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EXISTENCE OF CLASSICAL SOLUTIONS

OF QUASI-LINEAR NON-COOPERATIVE

ELLIPTIC SYSTEMS

P. Popivanov, G. Boyadzhiev, Y. Markov

Method of sub- and super-solutions is applied in investigation of solvabil-

ity in classical C2(Ω)
⋂

C(Ω) sense of quasi-linear non-cooperative weakly

coupled systems of elliptic second-order PDE.

1. Introduction

In this paper is considered a major application of the comparison principle,
namely the method of sub- and super-solutions, in order to derive some suffi-
cient conditions for solvability in C2 of a quasi-linear non-cooperative elliptic
system.

Let Ω ∈ Rn be a bounded domain with smooth boundary ∂Ω. In this paper
are considered quasi-linear weakly-coupled elliptic systems of the type

(1) Ql(u) = −div al(x, ul,Dul) + F l(x, u1, . . . , uN ,Dul) = f l(x) in Ω

(2) ul(x) = gl(x) on ∂Ω

for l = 1, . . . , N .
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System (1) is strictly elliptic one, i.e. there are monotonously decreasing
continuous function λ(|u|) > 0 and monotonously increasing one Λ(|u|) > 0,

depending only on |u| =
(

(

u1
)2

+ · · ·+
(

uN
)2
)1/2

, such that

(3) λ(|u|)
∣

∣

∣
ξl
∣

∣

∣

2
≤

n
∑

i,j=1

∂ali

∂plj
(x, u1, . . . , uN , pl)ξliξ

l
j ≤ Λ(|u|)

∣

∣

∣
ξl
∣

∣

∣

2

holds for every ul and ξl = (ξl1, . . . , ξ
l
n) ∈ Rn, l = 1, 2, . . . , N .

Coefficients al(x, u, p), F l(x, u, p), f l(x) and gl(x) are supposed at least mea-
surable functions in Ω with respect to x variable, and locally Liepshitz continuous
with respect to ul, u and p, i.e.

(4)

∣

∣

∣
F l(x, u, p)− F l(x, v, q)

∣

∣

∣
≤ C(K) (|u− v|+ |p− q|) ,

∣

∣

∣
al(x, ul, p)− al(x, vl, q)

∣

∣

∣
≤ C(K)

(∣

∣

∣
ul − vl

∣

∣

∣
+ |p− q|

)

holds for every x ∈ Ω, |u|+ |v|+ |p|+ |q| ≤ K, l = 1, . . . , N.

Furthermore we suppose al(x, u, p) and F l(x, u, p) to be differentiable on ul

and pl, and

∂ali

∂pj
,
∂ali

∂uk
,
∂F l

∂pl
,
∂F l

∂uk
∈ L1(Ω).

Hereafter by f−(x) = min(f(x), 0) and f+(x) = max(f(x), 0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrices as well. For instance, we denote by M+ the

non-negative part of M , i.e. M+ = {m+
ij(x)}

N

i,j=1
.

2. Comparison principle for quasi-linear elliptic systems

Let u(x) ∈
(

C2(Ω) ∩ C(Ω)
)N

be classical sub-solution of (1), (2). Then

∫

Ω

(

ali(x, ul,Dul)ηlxi
+ F l(x, u1, . . . , uN ,Dul)ηl − f l(x)ηl

)

dx ≤ 0

for l = 1, . . . , N and for every non-negative vector-function η ∈
(

W 1
c (Ω) ∩ C(Ω)

)N

(i.e. η = (η1, . . . , ηN ), ηl ≥ 0, ηl ∈ W 1,∞(Ω) ∩ C(Ω) and ηl = 0 on ∂Ω).
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Analogously, let v(x) ∈
(

C2(Ω) ∩C(Ω)
)N

be a classical super-solution of (1),
(2). Then

∫

Ω

(

ali(x, vl,Dvl)ηlxi
+ F l(x, v1, . . . , vN ,Dvl)ηl − f l(x)ηl

)

dx ≥ 0

for l = 1, . . . , N and every non-negative vector-function η ∈
(

W 1
c (Ω) ∩ C(Ω)

)N
.

