-

tions from the bivariate poisson distribution family. We study the parametric

estimation under different sampling schemes – when the entire family tree

is observed and when observations only on the generation sizes are made.

We use a randomized algorithm to switch from the generation sizes scheme

to family tree observations and apply it in the context of the Bayesian ap-

proach. The considered estimation methods are illustrated via a simulational

and computational example.

1. Introduction

Branching processes form an important class of stochastic processes with numer-

ous applications in different scientific and practical areas, many of them involving

multitype modeling. Generally speaking, there is a number of objects, often called

particles, cells, individuals, which, according to some probabilistic law, reproduce

(or “branch”) and die out. They can be of multiple types and may have differ-

ent locations in space. Their evolution and generation may be independent or

according to certain probabilistic laws.
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One of the pioneering works on the formulation and handling of branching

processes with several types of particles are the papers from 1947 by Kolmogorov

and Dmitriev[10] and Kolmogorov and Sevastyanov[11] in the Markov case. Since

then there is an impressive number of work in the area of branching processes

theory and applications (see f.e. the books of Asmussen and Herring[1], Athreya

and Ney[2], Harris[7], Jagers[9], Sevastyanov[12], Yakovlev and Yanev[21] and

others).

Statistical estimation of the process’ characteristics like the mean number of

offspring, the criticality of the process, the offspring distribution and others, is

an important issue in their study. Some of the most resent approaches devoted

to the statistical inference for branching processes can be found in González et

al.[6]. The work of Jacob[8] gives a comprehensive overview of the theoretical

and statistical methods used in epidemiology. The importance of simulation,

computing and more flexible statistical procedures can also be traced in González

et al.[5]. Results on the asymptotics of the relative frequencies in multitype

branching processes and applications in cell biology can be traced in Yakovlev

and Yanev[22],[23] and Yakovlev et al[20].

As in other fields of statistics, there are different approaches for estimation

– parametric, nonparametric and semiparametric settings. The parametric ap-

proach uses the exact offspring distribution in a specified parametric family like

the multivariate power series. The estimation in the multivariate power series

family is of inerest in itself. In the class of the univariate power series offspring

distributions some topics of the parametric estimation are considered in Stoimen-

ova and Yanev[19] and of the robust parametric estimation – in Stoimenova[17].

In the present paper we consider the maximum likelihood estimation for two-type

branching processes with bivariate Poisson offspring distribution for both types

of particles. Considering the task of generating the whole family tree based on

data over the size of generations, we derive an interesting result related to the

properties of the Poisson distribution.

1.1. Definition and sampling schemes

Let us suppose that our model describes the evolution of a population with two

types of particles, which reproduce independently of each other. Each particle

of, say, type 1 may have a number of offspring of type 1 and of type 2 according

to some bivariate probabilistic law.

Let us denote by T = {1, 2} the set of particle types. Let Zi(t), i = 1, 2,
t = 0, 1, 2, . . . , be the number of particles of type i in generation t. Let ξjk(t, l)
be a r.v., representing the number of offspring of type j, j ∈ T , in the generation
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t+1, produced from the l-th particle of type k in the generation t. Each particle,

say the l-th particle of type k ∈ T living in the t-th generation (t = 0, 1, 2, . . . ), is

associated with a random vector
−→
ξ k(t, l) = (ξ1k(t, l), ξ

2
k(t, l)). The distribution of

the random vector
−→
ξ k(t, l) does not depend on the generation, where the parent

particle lives, and on the index l. The offspring of the particles in the generation

t forms the next generation t+ 1. We denote by {pkij},

pkij = P (
−→
ξ k(t, l) = (i, j)) = P (ξ1k(t, l) = i, ξ2k(t, l) = j),

k = 1, 2; t = 0, 1, . . . , l = 1, 2, . . . , Z(t − 1), the bivariate joint distribution

(offspring distribution, offspring law) of the vector
−→
ξ k(t, l).

