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EXISTENCE OF CLASSICAL SOLUTIONS
OF QUASI-LINEAR NON-COOPERATIVE
ELLIPTIC SYSTEMS

P. Popivanov, G. Boyadzhiev, Y. Markov

Method of sub- and super-solutions is applied in investigation of solvabil-
ity in classical (1) ﬂ C(Q) sense of quasi-linear non-cooperative weakly
coupled systems of elliptic second-order PDE.

1. Introduction

In this paper is considered a major application of the comparison principle,
namely the method of sub- and super-solutions, in order to derive some suffi-
cient conditions for solvability in C? of a quasi-linear non-cooperative elliptic
System.

Let Q € R" be a bounded domain with smooth boundary 92. In this paper
are considered quasi-linear weakly-coupled elliptic systems of the type

(1) Ql(u) = —dival(a:,ul,Dul) + Fl(:l:,ul, .. ,uN,Dul) = fl(x) in Q

(2) ul(z) = g'(z) on 9Q

fori=1,...,N.
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System (1) is strictly elliptic one, i.e. there are monotonously decreasing
continuous function A(Ju|) > 0 and monotonously increasing one A(|ul) > 0,

1/2
depending only on |u| = ((u1)2 + -+ (uN)2> , such that

2 " 9alt 2
(3) Mal) [ < Y7 S (el u ph)ele < Adjul) ¢
op".
ij=1 "1J

holds for every ' and &' = (¢},..., &Y e R", 1=1,2,...,N.

Coefficients a!(z,u,p), F'(x,u,p), f{(x) and ¢'(x) are supposed at least mea-
surable functions in € with respect to x variable, and locally Liepshitz continuous
with respect to u!,u and p, i.e.

P (@,u,p) = F(,0,0)| < CUE) (lu—v| +Ip— al)

(4)
‘al(x,ul,p) - al(x,vl,q)‘ < C(K) (‘ul — ot

Hp—cﬂ)

holds for every z € Q, |u| + |v| + |p| + |¢| < K,l=1,...,N.
Furthermore we suppose al(:c,u,p) and Fl(:c,u,p) to be differentiable on u
and p', and

l

da" 9a'* OF' OF!

1
op; ok opr ok < 1)

Hereafter by f~(z) = min(f(z),0) and f*(z) = max(f(z),0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrices as well. For instance, we denote by M ™ the

non-negative part of M, i.e. M = {m;;(:c)}j\;:l

2. Comparison principle for quasi-linear elliptic systems
Let u(z) € (C*(Q) N C’(ﬁ))N be classical sub-solution of (1), (2). Then

/ (a”(m,ul,Dul)néi + Fl(z, ', u, Dulyy — fl(q")nl) dz <0
Q

for ! =1,..., N and for every non-negative vector-function n € (W2 ()N C (ﬁ))N

(e n=....,n"), ot >0, 5t e WL(Q)NC(Q) and 5! = 0 on Q).
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Analogously, let v(z) € (C*(Q)NC (ﬁ))N be a classical super-solution of (1),
(2). Then

/ ('@, o', Dy, + (@, 0!, o, Dyt = i) de > 0
Q

for [ =1,..., N and every non-negative vector-function n € (I/V1 )ynC
Recall that the comparison principle holds for (1), (2), if Q(u) § Qv
and v < v on 0 yields u < v in Q.
Since u(z) and v(x) are sub- and super-solutions, then w(z) = u(x) —v(z) is
weak sub-solution of the following problem

n n
~-Y"p (Bth +B’“’)+ZE“’“+ZH§D@’:0 n 0

i,j=1 i=1

@)".
) in

with non-positive boundary data on 0f2, i.e.

n

/Q Z (Bth + Biiw l)nx —}—ZElwknl—f—ZHlDwn dr <0 in Q.