Recall that the comparison principle holds for (1), (2), if Q(u) ≤ Q(v) in Ω
and u ≤ v on ∂Ω yields u ≤ v in Ω.

Since u(x) and v(x) are sub- and super-solutions, then w̃(x) = u(x)− v(x) is
weak sub-solution of the following problem

−
n
∑

i,j=1

Di

(

Bli
j Djw̃

l +Bli
0 w̃

l
)

+
N
∑

k=1

El
kw̃

k +
n
∑

i=1

H l
iDiw̃

l = 0 in Ω

with non-positive boundary data on ∂Ω, i.e.

∫

Ω





n
∑

i,j=1

(

Bli
j Djw̃

l +Bli
0 w̃

l
)

ηlxi
+

N
∑

k=1

El
kw̃

kηl +

n
∑

i=1

H l
iDiw̃

lηl



 dx ≤ 0 in Ω.

Here

Bli
j =

∫ 1

0

∂ali

∂pj
(x, P l)ds, Bli

0 =

∫ 1

0

∂ali

∂ul
(x, P l)ds,

P l =
(

vl + s(ul − vl),Dvl + sD(ul − vl)
)

El
k =

∫ 1

0

∂F l

∂uk
(x, Sl)ds, H l

i =

∫ 1

0

∂F l

∂pi
(x, Sl)ds,

Sl =
(

v + s(u− v),Dvl + sD(ul − vl)
)

.

Therefore w̃+(x) = max (w̃(x), 0) is weak sub-solution of

(5) −

n
∑

i,j=1

Di

(

Bli
j Djw̃

l
+ +Bli

0 w̃
l
+

)

+

N
∑

k=1

El
kw̃

k
+ +

n
∑

i=1

H l
iDiw̃

l
+ = 0 in Ω

with null boundary data on ∂Ω.
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Equation (5) is equivalent to

(6) BEw̃+ = (B + E)w̃+ = 0 in Ω,

whereB = diag(B1, B2, . . . , BN ), Bl = −

n
∑

i,j=1

Di

(

Bli
j Djw̃

l
+ +Bli

0 w̃
l
+

)

+

n
∑

i=1

H l
iDiw̃

l
+

and E = {El
k}

N
l,k+1.

Then the following theorem (Theorem (8) in [1]) holds:

Theorem 1. Let (1), (2) be quasi-linear system and corresponding system

BE− in (6) is elliptic one. Then comparison principle holds for system (1), (2)
if BE− is irreducible one and for every j = 1, . . . , n hold

(i) λ+

(

N
∑

k=1

∂F k

∂pj
(x, p, ql) +

N
∑

i=1

Di
∂aji

∂pj
(x, pj , qj)

)+

> 0 for some x0 ∈ Ω,

(ii) λ+

(

n
∑

i=1

Di
∂aji

∂pj
(x, pj , qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

where p, q ∈ Rn and λ is the first eigenvalue of operator BE− in Ω;
or if BE− is reducible one and for every j = 1, . . . , n hold

(i′) λj +

(

N
∑

k=1

∂F k

∂pj
(x, p, qj) +

N
∑

i=1

Di
∂aji

∂pj
(x, pj , qj)

)+

> 0 for some x0 ∈ Ω,

(ii′) λj +

(

n
∑

i=1

Di

∂aji

∂pj
(x, pj , qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

where p, q ∈ Rn and λl is the first eigenvalue of operator Bl in Ω.

