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HEAT TRANSFER ANALYSIS FROM AN ELLIPTIC
CYLINDER AT MODERATELY HIGH REYNOLDS NUMBER
FLOWS

Yoshihiro Mochimaru, Daisuke Akita

Heat transfer from an elliptic cylinder placed normal to a uniform flow at
moderately high Reynolds numbers is analyzed, using a spectral finite dif-
ference scheme. The subcritical field near the cylinder is assumed to be
governed by a laminar potential flow with parametric variables. Not only a
uniform surface temperature condition ( Dirichlet type ) but uniform heat
flux condition ( Neumann type ) can be supported to show good agreement
with traditional experimental data.

1. Introduction

Heat transfer from external surface due to cross flow is a typical element of
compact heat exchangers. Thus, many reports have been presented, e.g. by
Kakag et al. [11] and Kakag et.al. [10]. Experimental heat transfer from pin
arrays (circular or elliptical) was reported, e.g. by Ciha [4], Lawson [13], and
Saboya [16]. Experimental one from diamond-shaped fin array was reported
by Hirasawa, Fijiwara, Kawanami, and Shirai [9], and one from a single finite
finned type was reported by Ota, Aiba, Tsuruta, and Kaga [14] and Ventola,
Chiavazzo, Calignano, Manfredi, and Asinari [17]. Experimental evaluation for
compact heat exchanger type was reported, e.g. by Fehle, Klas, and Mayinger [6],
and Riddell [15]. Under the circumstance of traditional heat exchangers (except
micro heat exchangers) ambient fluid flow speed is relatively high but subcritical,
and detailed information on velocity field throughout the field was hard to be
obtained analytically or numerically, so that analytical treatment was limited.
For example, Khan, Culham, and Yovanovich [12] gave an analysis based on
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boundary-layer approximation using finite order polynomial; Allen and Look [2]
& Frick and McCullough [7] gave approximate analysis using Reynolds analogy
(at least assuming Prandtl number = 1). For not so high Reynolds number, Zhang
and Balachandar [18] presented results using finite difference scheme (staggered
grids) for compact heat exchangers, and Bhoitel, Gavhane, Gore, and Kanjvane
[3] provided results using FEM for various fin types.

In this report heat transfer from an elliptic cylinder placed normal to a sub-
stantially uniform flow, the direction of which is parallel to its major axis, is
analyzed assuming that the ambient fluid flow field is approximated by a poten-
tial flow.

2. Analysis

2.1. Basic equations

Steady-state heat and flow field is analyzed under subcritical (substantially in-
compressible) laminar conditions of Newtonian fluid. Fluid properties such as
density, viscosity, and thermal conductivity are assumed to be independent of
temperature. Far away ambient fluid flow and thermal conditions are assumed
uniform. Then under a boundary fitted conformal coordinate system, the govern-
ing equations (equation of vorticity transport and the energy equation, neglecting
dissipation terms) can be written, if for the Cartesian coordinate (z,y), z = z+1y
is an analytic function of a + i3(a, B : real), as

o) 1 [ P
W o) = e g+ 5)
2
(2) JC+(W+8—BQ>w:0’
oT, ) 1 0?02
3) 9(a,3) _ Pr Re (aa2 + 8/52) T

where (,1, T are dimensionless vorticity based on Uy, /a, stream function based
on Usa, and temperature defined as T' = (local temperature — To,)/A respec-
tively. U, a, Too, A stand for far away uniform fluid speed, length of the
semi-major axis of the cylinder, far away uniform fluid temperature, and refer-
ence temperature difference defined separately, respectively. The boundary fitted
coordinate (dimensionless, based on a), is

z+iy=z=cosh(ag+a+if)/coshag(0 < a < as),an = tanh™!(b/a),

where b : the semi-minor axis , and J = |dz/d(a 4 i 3)[*. @ = 0 corresponds to
the elliptic surface. Re is a Reynolds number based on the semi-major axis, a,
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along the direction of which the free stream flows, and Pr stands for a Prandtl
number. As long as a typical temperature difference in the field is not large,
fluid properties can be considered to be constant, and the equation of vorticity
transport and that of energy are uncoupled, if any thermal boundary conditions
are independent of dynamic flow conditions, which applies to subcritical flows.
If Re > 1, the flow just outside the cylinder can be governed [1] by a potential
flow function, F',

e0 , 1
4 F=———1|2cosh(a+ip)+ -1
4) 2 cosh a ( ) I—Zencoshn(oz—i-iﬁ)

n>2

2.2. Reference temperature difference
In case of heated uniform surface temperature, A = surface temperature —T,,. In
case of emitting uniform heat flux, @, A = Q a/k, where k: thermal conductivity.

