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STUDIA MATHEMATICA

ON SOLUTIONS OF THE RATIONAL TYPE

TO MULTICOMPONENT NONLINEAR EQUATIONS

Tihomir Valchev

In this report we shall propose an algorithm to construct rational type
solutions to multicomponent nonlinear evolution equations solvable through
inverse scattering transform. The algorithm to be demonstrated is based on
Zakharov-Shabat’s dressing technique. As an illustration of our approach
we shall consider in more detail the derivation of rational solutions to a
generalized Heisenberg ferromagnet equation.

1. Introduction

In the late 70’s Airault, McKean and Moser [2] demonstrated that the well-known
Korteweg-de Vries equation

ut + uxxx + 6uux = 0, u : R2 → C.(1)

has a rational solution of the form:

u(x, t) = −
2

x2
.(2)

The latter represents a “long wave” limit of the 1-soliton solution to the Korteweg-
de Vries equation. Later, Ablowitz and Satsuma [1] found an algorithm to derive
rational solutions to wide classes of nonlinear evolution equations (NLEEs) based
on Hirota’s direct method.

Though they may be obtained from solitons, rational solutions are rather dif-
ferent class of solutions, e.g. typically those are not traveling waves. Thus their
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study contributes to classification of solutions to NLEEs. Moreover, rational so-
lutions have become a topic of increasing interest after it was observed [3, 4, 13]
that rogue waves in the open ocean could be modeled by rational solutions to
systems of nonlinear Schrödinger equations (NLS). There exists certain evidence
[5, 12] that similar phenomena in optical waveguides and plasmas could be de-
scribed by rational solutions to other NLEEs like derivative nonlinear Schrödinger
equation and 3-wave equation.

The purpose of this report is to demonstrate a method to derive rational type
solutions to multicomponent NLEEs integrable by means of inverse scattering
transform (IST). The method to be discussed is based on Zakharov-Shabat’s
dressing technique and seems to be better suited for treating multicomponent
NLEEs compared to Ablowitz-Satsuma’s approach.

In order to construct rational solutions it suffices to impose certain degeneracy
in the spectrum of the corresponding scattering operator. This can be achieved
by requiring that the poles of dressing factor belong to the continuous spectrum
of the scattering operator.

The report is organized as follows. Next section is preliminary in nature.
It introduces some notations and discusses basic facts form the theory of linear
pencils of Lax operators. Our main results are presented in Section 3. We will
describe there a general algorithm to construct rational type solutions and will
consider as an illustration multicomponent NLS and a two-component general-
ization of Heisenberg’s ferromagnet model.

2. Preliminaries

In this section we shall briefly introduce some notations and basic conventions
for linear pencils to be used further in text. For more detailed explanations we
refer the reader to monograph [8] and paper [9].

Let us consider the Lax operators

L(λ) = i∂x + U0(x, t) + λU1(x, t),(3)

M(λ) = i∂t +

N
∑

k=0

Vk(x, t)λ
k,(4)

where subscripts mean differentiation in independent variables x and t; λ ∈ C is
spectral parameter and all coefficients U0,1(x, t) and Vk(x, t) belong to a matrix
simple Lie algebra g over C. The zero curvature condition of (3) and (4)

Ut − Vx + i[U, V ] = 0.(5)
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is equivalent to a nonlinear differential constraint, i.e. a NLEE for dynamical
fields.

Making use of the root space decomposition of g we can represent each matrix
coefficient in the form:

U0,1 = Un
0,1 + Ud

0,1, Ud
0,1 ∈ h, Un

0,1 ∈
∑

α∈∆

gα,

where h ⊂ g is the Cartan subalgebra of g, ∆ is the root space of g and gα ⊂ g

is the root space corresponding to root α, see [10] for more explanations.
From this point on we shall require that U1 has eigenvalues that do not depend

on x and t. Thus we can put U1(x, t) into a constant diagonal form by applying
gauge transformation

L(λ) → L(λ) = Ĝ(x, t)L(λ)G(x, t) = i∂x +U0(x, t) + λU1, Ud
1 = U1,(6)

M(λ) → M(λ) = Ĝ(x, t)M(λ)G(x, t) = i∂t +
N
∑

k=0

Vk(x, t)λ
k, Ĝ := G−1(7)

on the Lax operators. Gauge transformations preserve zero curvature condition,
i.e. [L,M] = [L,M ] = 0.