Note: We remind the reader that BE− stands for the negative part of BE .
Irreducible matrix is one that can not be decomposed to matrices of lower rank,
and respectively, the reducible matrix can be decomposed.
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3. Existence of classical solutions

In order to use the method of sub- and super-solutions we need some constraints
on the growth of the coefficients. Assume that for every l = 1, . . . , N

(7)







n
∑

i=1





n
∑

j=1

DjB
li
j +

(

Bli
0 +H l

i

)





2

,

∣

∣

∣

∣

∣

n
∑

i=1

(

DiB
li
0

)

∣

∣

∣

∣

∣







≤ b

holds for x ∈ Ω, where b is a positive constant,

(8)

[

n
∑

i=1

(

Bli
0 +H l

i

)

.pi.u
l +

n
∑

i=1

(

DiB
li
0

)

ul +
n
∑

k=1

El
k.uk(x)

]

ul ≥ c1|u|
2 − c2

for every x ∈ Ω, l = 1, . . . , N and arbitrary vectors u and p, where c1 = const > 0
and c2 = const ≥ 0,

(9)

∣

∣

∣

∣

∣

n
∑

i=1

(

Bli
0 +H l

i

)

.pi.u
l +

n
∑

i=1

(

DiB
li
0

)

ul +

n
∑

k=1

El
k.uk(x)

∣

∣

∣

∣

∣

≤

≤ ε(CM ) + P (p,CM )(1 + |p|2),

where P (p,CM ) → 0 for |p| → ∞ and ε(CM ) is sufficiently small and depends
only on n,N,CM , λ and Λ. λ and Λ are the constants from condition (3) and

(10) CM = max

{

max
∂Ω

|u|,
2max |f(x)|

c1n
,

√

2c2
c1n

}

.

Then the following theorem holds

Theorem 2. Suppose system (1), (2) satisfies conditions (3) to (9), and (i),
(ii) or (i′), (ii′), according to the structure of matrix E = (El

k). Assume that

v(x) is a classical super-solution and w(x) is a a classical sub-solution of (1), (2).

Then there exists a classical C2(Ω)
⋂

C(Ω) solution u(x) of the problem (1), (2)

with null boundary data.

Theorem 2 is proved by the method of sub- and super-solutions. A key-point
of the method is the validity of the comparison principle. Unlike the cooperative
systems, for non-cooperative ones there is no complete theory for the validity of
the comparison principle. In [1] are given some sufficient conditions such that the
comparison principle holds, which are recalled in section ”Comparison principle
for non-cooperative linear elliptic systems” below.
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Since the system (1) is a quasi-linear one, we assume in the following proof
without loss of generality that g(x) = 0.

P r o o f o f T h e o r em 2. Let us denote

Φ−
l (x, u

1, . . . , uN ) =

n
∑

k=1

El−
k uk +

n
∑

i=1

(

DiB
li
0

)

ul

and

Φ+
l (x, u

1, . . . , uN ) =
n
∑

k=1

El+
k uk.

1. Consider the sequence of vector-functions u0, u1, . . . , uk, . . ., where u0 =
v(x) and uk ∈ H1

0 (Ω) defines uk+1 by induction as a solution of the problem
(11)

−
n
∑

i,j=1

Di

(

Bli
j Dju

l
k+1 +Bli

0 u
l
k+1

)

+
n
∑

i=1

H l
iDiu

l
k+1+Φ−

l (x, u
1
k+1, . . . , u

N
k+1)+σulk+1 =

= f l(x)− Φ+
l (x, u

1
k, . . . , u

N
k ) + σulk in Ω

with null boundary conditions

(12) ulk+1(x) = 0 on partialΩ

for every l = 1, . . . , N , σ < 0 is a constant.
Let us denote the left-hand side of (11) by Ak(x, u, σ), and the right-hand

side – by Bk(x, u, σ), k = 1, . . . , N .
The problem (11), (12) is cooperative system and by Theorem (1) in [2], page

161, it is solvable. Even more, for the solution ulk+1(x) ∈ C2(Ω) there is constant
β ∈ (0, 1), β depends on (l + 1), such that

‖ulk+1‖Cβ(Ω) < c,(13)

∥

∥

∥

∥

∥

∂ulk+1

∂xi

∥

∥

∥

∥

∥

Cβ(Ω)

< c1 for every i = 1, . . . , n and γ = 1, . . . ,m.(14)

For every compact set K ⊂ Ω holds

∥

∥

∥

∥

∥

∂2ulk+1

∂xi∂xj

∥

∥

∥

∥

∥

Cβ(K)

< c7(ρ)(15)

for every i, j = 1, . . . , n, ρ = dist(K,∂Ω), and the constants c4−c7 are indepen-
dent on k. By Theorem 1 in [4] conditions (3)–(10) are necessary for solvability of
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the corresponding PDEs, while by Theorem 4 in [4, p. 120], conditions (13)–(15)
are derived in every subset of the domain where the coefficients of the diffraction
problem are smooth. In our case this is the whole domain Ω.