A multitype disctere time branching process (MBP) Z(t) is defined as a se-

quence of random vectors

{Z(t) = (Z1(t), Z2(t))},

t ∈ N0 = {0, 1, 2, . . . }, where Zk(t), the number of particles of type k ∈ T in

generation t, satisfies the following recursive equations (the branching property):

Zk(t+ 1) =

2
∑

j=1

Zj(t)
∑

l=1

ξkj (t, l).

The main properties of the MBP processes have been thoroughly studied

in many sources (see f.e. [1], [2], [7],[9] and others). One of the main prob-

lems considered in the study of a given type of a branching process is to de-

termine the asymptotic behaviour of the process – whetheter it goes extinct or

has an unlimited growth. The irreducible MBP processes are divided in three

classes: subcritical, critical or supercritical, according to the magnitude of their

real maximum-modulus eigenvalue ρ of the mean matrix M = {mij}, whose el-

emens mij are the mean numbers of offspring of type j of a descendant of type

i. The extinction occurs with probability 1 iff the process is subcritical (ρ < 1)

or critical (ρ = 1). Otherwise (in the supercritical case, when ρ > 1) it grows

exponentially. The estimation of the the subcritical or critical MBP faces many

difficulties because of the limited (small) amount of data which may be observed

especially in cases of a rapid extinction.

Usually three sampling schemes are used for the estimation of the MBP:

Let us denote by

˜

˜ℑ(n) = {ξkj (t, l), k, j = 1, 2, t = 0, 1, . . . , n− 1, l = 1, 2, . . . , Zj(t)},
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the observations over the entire family tree (one can observe the number of off-

spring of each particle untill the generation n).

There are situations, where one can observe only the number of particles with

an equal number of a given offspring. We denote this set by

˜ℑ(n) = {Zk(s, (i, j)), s = 0, 1, . . . , n− 1, k = 1, 2, (i, j) ∈ ℑk},

where

Zk(s, (i, j)) =

Zk(s)
∑

h=1

I{(
−→
ξ k(s, h) = (i, j)}

is the number of particles of type k in generation s with i offspring of type 1 and

j offspring of type 2, ℑk is the set of all possible values of the random vector
−→
ξ k(s, l) = (ξk1 (s, l), ξ

k
2 (s, l)), I(·) is the indicator variable.

Finally, let

ℑ(n) = {Z(0), . . . ,Z(n)}

be the sample over the generation sizes.

1.2. Multivariate power series distributions

Let the offspring distributions be defined by:

(1) pkij =
ak(i, j)θ

i
1kθ

j
2k

Ak(θ1k, θ2k)
,

where k = 1, 2 is the particle type, (i, j) ∈ ℑk is in the set of possible number of

offspring of type 1 and 2, θ1k, θ2k ∈ Θk ⊂ R+ are unknown parameters, ak(i, j) >
0 and

(2) Ak(θ1k, θ2k) =

∞
∑

i=0

∞
∑

j=0

ak(i, j)θ
i
1kθ

j
2k < ∞.

We recall that the family of distributions having probability mass functions of

the form (1) is called bivariate power series distribution family (bivariate PSOD).

The function Ak(θ1k, θ2k) is called the defining function of the distribution. Note

that the form (2) is the second-order Taylor expansion of the scalar-valued func-

tion of more than one variable Ak(θ1k, θ2k) in a bivariate power series form. The

coefficient ak(i, j) in the expansion is called the coefficient function.
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The bivariate power series distribution family in (1) is a natural generaliza-

tion of the univariate power series distribution family and a subclass of the mul-

tivariate power series distribution family. There are many sources concerning the

properties and applications of the multivariate power series distributions. Among

them we mention the pioneering papers of Katri[14], Patil[16], Gerstenkorn[4] and

the thorough books on discrete multivariate distributions of Johnson et.al.[13] and

discrete bivariate distributions of Kocherlakota[15]

The multivariate PSOD form a subclass of the multivariate discrete expo-

nential family, hence inheriting its properties for the moments, cumulants, co-

varances, additiveness and so on.