ij=1 k=1 i=1
Here
, 1 9gli , 1 ggli
i _ a ! li _ a !
Bj' = ) o, (x,P")ds, By = 5l (x, P")ds,
P = (vl + s(u — '), Dv! + sD(u! — vl))
LoF! LoF!
El = Shds, H!= ,SYds,
k 0 ou k(‘r ) i 0 apl (‘T ) S
sto= (v—i—s(u—v),Dvl + sD(u! —vl)) :

Therefore w4 (z) = max (w(z),0) is weak sub-solution of
n . N n
(5) = > Di(BiDyit + Bwl ) + 3 ELh + > HIDw, =0 i Q

ij=1 k=1 i=1

with null boundary data on 0f).
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Equation (5) is equivalent to

n
where B = diag(By, Bs, ..., By), Bi=— Y _ D; (B}"Dng {;&7@)+Z H!D;w',
ij=1
and £ = {E’lﬂ}ZNk‘+1
Then the following theorem (Theorem (8) in [1]) holds:

Theorem 1. Let (1), (2) be quasi-linear system and corresponding system
Bpg- in (6) is elliptic one. Then comparison principle holds for system (1), (2)
if Bg- 1s irreducible one and for every j =1,...,n hold

N N 9t +

Rl |

(kE: (x,p,q") + ;:1 D; o (x,p,q )) >0 for some xq €,
L fal O !

(@) A+ (;l Diaipj(wmj,qj) + W(%p, qj)> >0 for every x €,

where p,q € R™ and X is the first eigenvalue of operator Bp— in §;
or if Bp- is reducible one and for every j =1,...,n hold

N N dadi o +
(Z (z,p,q +ZDiw(x,p],qj)> >0 for some xzy € Q,

k=1 =1
n . A +
Hal’ ) & :
(i) A+ (ZDiaij(ﬁ,p],q]) + W(%Wﬂ)) >0 for every x €,
=1

where p,q € R"™ and \; is the first eigenvalue of operator By in S.

Note: We remind the reader that By- stands for the negative part of Bp.
Irreducible matrix is one that can not be decomposed to matrices of lower rank,
and respectively, the reducible matrix can be decomposed.
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3. Existence of classical solutions

In order to use the method of sub- and super-solutions we need some constraints
on the growth of the coefficients. Assume that for every [ =1,... N

n

2
n

(7) S (> pBl+ (Bé"+Hf) :
7j=1

=1 j=

n

3 (DiB[lf)

=1

<b

holds for z € Q, where b is a positive constant,

n n n
Z (B(l)i + Hf) piul 4 Z (D,-Bé’) ul + Z E,iuk(x)] ut > erfu)? — e
i=1 k=1

i=

(8)

forevery z € Q2,1 =1,..., N and arbitrary vectors u and p, where ¢; = const > 0
and co = const > 0,

n n n
Z (B(l)i + Hf) piul 4 Z (D,-B[lf) ul + Z B (z)
i=1 k=1

=1

<

9)

< e(Cu) + P(p, Cn)(1 + |p?),

where P(p,Cyr) — 0 for |p| — oo and (C)y) is sufficiently small and depends
only on n, N,Cps, A and A. X and A are the constants from condition (3) and

2max | f(x)] 22}

10 Cyu =
(10) M max{né%x]u\, cn cn

Then the following theorem holds

Theorem 2. Suppose system (1), (2) satisfies conditions (3) to (9), and (i),
(i) or ('), (ii'), according to the structure of matriz E = (EL). Assume that
v(x) is a classical super-solution and w(x) is a a classical sub-solution of (1), (2).
Then there exists a classical C*(Q) ﬂ C(Q) solution u(z) of the problem (1), (2)
with null boundary data.

Theorem 2 is proved by the method of sub- and super-solutions. A key-point
of the method is the validity of the comparison principle. Unlike the cooperative
systems, for non-cooperative ones there is no complete theory for the validity of
the comparison principle. In [1] are given some sufficient conditions such that the
comparison principle holds, which are recalled in section ”Comparison principle
for non-cooperative linear elliptic systems” below.
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Since the system (1) is a quasi-linear one, we assume in the following proof
without loss of generality that g(z) = 0.