Let us consider now the linear system

i∂xΨ(x, t, λ) + U(x, t, λ)Ψ(x, t, λ) = 0,(8)

where it is assumed that U obeys the boundary conditions

lim
x→±∞

U(x, t, λ) = λG±U1Ĝ±, G± := lim
x→±∞

G(x, t).(9)

Above Ψ : R2 × D → G is a fundamental set of solutions defined in an open
domain D of the λ-plane and taking values in the Lie group G corresponding to
g. We shall denote by S the space of all fundamental solutions to (8).

The zero curvature condition (5) implies any fundamental solution to (8) also
satisfies the linear system

i∂tΨ+ VΨ = Ψf(10)

for f(λ) = lim|x|→∞ Ĝ(x, t)V (x, t, λ)G(x, t) being dispersion law of NLEE.
Jost solutions Ψ+ and Ψ− are usually introduced through the equality:

lim
x→±∞

Ψ±(x, t, λ)e
−iλU1xĜ± = 11.(11)

The transition matrix T (t, λ) = Ψ̂+(x, t, λ)Ψ−(x, t, λ) represents scattering ma-
trix.
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Let us assume a finite group GR acts on S in the following way:

Ψ(λ) → Ψ̃(λ) := Kg[Ψ(κg(λ))], g ∈ GR

where Kg ∈ Aut (G) and κg : C → C is a conformal mapping. As a result
Lax operators acquire certain symmetries reducing the number of independent
dynamical fields. This is why GR is called reduction group.

Example 1. Generalized Heisenberg ferromagnet equation
Let us consider the following system of coupled NLEEs:

iut + uxx + (ǫ1uu
∗
x + ǫ2vv

∗
x)ux + (ǫ1uu

∗
x + ǫ2vv

∗
x)xu = 0,

(12)

ivt + vxx + (ǫ1uu
∗
x + ǫ2vv

∗
x)vx + (ǫ1uu

∗
x + ǫ2vv

∗
x)xv = 0, ǫ21,2 = 1

where ∗means complex conjugation and at least one of ǫ1,2 equals 1. The infinitely
smooth functions u : R2 → C and v : R2 → C are not independent but obey the
constraint ǫ1|u|

2 + ǫ2|v|
2 = 1. The system above turns into the one studied in [9]

when setting ǫ1 = ǫ2 = 1. It possesses a Lax pair in the form:

L(λ) = i∂x + λU1, U1 =





0 u v

ǫ1u
∗ 0 0

ǫ2v
∗ 0 0



 ,(13)

M(λ) = i∂t + λV1 + λ2V2, V1 =





0 a b

ǫ1a
∗ 0 0

ǫ2b
∗ 0 0



 ,(14)

V2 =





−1/3 0 0
0 2/3− ǫ1|u|

2 −ǫ1u
∗v

0 −ǫ2v
∗u 2/3− ǫ2|v|

2



 ,(15)

a = iux + i (ǫ1uu
∗
x + ǫ2vv

∗
x)u, b = ivx + i (ǫ1uu

∗
x + ǫ2vv

∗
x) v.(16)

That Lax pair is subject to the reductions:

CL(−λ)C = L(λ), CM(−λ)C = M(λ), C = diag (1,−1,−1).

Moreover, it is easily seen that the following relations are fulfilled:

EU
†
1E = U1, EV

†
1,2E = V1,2, E = diag (1, ǫ1, ǫ2)

for † standing for Hermitian conjugation.

In what follows we shall require that U1 is real. In that case the Jost solutions
are defined on the real line of the λ-plane which coincides with the continuous
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spectrum of L(λ). Using Ψ+ and Ψ−, however, one can construct another pair
of fundamental solutions X+ and X− analytic in the upper and lower half-plane
respectively. X+ and X− are interrelated through

X−(x, t, λ) = X+(x, t, λ)G(λ), Imλ = 0.(17)

Hence they can be viewed as solutions to a local Riemann-Hilbert factorization
problem.

3. Main Results

In this section we shall describe an algorithm to construct rational type solu-
tions based on Zakharov-Shabat’s dressing method. Rational solutions of NLEEs
integrable by means of IST are usually obtained through a limiting procedure.
For instance, one can find soliton type solutions and then evaluate the long-wave
limit in the corresponding expressions. Another option consists in performing the
limiting procedure into the method of integration from the very beginning. It is
our intention here to demonstrate how that concept works when dressing linear
pencils of Lax operators.