One of the commonly used distributions of this class of bivariate distributions

are the trinomial distributions (the positive multinomial), the negative binomial

distributions (negative multinomial in the bivarate case), the logarithmic series

distributions and the multivarate Poisson (double Poisson) distributions. The lat-

ter is of a special interest in this paper due to its properties, described in the next

Section 2.1. The double Poisson distribution has the following representation:

Ak(θ1k, θ2k) = exp{θ1k + θ2k}, θik > 0,

ak(i, j) = 1/i!j!,

hence

pkij =
ak(i, j)θ

i
1kθ

j
2k

exp{θ1k + θ2k}
=

θi
1ke

−θ1k

i!

θj
2ke

−θ2k

j!
.

Further on we keep the following assumptions: the distributions of the particles

of type 1 and 2 are of the bivariate PSOD family and in particular from the

double Poisson distribution. Our goal is to estimate the four parameters, arising

from the two distributions.

2. Maximum likelihood estimation

The first step for more complex analyses like the Bayesian and the trimmed esti-

mation is to find the form of the likelihood function and the maximum likelihood

estimator (mle).

2.1. The entire family tree scheme

When the entire family tree is observed, the likelihood function has the form

L(
˜

˜ℑ(n)|θ1k, θ2k, k = 1, 2) = L(˜ℑ(n)|θ1k, θ2k, k = 1, 2) =
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=

2
∏

k=1

n−1
∏

s=1

∏

(i,j)∈ℑk

pkij =

2
∏

k=1

n−1
∏

s=1

∏

(i,j)∈ℑk

[

ak(i, j)

Ak(θ1k, θ2k)
θi1kθ

j
2k

]Zk(s,(i,j))

Due to the properties of the power series moments , f.e.

Eξ1k(s, l) =
θ1k

Ak(θ1k, θ2k)

∂Ak(θ1k, θ2k)

∂θ1k
,

one derives the following Harris type estimators for the mean number of offspring

of a given type i from a father of type k

m̂ik = Eξik(t, l) =

n
∑

s=1

Zk
i (s)

n−1
∑

n=0

Zk(n)

,

where Zk
i (s) is the number of children of type i in generation s+1, whose father

is of type k.

Due to the independence of evolutions one can consider the likelihood function

L(
˜

˜ℑ(n)|θ1k, θ2k, k = 1, 2) as a product of two likelihood functions, depending on

different parameters:

L(
˜

˜ℑ(n)|θ1k, θ2k, k = 1, 2) =

n−1
∏

s=1

∏

(i,j)∈ℑ1

[

a1(i, j)

A1(θ11, θ21)
θi11θ

j
21

]Z1(s,(i,j))

×

×

n−1
∏

s=1

∏

(i,j)∈ℑ2

[

a2(i, j)

A2(θ12, θ22)
θi12θ

j
22

]Z2(s,(i,j))

=

= L(
˜

˜ℑ(n)|θ11, θ21)L(
˜

˜ℑ(n)|θ12, θ22)(3)

2.2. The generation sizes scheme

Let us suppose, that we are able to observe the generation sizes only. The obser-

vations form the set

ℑ(n) = {Z(0), . . . ,Z(n)}

The following statements are valid (see González et al.[5]):

P (
˜

˜ℑ(n)|ℑ(n), θ11, θ21) =

n−1
∏

s=0

P (
˜

˜ℑ(s)|Z(s),Z(s + 1), θ11, θ21)
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and

P (˜ℑ(n)|ℑ(n), θ11, θ21) =
n−1
∏

s=0

P (˜ℑ(s)|Z(s),Z(s + 1), θ11, θ21).

Applying the idea in [5] in the situation of power series with finite support

|ℑ1|, |ℑ2| < ∞ one can use the multinomial distribution to ’reconstruct’ the family

tree:

P (˜ℑ(s)|Z(s),Z(s + 1), θ11, θ21) =

∏

k=1,2

[Zk(s)]!∏

(i,j)

[Zk(n,(i,j))]!

∏

(i,j)

[pkij]
Zk(s,(i,j))

P (Z(s+ 1)|Z(s))

Note that the family tree is reconstructed in ’strips’, using every two consecutive

generation sizes.