Proof of Theorem 2. Let us denote

n n
<I>l_($,u1, ... ,uN) = ZE,lc_uk + Z (DiBéi) !
k=1 i=1

and
n
+ 1 Ny _ I+, k
O (z,u,...,u) = E ETu”.
k=1
1. Consider the sequence of vector-functions wug,u1,...,us,..., where ug =

v(x) and ug € H}(Q) defines ugy1 by induction as a solution of the problem

(11)

n n

lipy .l li, 1 Iy, — (1 N I
- E: D; (Bj Dijuyq + By Uk+1)+ H; Dy +®) (2, g1, Uy )F0U 4y =
ij=1 i=1

= fi(z) - @} (z, ug, - .. Jul) +oul in Q
with null boundary conditions
(12) ul_ 1 (z) =0 on partialQ

forevery I =1,...,N, 0 <0 is a constant.

Let us denote the left-hand side of (11) by A¥(x,u,0), and the right-hand
side — by Bk(x,u,a), k=1,...,N.

The problem (11), (12) is cooperative system and by Theorem (1) in [2], page
161, it is solvable. Even more, for the solution u}, () € C?(Q) there is constant
B € (0,1), 8 depends on (I + 1), such that

l
13)  dbillos@ < e

Olj 41 ;
(14) o <¢ foreveryi=1,...,n and y=1,...,m.

Y llos@
2,
(15) For every compact set K C Q holds || =—L < cr(p)
8$i8$j
CB(K)

for every i,j = 1,...,n, p = dist(K,99Q), and the constants ¢;—c7 are indepen-

dent on k. By Theorem 1 in [4] conditions (3)—(10) are necessary for solvability of



Existence of Classical Solutions of Elliptic Systems 143

the corresponding PDEs, while by Theorem 4 in [4, p. 120], conditions (13)—(15)
are derived in every subset of the domain where the coeflicients of the diffraction
problem are smooth. In our case this is the whole domain 2.

Furthermore uf) > ull > > ufk 41 = -+ by the comparison principle and the
fact that

fl(x) — <I>l+($,u,1€, .. ,ukN) + quy€ — fl(x) + @;F(J:,u}ﬁ_l, .. ,ukN_l) — Uui_l =

= e~ ud ol — ) o — ) 2 0

since uf < ul¥, and —m;(z) <0

The proof of ul, > u} is trivial since u, is a super-solution of (1), (2).

3. Obviously the inequality uyi1(x) > w(z) holds for every k, since w(x) is
a sub-solution of the same system (1), (2).

4. The sequence of vector-functions {uy} is monotonously decreasing and
bounded from below in §2. Therefore there is a function u such that ug(z) — u(z)
point-wise in . Furthermore, (13) yields {ux} is uniformly equicontinuous in
Q and {up} < const, since ul(z) is Holder continuous and therefore |u} () —

ub (z0)] < ¢(|lz — xo|?) for every I = 1,...,N. By Arzela - Ascoli compactness

criterion there is a sub-sequence {ug,} that converges uniformly to u € C(Q).
For convenience we denote {uy; } by {uy}.

Since u € C(£2) and all functions {uy, } satisfy the null boundary conditions,
then u satisfies the boundary conditions as well.

The functions uy are Holder continuous with the same Holder constant, there-
fore u is Holder continuous as well with the same Holder constant, i.e. u € C?(Q).

Since uy41(x) is monotone and u(z) is continuous, then {(u*)?} — u? in Q.
Then the Dominated Convergence Theorem (Theorem 5 at p.648 in [3]) yields
uf — u(z) in (L2(Q)N.

5. Analogously to the previous step, (14) yields { D;uy} is uniformly equicon-
tinuous in Q and {D;u;} < const. According to Arzela—Ascoli compactness

criterion there is sub-sequence {D;uy; } that converges uniformly to D;u € C(£2).
For convenience we denote again {ug;} by {ug}.