3.1. General remarks on dressing method

Dressing procedure can symbolically be presented as the following sequence of
steps:

U (0), V (0) → L0,M0 → Ψ0
g
→ Ψ1 → U (1), V (1) → L1,M1.

First, one starts from a L0-M0 pair in the form (3) and (4) whose potentials
U (0) and V (0) are assumed to be known solutions to a given NLEE, see [8, 9].
Then one applies a gauge transform Ψ0 → Ψ1 = gΨ0 that maps (U (0), V (0)) onto
another potentials (U (1), V (1)) considered solutions to the same NLEE. In doing
this one uses a (dressing) factor g depending on λ. We shall pick up g in the
form:

g(x, t, λ) = A(x, t) +
∑

j

Bj(x, t)

λ− µj

, µj ∈ C.(18)

Thus to find (U (1), V (1)) one needs to know the residues Bj and the λ-free term
A. It turns out those can be expressed in terms of a fundamental solution Ψ0 to
the initial (bare) linear system

L0(λ)Ψ0 = i∂xΨ0 + U (0)Ψ0 = 0.(19)

There exist two substantially different cases:
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1. generic case, when the poles of g lie outside of the continuous spectrum of
scattering operator L(λ), i.e. the real line (see the comment on the bottom
of page 206);

2. degenerate case, i.e. when the poles belong to the continuous spectrum.

The former case leads to soliton type solutions while the latter produces rational
type solutions [14]. From now on we shall be interested in the degenerate case.

The algorithm to find the residues of g consists in 2-steps. In the first step one
considers the identity gĝ = 11 which leads to a set of algebraic relations. Those
imply that Bj are degenerate matrices, i.e. we have the decomposition:

Bj(x, t) = Xj(x, t)F
T
j (x, t)(20)

where Xj(x, t) and Fj(x, t) are rectangular matrices. The algebraic relations also
allow one to express Xj through Fj .

In the second step one considers the partial differential equations

i∂xg + U (1) g − gU (0) = 0,(21)

i∂tg + V (1)g − gV (0) = 0(22)

obtained after comparing bare linear systems with dressed ones. Equations (21)
and (22) allow one to find Fj in terms of Ψ0. In the next subsection we shall
illustrate that procedure on special examples of linear pencils.

3.2. Generalized Heisenberg ferromagnet equation

Let us consider the generalized Heisenberg system of equations (12) when ǫ1 =
−ǫ2 = −1 and impose the following boundary conditions

lim
|x|→∞

u(x, t) = 0, lim
|x|→∞

v(x, t) = 1.(23)

It can be proved [9] that now the auxiliary linear problem

i∂xΨ+ λU1Ψ = 0

is related to a Riemann-Hilbert problem with normalization at λ = 0. Thus to
derive rational solutions one may use a dressing factor in the form:

g(x, t, λ) = 11 +
λB(x, t)

µ(λ− µ)
+

λCB(x, t)C

µ(λ+ µ)
, µ ∈ R.(24)

while its inverse is given by

ĝ(x, t, λ) = 11 +
λEB†(x, t)E

µ(λ− µ)
+

λECB†(x, t)CE

µ(λ+ µ)
.(25)
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The dressed potential U
(1)
1 can be obtained from the bare one U

(0)
1 through the

relation

U
(1)
1 =

(

11 +
B

µ
+

CBC

µ

)

U
(0)
1 E

(

11 +
B

µ
+

CBC

µ

)†

E.(26)

The identity g(λ)ĝ(λ) = 11 gives rise to the following algebraic relations:

BEB† = 0, ΩEB† +BEΩ† = 0(27)

where

Ω = 11 +B/µ+ CBC/2µ.