Furthermore ul0 ≥ ul1 ≥ · · · ≥ ulk+1 ≥ · · · by the comparison principle and the
fact that

f l(x)− Φ+
l (x, u

1
k, . . . , u

N
k ) + σulk − f l(x) + Φ+

l (x, u
1
k−1, . . . , u

N
k−1)− σulk−1 =

= −Φ+
l (x, u

1
k − u1k−1, . . . , u

N
k − uNk−1) + σ(ulk − ulk−1) ≥ 0

since ukl ≤ uNl−1 and −m+
ki(x) ≤ 0

The proof of ul0 ≥ ul1 is trivial since ul0 is a super-solution of (1), (2).
3. Obviously the inequality uk+1(x) ≥ w(x) holds for every k, since w(x) is

a sub-solution of the same system (1), (2).
4. The sequence of vector-functions {uk} is monotonously decreasing and

bounded from below in Ω. Therefore there is a function u such that uk(x) → u(x)
point-wise in Ω. Furthermore, (13) yields {uk} is uniformly equicontinuous in
Ω and {uk} < const, since ulk(x) is Holder continuous and therefore |ulk(x) −
ulk(x0)| ≤ c(|x − x0|

β) for every l = 1, . . . , N . By Arzela - Ascoli compactness
criterion there is a sub-sequence {ukj} that converges uniformly to u ∈ C(Ω).
For convenience we denote {ukj} by {uk}.

Since u ∈ C(Ω) and all functions {ukj} satisfy the null boundary conditions,
then u satisfies the boundary conditions as well.

The functions uk are Holder continuous with the same Holder constant, there-
fore u is Holder continuous as well with the same Holder constant, i.e. u ∈ Cβ(Ω).

Since uk+1(x) is monotone and u(x) is continuous, then {(uk)2} → u2 in Ω.
Then the Dominated Convergence Theorem (Theorem 5 at p.648 in [3]) yields
uk → u(x) in (L2(Ω))N .

5. Analogously to the previous step, (14) yields {Diuk} is uniformly equicon-
tinuous in Ω and {Diuk} < const. According to Arzela–Ascoli compactness
criterion there is sub-sequence {Diukj} that converges uniformly to Diu ∈ C(Ω).
For convenience we denote again {ukj} by {uk}.

6. For every 0 < η(x) = (η1(x), . . . , ηN (x)) ∈ (H1
0 (Ω))

N

∫

Ω





n
∑

i,j=1

(

Bli
j Dju

l
k+1 +Bli

0 u
l
k+1

)

Diη
l(x) +

n
∑

i=1

H l
iDiu

l
k+1η

l(x)



 dx+

+

∫

Ω

(

Φ−
l (x, u

1
k+1, . . . , u

N
k+1) + σulk+1

)

ηl(x)dx =
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=

∫

Ω
(f l(x)− Φ+

l (x, u
1
k, . . . , u

N
k ) + σulk)η

l(x)dx

holds and for k → ∞ we obtain

∫

Ω





n
∑

i,j=1

(

Bli
j Dju

l +Bli
0 u

l
)

Diη
l(x) +

n
∑

i=1

H l
iDiu

lηl(x)



 dx+

+

∫

Ω

(

Φ−
l (x, u

1, . . . , uN ) + σul
)