2.3. Boundary conditions
Dynamic boundary conditions: no slip flow at the surface gives ¥(a = 0,3) =

0Y/oa(a = 0,8) = 0. Far away conditions at a = aeo: g—z(a:am,ﬁ) =

dF

S (d— , or equivalently ¥ (aeo, ) = SF (oo + i) as Re — 4o00. For vor-
e

=0

ticity C(csoo,ﬁ) = 0. [(0/0a)((teo, B) = 0: necessary condition.|] Since for fluids

except liquid metals, Prandtl number, Pr, is usually greater than 0.6, thermal

boundary conditions: T'(aw, ) = 0, and either for heated uniform temperature

1 0T
T(aw=0,5) =1 or for emitting uniform heat flux —a—(oz =0,5) =—1.

VJ Oa

2.4. Spectral decomposition
Considering the symmetricity of the field, the following applies:

(5) [ i ] S [ i’;((z)) ]sinnﬁ, T:iTn(a) cos .

n=1

2.5. Local and mean Nusselt number

In case of uniform temperature, local Nusselt number, i.e. dimensionless local

1 0T
heat flux, Nu, based on the length a, is Nu = ——=— (o« =0,4) and mean

VJ O
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1 or
- L—S % dﬁ, where LS

) , where E() is a
cosh o
complete elliptic integral of the second kind. In case of uniform heat flux, local

Nusselt number, Nu, is Nu = 1/T (o = 0, 3) and mean Nusselt number, Nu,,
(not the mean value of Nu), based on the mean surface temperature, T,,, is

1
Nup =1/Tp, Ty = L—f\/?Tdﬁ.

1
Nusselt number, Nu,,, is Nu,, = L—fNu\/de =
S

is a circumference length and L; = f VJdB = 4E (

2.6. Solution procedure

The governing equations are decomposed exactly into Fourier components. After
separating the variable § through Eqs (1)—(3) in addition to boundary conditions,
the system of equations is discretized in space « using finite difference approx-
imation. Then by time marching method (supplying unsteady terms), first the
system of vorticity transport can be solved (by truncating up to a certain order
of Fourier component) to get a steady state solution as in [1]. Then the energy

equation can be solved, truncating up to the same order, since the equation itself

dc
is linear in T'. In these cases ay, = \/?’ where c is a suitable constant such that
e

c>1.

3. Results and discussions

3.1. Comparison of current results with experimental ones for an el-
liptic cylinder of b/a = 1/2

In general, at a separation point dF'/dz = 0. In case of 0 > €2 > —0.5,€,(n > 3),
no separation of flow on the elliptic cylinder is expected due to Eq. (4), since
|dF'/dz|a—0 # 0, otherwise for a given combination of €’s |dF'/dz| may be equal
to zero at some (5 or f’s (0 < f < m), the maximum of which corresponds to a
separation point. Figure 1 shows local Nusselt number distribution for uniform
surface temperature along the arc.

3.2. Comparison of computed heat transfer from an elliptic cylinder
with experimental ones from a streamline body

Figure 2 shows local Nusselt number distribution vs. s (= (chord wise length
measured from the leading edge) /a) for a uniform surface temperature.
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Figure 1: Local Nusselt number distribution.
s: dimensionless arc length measured from the
. leading edge (5 = 7) based on a. e: current,
Re = 6000, Pr = 0.7, ¢2 = —0.1, ¢, = 0
1 ', (n > 3), drag coefficient, Cp = 0.375 based
o, on pU2a, p: density. ©: experimental [14],
:0.'.:0 . Re = 4700 , based on a, no strong separation;
Crvameneeny Y experimental [14], Re = 11200, no strong
| | ° separation. They are in good agreement each