6. For every 0 < 1(z) = (' (z),...,n" (z)) € (Hy(2))"

n
/Q Z (Bé’Djuka + Bé’u%chl) D' (z) + Z H!Djul 0! (2) | da+
ij=1 i=1

+/Q (‘bl_(fcaullcﬂa U ) F UU§c+1> 0 (a)da =
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:/Q(fl(x) —q)f(ﬁ,ullﬁ,...,ukN)—}—Uuic)nl(ﬁ)dar

holds and for k — oo we obtain

n n
/ 3 (Bj.iDjul + B{;'u’) D (x) + Y H!Dylof () | da+t
Q \;j=1 i=1

- /Q () — & (e ) + oul)n (2)de,

that is u(z) is solution of (1), (2).

7. Since the coeflicients afj(x) of the principal symbol in (1) are C1T*(Q)
smooth and D2uy(z) are locally bounded, then D2u(z) € C(R).

In fact by the exhaustion of 2 by compact sets k., kK C Kryr1 C €2 and
UI{,T = Q, and by (15) we have D2u;, € CP(K,) are uniformly bounded and
equicontinuous in k,. Applying Arzela—Ascoli theorem and Cantor diagonal pro-
cess (for sub-sequence and compact) yields C? smoothness in Q of the limit func-
tion u(z).

Therefore u(x) € C?(Q))" is classical solution of (1), (2). O

4. Model example

Consider the system

4
(K2 =) Agn |y — K| = 22K —x)
(16) :
(KQ—X2)1/4A2111\X+K] =2(2K + x)

where Ay = 92 + 83, K*>\* K <0, K = K(z,y) and x = x(,y). Here K
is the Gaussian curvature and x is the curvature of the normal connection on
minimal non-super-conformal surface M2 in R*.

Every couple of solutions (K, x) define uniquely minimal non-super-conformal
surface M? in R* with Gaussian curvature K and normal curvature y.

Let K > x. Then we denote

K—y=¢"
(17)
K+y=¢
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and transform (16) to

Au = 36(3u7v)/4 + 6(?yvfu)/ll
(18)
Av — 6(3u—v)/4 + 36(3v—u)/4

Equation (18) is quasi-linear non-cooperative elliptic system. In this case

Bl = 01 gzl; (x, Pyds = 6, Bl = 01 gj; (z, P)ds =0,
Bl = 01 g—ill(m, SYds = /01 %6(:%7”)/4 - iegv*u)ﬂds,
Ey = 01 g—f;(x, Sds = /01 —%343“*“/4 + 26(3”*“>/4ds,
E} = 01 aa—ff(x, SYds = /01 26(3“7”)/4 - 26(3”7“)/4d5,
E2 = 01 2—522(9;, Shds = /01 —ie@“—“)/‘* + %e@”—“)/“ds,
H! = * O (z,8)ds =0,

o Opi

where &; ; is Kronecker delta (symbol), P! = (vl + s(u! — '), Dot + sD(u! — vl))

and S' = (v + s(u—v), Dv' + sD(ul — vl)>.

Since K is the Gaussian curvature and y is the curvature of the normal con-
nection on minimal non-super-conformal surface M? in R*, by (17) we presume
u,v do not blow up. In other words we suppose there is constant C'(Q2) such that
e < C(N2) and e’ < C(Q).

Assume that Q is a map from M? — M?. The smaller is the map, the
smaller is C(€2) and the larger is the first eigenvalue of system (11). Therefore,
if Q is sufficiently small, conditions (i), (ii) (or (i'), (")) hold and by Theorem 1
comparison principle holds for system (18). Furthermore, conditions (7)—(9) hold
as well. This way we have constructed (locally) a classical solution of system (16)
having intreresting applications in differential geometry. Details of the proofs of
the results in this short note will be published elsewhere.
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