When the support of the distribution is not finite, i.e. |ℑ1|, |ℑ2| = ∞, for

some distributions (in particular for the double Poisson distribution) one can

directly compute the expression

P (
˜

˜ℑ(s)|Z(s),Z(s + 1), θ11, θ21) =

∏

k=1,2

Zk(s)
∏

l=1

pk
ξk1 (s,l),ξ

k
2 (s,l)

P (Z(s+ 1)|Z(s))
.

In the case of double Poisson offspring disribution it can easily be seen that

P (ℑ̃(n)|Z(n),Z(n+ 1), θ11, θ21) =

=




Z1(n+ 1)![
Z1(n)∑
l=1

ξ11(n, l)

]
!

[
Z2(n)∑
l=1

ξ12(n, l)

]
!

[
Z1(n)θ11

Z1(n)θ11 + Z2(n)θ21

]Z1(n)∑

l=1
ξ11(n,l)[

Z2(n)θ21
Z1(n)θ11 + Z2(n)θ21

]Z2(n)∑

l=1
ξ12(n,l)




×




Z2(n+ 1)![
Z1(n)∑
l=1

ξ21(n, l)

]
!

[
Z2(n)∑
l=1

ξ22(n, l)

]
!

[
Z1(n)θ12

Z1(n)θ12 + Z2(n)θ22

]Z1(n)∑

l=1
ξ21(n,l)[

Z2(n)θ22
Z1(n)θ12 + Z2(n)θ22

]Z2(n)∑

l=1
ξ22(n,l)




×




[
Z1(n)∑
l=1

ξ11(n, l)

]
!

∏Z1(n)
l=1 ξ11(n, l)!

[
1

Z1(n)

]Z1(n)∑

l=1
ξ11(n,l)



×




[
Z2(n)∑
l=1

ξ12(n, l)

]
!

∏Z2(n)
l=1 ξ12(n, l)!

[
1

Z2(n)

]Z2(n)∑

l=1
ξ12(n,l)



×

×




[
Z1(n)∑
l=1

ξ21(n, l)

]
!

∏Z1(n)
l=1 ξ21(n, l)!

[
1

Z1(n)

]Z1(n)∑

l=1
ξ21(n,l)



×




[
Z2(n)∑
l=1

ξ22(n, l)

]
!

∏Z2(n)
s=1 ξ22(s)!

[
1

Z2(n)

]Z2(n)∑

l=1
ξ22(n,l)



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Note that this expression consists of the multiplied probabilities from six

multinomial distributions, hence giving us the following method for simulation of

the offspring numbers in each generation:

1. Generate the number of type 1 particles
Z1(n)
∑

l=1

ξ11(n, l) and
Z2(n)
∑

l=1

ξ12(n, l) in

generation n + 1, whose ancestors in generation n is of type 1 and type

2 correspondingly, using the multinomial (in our situation of a two-type

process this is in fact binomial) distribution with Z1(n+1) number of trials

and event probabilities
Z1(n)θ11

Z1(n)θ11+Z2(n)θ21
and

Z2(n)θ21
Z1(n)θ11+Z2(n)θ21

. Note that the

following relation holds:

Z1(n+ 1) =

Z1(n)
∑

l=1

ξ11(n, l) +

Z2(n)
∑

l=1

ξ12(n, l)

2. Generate the number of type 2 particles
Z1(n)
∑

l=1

ξ21(n, l) and
Z2(n)
∑

l=1

ξ22(n, l) in

generation n + 1, whose ancestors in generation n are of type 1 and 2

respectively, using the multinomial distribution with Z2(n + 1) number of

trials and event probabilities
Z1(n)θ12

Z1(n)θ12+Z2(n)θ22
and

Z2(n)θ22
Z1(n)θ12+Z2(n)θ22

. Again

it is true that

Z2(n+ 1) =

Z1(n)
∑

l=1

ξ21(n, l) +

Z2(n)
∑

l=1

ξ22(n, l)

3. Using the generated number
Z1(n)
∑

l=1

ξ11(n, l), generate the number of offspring

ξ11(n, l), l = 1, 2, . . . Z1(n) for each of the Z1(n) particles of type 1, whose

offspring is of type 1, using the multinomial distribution with
Z1(n)
∑

l=1

ξ11(n, l)

trials and Z1(n) events with equal event probabilities 1

Z1(n)
.