0 1 2 other

Nu /Rel/2

6 — Figure 2: Nu-distribution. Experimental ones
[7] correspond to NACA 65, 2-016 Airfoil,
for which maximum height/half of the chord
length ~ 0.16. e: current, b/a = 0.16, €3 =
—0.1,¢, =0 (n>3), Re =5x 105, Pr =0.7;
o o: experimental [7], Re = 3.35 x 10° (air);
° A\: experimental [7], Re = 5.36 x 105. For an
NACA airfoil, leading edge radius of curva-
s ture/a half chord length = 0.03408, whereas
2 T%O for the elliptic section the leading radius of
R curvature/a = 0.0256.
., As far as symmetric streamline body is con-
e i o cerned, the effect of the difference between
* radii of curvature at the leading edge does not
seem remarkable

Nu/ Re"?

[ ]
=]
[le]
ey

=
o

3.3. Comparison of computed local Nusselt number distribution with
experimental ones for Lockheed airfoil 12A

Figure 3 shows local Nusselt number distribution vs. dimensionless chord length

measured from the leading stagnation point (based on the half chord length).

3.4. Comparison of local Nusselt number distribution for uniform
heat flux with that on the ellipsoidal case (three dimensional
axisymmetric case)

Figure 4 shows the distribution of a local Nusselt number, Nug, where reference

length for Nug is local arc length measured from the leading edge point. Res is a

local Reynolds number based on local arc length and local potential flow speed.
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Figure 3: Nu-distribution. e:

& current, Re = 5.1 x 105, Pr =

0.7, & = =01, ¢, =0 (n >

S et 3), b/a = 0.145, Cp = 0.060,

o ® . . Nu,, = 1086. A: experimental

4 | [2], on the upper wing; V¥: ex-

0 0.5 s 1.0 perimental [2], on the lower wing,
Re =5.16 x 10°

4 Figure 4: Nu,-distribution, b/a = 0.4. e: cur-
rent, b/a = 0.4, e2 = —0.1, ¢, = 0 (n > 3),
o Re = 4 x 105, Pr = 0.7. [0 experimental [§]
3r .Ep‘g. (3-D ellipsoidal, stationary), Uy, = 78.2 m/s,
M a = 0476 m, ambient temp. = —17.8 (°C),
- . v (kinematic viscosity) = 1.13 x 107° m?s~1
. Usoa/v = 3.3 x 105,

‘ ‘ | Two-dimensional and three-dimensional heat
1 4 5 6 7 transfer characteristics for uniform heat flux is
quite similar in some interval of location (except
the leading edge)

log 10 Nug/ Pr 173

3.5. Comparison of a mean Nusselt number vs. a Reynolds number
for various shapes (uniform surface temperature)

Figure 5 shows mean Nusselt number, Nu,,, vs. Reynolds number, Re. All

experimental data are for air with uniform surface temperature, and reference

length = one half of the body length in the flow direction unless otherwise stated.

4. Conclusions

At moderately high Reynolds number flows past an elliptic cylinder, heat transfer
characteristics (independent of a Dirichlet type or a Neumann type) are widely
obtained based on outer laminar potential flow with parametric variables. Com-
puted results are in good agreement with traditional experimental data.
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Figure 5: Nu,, vs. Re for various shapes. e

current, b/a = 1/2, ¢ = —0.1, ¢, = 0 (n > 3),

Pr=0.7; ®: current, b/a = 1/10, e = —0.1

€n =0 (n>3), Pr=0.7; $: experimental [4]

3 from pin fin body array; o: experimental [5]

om #8° from finned cylinders, reference length = fin

)
)
)

2] g depth); A: experimental [16], elliptical tube

fow oo rows; V: experimental [6], compact heat ex-
aidee P changers; @ : experimental [15], compact heat
Rt e e exchangers of solar triangle; ®: experimen-
tal [15], compact heat exchangers of plate fin
surface; O: experimental [8], copper rectangu-

102 10° 10 10° o6 lar single fin; ©: experimental [9], diamond
Re shaped array.
As far as mean Nusselt number is concerned,
correlation seems good if the reference length
is chosen as stated
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