ηl(x)dx =

=

∫

Ω
(f l(x)− Φ+

l (x, u
1, . . . , uN ) + σul)ηl(x)dx,

that is u(x) is solution of (1), (2).
7. Since the coefficients akij(x) of the principal symbol in (1) are C1+α(Ω)

smooth and D2
xuk(x) are locally bounded, then D2

xu(x) ∈ C(Ω).
In fact by the exhaustion of Ω by compact sets κr, κr ⊂ κr+1 ⊂ Ω and

⋃

κr = Ω, and by (15) we have D2
xuk ∈ Cβ(Kr) are uniformly bounded and

equicontinuous in κr. Applying Arzela–Ascoli theorem and Cantor diagonal pro-
cess (for sub-sequence and compact) yields C2 smoothness in Ω of the limit func-
tion u(x).

Therefore u(x) ∈ C2(Ω))N is classical solution of (1), (2). �

4. Model example

Consider the system

(16)

∣

∣

∣

∣

∣

∣

∣

(

K2 − χ2
)1/4

∆2 ln |χ−K| = 2(2K − χ)

(

K2 − χ2
)1/4

∆2 ln |χ+K| = 2(2K + χ)

,

where ∆2 = ∂2
x + ∂2

y , K
2 > χ2, K < 0, K = K(x, y) and χ = χ(x, y). Here K

is the Gaussian curvature and χ is the curvature of the normal connection on
minimal non-super-conformal surface M2 in R4.

Every couple of solutions (K,χ) define uniquely minimal non-super-conformal
surface M2 in R4 with Gaussian curvature K and normal curvature χ.

Let K > χ. Then we denote

(17)

∣

∣

∣

∣

∣

∣

K − χ = eu

K + χ = ev
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and transform (16) to

(18)

∣

∣

∣

∣

∣

∣

∆u = 3e(3u−v)/4 + e(3v−u)/4

∆v = e(3u−v)/4 + 3e(3v−u)/4

.

Equation (18) is quasi-linear non-cooperative elliptic system. In this case

Bli
j =

∫ 1

0

∂ali

∂pj
(x, P l)ds = δi,j , Bli

0 =

∫ 1

0

∂ali

∂ul
(x, P l)ds = 0,

E1
1 =

∫ 1

0

∂F 1

∂u1
(x, Sl)ds =

∫ 1

0

9

4
e(3u−v)/4 −

1

4
e(3v−u)/4ds,

E1
2 =

∫ 1

0

∂F 1

∂u2
(x, Sl)ds =

∫ 1

0
−
3

4
3e(3u−v)/4 +

3

4
e(3v−u)/4ds,

E2
1 =

∫ 1

0

∂F 2

∂u1
(x, Sl)ds =

∫ 1

0

3

4
e(3u−v)/4 −

3

4
e(3v−u)/4ds,

E2
2 =

∫ 1

0

∂F 2

∂u2
(x, Sl)ds =

∫ 1

0
−
1

4
e(3u−v)/4 +

9

4
e(3v−u)/4ds,

H l
i =

∫ 1

0

∂F l

∂pi
(x, Sl)ds = 0,

where δi,j is Kronecker delta (symbol), P l =
(

vl + s(ul − vl),Dvl + sD(ul − vl)
)

and Sl =
(

v + s(u− v),Dvl + sD(ul − vl)
)

.

Since K is the Gaussian curvature and χ is the curvature of the normal con-
nection on minimal non-super-conformal surface M2 in R4, by (17) we presume
u, v do not blow up. In other words we suppose there is constant C(Ω) such that
eu ≤ C(Ω) and ev ≤ C(Ω).

Assume that Ω is a map from M2 → M2. The smaller is the map, the
smaller is C(Ω) and the larger is the first eigenvalue of system (11). Therefore,
if Ω is sufficiently small, conditions (i), (ii) (or (i′), (i′′)) hold and by Theorem 1
comparison principle holds for system (18). Furthermore, conditions (7)–(9) hold
as well. This way we have constructed (locally) a classical solution of system (16)
having intreresting applications in differential geometry. Details of the proofs of
the results in this short note will be published elsewhere.
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