4. Using the generated number
Z2(n)
∑

l=1

ξ1
2
(n, l), generate the number of offspring

ξ1
2
(n, l), l = 1, 2, . . . Z2(n) for each of the Z2(n) particles of type 1, whose

offspring is of type 1, using the multinomial distribution with
Z2(n)
∑

l=1

ξ12(n, l)

trials and Z2(n) events with equal event probabilities 1

Z2(n)
.
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5. Using the generated number
Z1(n)
∑

l=1

ξ21(n, l), generate the number of offspring

ξ2
1
(n, l), l = 1, 2, . . . Z1(n) for each of the Z1(n) particles of type 1, whose

offspring is of type 2, using the multinomial distribution with
Z1(n)
∑

l=1

ξ21(n, l)

trials and Z1(n) events with equal event probabilities 1

Z1(n)
.

6. Using the generated number
Z2(n)
∑

l=1

ξ22(n, l), generate the number of offspring

ξ22(n, l), l = 1, 2, . . . Z2(n) for each of the Z2(n) particles of type 2, whose

offspring is of type 2, using the multinomial distribution with
Z2(n)
∑

l=1

ξ2
2
(n, l)

trials and Z2(n) events with equal event probabilities 1

Z2(n)
.

This partition in the n + 1-st generation is based on the known generation

sizes Z1(n), Z2(n), Z1(n + 1) and Z2(n + 1) and the estimated parameters (for

instance via the coinsiding Harris estimators m̂ik of the mean numbers). Finding

the value of the parameters θik, i, k = 1, 2 is an important part of the generation

of the family tree. There are different approaches to simultaneously solve the two

problems - to generate the family tree on the basis of the generation sizes and to

estimate the unknown parameters. Sometimes, especially when the process starts

with a small number of particles, one is able to observe the family tree for the

first two or three generations and hence to estimate as a starting point the mean

numbers of offspring for both particle types. In cases when the prior distribution

of the parameters can be appropriately chosen, one can generate their values.

One of the most refined iterative method used in the context of the Bayesian

framework is the Gibbs sampler, proposed by Gonzaléz et al. [5] to alternatively

generate the family tree on the basis of the current value of the parameters and

generate new parameter values using the posterior distribution conditional on the

family tree.

3. The Bayesian estimation

Since the likelihood function is proportional to

L ∝

2
∏

k=1

θ

N−1∑

n=0
Zk
1 (n+1)

1k e
−θ1k

N−1∑

n=0
Zk(n)

θ

N−1∑

n=0
Zk
2 (n+1)

2k e
−θ2k

N−1∑

n=0
Zk(n)

,
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we choose the conjugate prior to be the joint distribution of four independent

Gamma distributed random variables:

θ1k ∼ Gamma(α1k, β1k), θ2k ∼ Gamma(α2k, β2k), k = 1, 2.

Hence the posterior distribution has the form

f(θ|J̃ (n), α, β) ∝

2
∏

k=1

θ

N−1∑

n=0
Zk
1 (n+1)

1k e
−θ1k

N−1∑

n=0
Zk(n)

θ

N−1∑

n=0
Zk
2 (n+1)

2k e
−θ2k

N−1∑

n=0
Zk(n)

×
βα1k
1k

Γ(α1k)
θα1k−1

1k e−β1kθ1k
βα2k
2k

Γ(α2k)
θα2k−1

2k e−β2kθ2k ∝

∝
2
∏

k=1

θ

N−1∑

n=0
Zk
1 (n+1)+α1k−1

1k e
−θ1k(

N−1∑

n=0
Zk(n)+β1k)

θ

N−1∑

n=0
Zk
2 (n+1)+α2k−1

2k e
−θ2k(

N−1∑

n=0
Zk(n)+β2k)

The posterior distribution can be considered as the joint distribution of four

independent Gamma distributed r.v. with

Gamma(

N−1
∑

n=0

Zk
1 (n+ 1) + α1k,

N−1
∑

n=0

Zk(n) + β1k), k = 1, 2.

and

Gamma(
N−1
∑

n=0

Zk
2 (n+ 1) + α2k,

N−1
∑

n=0

Zk(n) + β2k), k = 1, 2.

From here one can calculate the posterior maximum lielihood estimators of the

parameters and the posterior mean and variance.

3.1. A numerical example

In this section we generate a ’slightly’ supercritical two-type branching process

with eigenvalue of 1.005 and two bivariate poisson offspring distributions with

parameters θ11 = 0.35, θ12 = 0.45, θ21 = 0.06 and θ22 = 0.98.
We choose the parameters of the prior distribution to be αi = 1, βi = 1.5.
For the simulations we use the free software environment for statistical com-

puting and graphics R.

On Table 1 the simulated generation sizes for the two particle types are shown.

They are plotted on Figure 1.

We use the following procedure to generate the family tree, simultaneousely

updating the values of the parameter estimates:
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Table 1. Generation

sizes

n Z1(n) Z2(n)

1 1 1
2 4 4
3 8 18
4 18 35
5 38 102
6 70 243
7 118 536
8 224 996
9 393 1861

10 682 3405
11 1176 6026
12 2082 10691
13 3762 18995
14 6892 34116
15 12547 61479
16 22758 110831
17 41142 200920
18 74796 363314
19 135482 658797
20 245113 1194947

Figure 1. The sample trajectory of the process

Step 0: Initialize n = 0 generation.

Step 1: Fix the initial values of the parameters θ11, θ21, θ12, θ22 as generated

numbers from the prior distribution

Step 2: Iterate on the generations

• n = n+ 1 moving to the next generation

• For k = 1, 2 generate the partition of the generation sizes using the

multinomial distribution

Multinomial

(

Zk(n+1),

{

Z1(n)θk1
Z1(n)θk1 + Z2(n)θk2

,
Z2(n)θk2

Z1(n)θk1 + Z2(n)θk2

}

)

• Generation of the new values of the parameters from the posterior

density.

Step 3: Go to Step 2.
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On Step 1 of the algorithm we need to find the event probabilities

pk1 =
Z1(n)θk1

Z1(n)θk1 + Z2(n)θk2
pk2 =

Z2(n)θk2
Z1(n)θk1 + Z2(n)θk2

from the multinomial distribution

Multinomial

(

Zk(n+1),

{

Z1(n)θk1
Z1(n)θk1 + Z2(n)θk2

,
Z2(n)θk2

Z1(n)θk1 + Z2(n)θk2

}

)

, k = 1, 2.

They can be seen in Table 2 together with the generated quantities Z1
1
(n+1),

Z1
2
(n+ 1), Z2

1
(n + 1), Z2

2
(n+ 1):

Table 2. Offspring generations

Z1(n) Z2(n) Z1
1(n + 1) Z1

2 (n + 1) Z2
1(n + 1) Z2

2 (n + 1) p11 p21 p12 p22
1 1
4 4 3 1 0 4 0.9859628282 0.0140371718 0.7450198119 0.2549801881
8 18 8 0 5 13 0.64741091 0.35258909 0.0025112333 0.9974887667

18 35 16 2 14 21 0.4608802939 0.5391197061 0.0540584266 0.9459415734
38 102 31 7 32 70 0.6688375056 0.3311624944 0.1695060125 0.8304939875
70 243 54 16 64 179 0.6616636055 0.3383363945 0.1406046427 0.8593953573

118 536 102 16 153 383 0.6197203556 0.3802796444 0.1070917754 0.8929082246
224 996 196 28 352 644 0.4951972343 0.5048027657 0.083225946 0.916774054
393 1861 337 56 624 1237 0.5372199758 0.4627800242 0.097926924 0.902073076
682 3405 596 86 1095 2310 0.5440858083 0.4559141917 0.0903006036 0.9096993964

1176 6026 1031 145 2000 4026 0.5523584683 0.4476415317 0.0886432134 0.9113567866
2082 10691 1803 279 3452 7239 0.5584014987 0.4415985013 0.0850290894 0.9149709106
3762 18995 3261 501 6036 12959 0.5773197397 0.4226802603 0.0860027228 0.9139972772
6892 34116 5988 904 10931 23185 0.5660859183 0.4339140817 0.0861329229 0.9138670771

12547 61479 10902 1645 19620 41859 0.5703392073 0.4296607927 0.0874802642 0.9125197358
22758 110831 19713 3045 35411 75420 0.5761959394 0.4238040606 0.0882114478 0.9117885522
41142 200920 35615 5527 63939 136981 0.5733560978 0.4266439022 0.0883937578 0.9116062422
74796 363314 64700 10096 116227 247087 0.5708433366 0.4291566634 0.0873338852 0.9126661148

135482 658797 117377 18105 211376 447421 0.5710974723 0.4289025277 0.0884341078 0.9115658922
245113 1194947 212283 32830 383517 811430 0.568764931 0.431235069 0.0883023592 0.9116976408

Figure 2 Figure 3
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On Step 2 one can find the size of the groups with the same offspring in the

given generation, using the four multinomial distributions

Multinomial

(

Z1(n)
∑

s=1

Xk
1s,

{

1

Z1(n)

})

andMultinomial

(

Z2(n)
∑

s=1

Xk
2s,

{

1

Z2(n)

})

, k =

1, 2. The generated distributions of the number of particles in the 19-th genera-

tion with (x, y) offspring in the last generation 20 are shown on Figures 2 and 3.

The estimated values of the parameters θ11, θ21, θ12, θ22 after each step of the

procedure are shown in Table 3.

Table 3. Estimated values of the parameters after each step of the algorithm

θ11 θ21 θ12 θ22
1.692343 3.311847 0.02409392 1.133467

1.2433578393 0.0040156536 0.677150172 1.5950606456

0.5442331297 0.1323649615 0.2829433719 1.0294172253

0.6405153977 0.4188438742 0.1631002256 1.0553779448

0.4959341094 0.3746628203 0.0944754293 0.8531342249

0.5422815116 0.3747062416 0.0958570108 0.8999811194

0.444306513 0.3964146992 0.0997110782 0.9613256732

0.3926370388 0.4562282658 0.0760680699 0.9451711923

0.3698688852 0.4476836331 0.0654500057 0.9524115377

0.3601579657 0.4667649357 0.0584614576 0.961188183

0.3515466355 0.4599826581 0.0542552983 0.9659605985

0.360354812 0.4622511379 0.0513793115 0.956694078

0.3487456345 0.4569921 0.0529431364 0.9602891736

0.3489409117 0.4571277641 0.0531045279 0.9632897579

0.3540131627 0.4566339075 0.0531407199 0.9632753467

0.3559856268 0.4554843365 0.0543934257 0.964566071

0.3557574092 0.4488779472 0.0547665153 0.9605492678

0.3571897688 0.4525538575 0.0552260037 0.9603615836

0.3572799833 0.452945235 0.0557083034 0.9617323071

0.3571188151 0.4531998739 0.0554473883 0.9614578868

The convergence of the estimates with the generation is shown on Figure 4.

The obtained results show that the “reconstruction” of the family tree on the

basis of the generation sizes can easily and effective be done using realizations of

multinomial random variables. The estimation of the parameters shows that the

procedure stabilizes after a small number of generations. The most delicate point

in this setting is the choice of the initial parameters of the prior distribution. In

fact they may affect the final estimates, but in the case of a supercritical process

their influence is reduced in the last generations due to the huge generation sizes.
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Figure 4. The behaviour of the estimates according to the generation numbers

REFERENCES

[1] S. Asmussen, H. Herring. Branching Processes. Birkhauser, Boston, 1983.

[2] K. B. Athreya, P. E. Ney. Branching Processes. Springer-Verlag, Berlin

1972.

[3] D. Atanasov, V. Stoimenova. Simulation, Estimation and Robustifica-

tion against Outliers in Branching Processes – a Computational Approach.

Proceedings COMPSTAT, 2012, 53–65.

[4] T. Gerstenkorn. On multivariate power series distributions. Revue
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