The former relation in (27) implies that B(x, t) is degenerate so decomposition
(20) holds for some vectors X and F . The vector F is subject to the following
constraint:

F TEF ∗ = 0.(28)

From (21) it follows that F depends on Ψ0 as follows:

F T = F T
0 Ψ̂0(µ)(29)

where F0 is an integration constant. On the other hand, from the latter equation
in (27) one can find for X the following result

X =

(

α0 − F T∂λ|λ=µΨ0(λ)EF
∗
0 −

F TCEF ∗

2µ
C

)−1

EF ∗(30)

where α0 is another integration constant.
The time dependence in all the expressions above can be recovered after

analyzing equation (22). As a result one gets the following correspondence:

F T
0 → F T

0 e−if(µ)t,(31)

α0 → α0 − iF T
0

d f(λ)

dλ

∣

∣

∣

∣

λ=µ

EF ∗
0 t(32)

where the dispersion law of (12) is f(λ) = −λ2diag (1,−2, 1)/3.

The simplest choice for a bare potential satisfying boundary condition (23)
and a bare fundamental solution is

U
(0)
1 =





0 0 1
0 0 0
1 0 0



 , Ψ0(x, λ) =

√
2

2





eiλx 0 −e−iλx

0
√
2 0

eiλx 0 e−iλx



 .
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Then the rational solution for (12) can be written down as:

u1(x, t) =
2
√
2[γ(x) + 2iµ(2µt− x cos ϑ)]

[γ(x)− 2iµ(2µt− x cos ϑ)]2

[

eiϕ−(x,t) cos
ϑ

2
+ eiϕ+(x,t) sin

ϑ

2

]

,(33)

v1(x, t) =
γ(x) + 2iµ(2µt− x cos ϑ)

[γ(x) − 2iµ(2µt− x cos ϑ)]2
[γ(x) − 4 + 2iµ(2µt− x cos ϑ)],(34)

γ(x) = 1− sinϑ cos 2µ(x+ x0), ϕ±(x, t) = ∓µ(x± µt+ x0)

where ϑ ∈ [0, π], µ and x0 are parameters of the solution. Clearly, this is not a
traveling solution. For ϑ = 0, π (33) and (34) turns into a purely rational non-
singular solution while for ϑ = π/2 the denominator of (33) and (34) vanishes for
t = 0 and x = −x0 + kπ/µ, k ∈ Z.

3.3. Multi-component NLS

Let us consider now the linear pencil

L(λ) = i∂x +Q(x, t)− λJ, Q(x, t) =

(

0 qT (x, t)
Enq

∗(x, t)Em 0

)

(35)

M(λ) = i∂t +
N
∑

k=0

λkAk(x, t), J =

(

11m 0
0 −11n

)

(36)

Em = diag (ǫ1, . . . , ǫm), En = diag (ǫm+1, . . . , ǫm+n)(37)

related to symmetric space SU(m+n)/S(U(m)×U(n)), see [7]. Above q(x, t) is a
n×mmatrix; 11m is the unit matrix of dimensionm; ǫ2k = 1, k = 1, . . . ,m+n. The
quadratic flow of Lax pair (N = 2) leads to the multicomponent NLS equation

iqt + qxx + 2qEmq†Enq = 0.(38)

The simplest class of rational solutions to NLS can be constructed by using
a dressing factor in the form:

g(x, t, λ) = 11 +
B(x, t)

λ− µ
, µ ∈ R.(39)

A more detailed consideration [14] similar to that one in the previous example
shows that B(x, t) is a degenerate matrix again, i.e. the decomposition (20)
applies for X and F being complex m + n-vectors. When picking up Q(0) = 0
and Ψ0(x, λ) = exp(−iλJx) one obtains the following singular rational solution
to (38):

qij(x, t) =
ǫie

−2iµ(x+2µt+ϕij)|F0,iF0,j |

x+ 4µt
, ϕij ∈ R,(40)
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F0,k =
F0,k

√

∑m
p=1 ǫp|F0,p|2

, i = 1, . . . , n, j = 1, . . . ,m.

4. Conclusion

We have showed how dressing technique can be applied to construct rational
solutions for classes of completely integrable NLEEs connected to linear pencils.
In order to achieve this it suffices to use dressing factors with simple poles lying on
the continuous spectrum of scattering operator, see (18). To illustrate that idea
we have considered the generalized Heisenberg ferromagnet system (12) and the
NLS equation (38). Following the algorithm described in Section 3. one can derive
explicit formulas for the solutions, see (33), (34) and (40). A common feature of
these rational solutions is they are not traveling waves. In contrast to rational
solutions to multicomponent NLS, however, the rational solutions to (12) can be
non-singular for particular values of parameters. The rational solution (40) can
naturally be reduced to well-known rational solutions to the scalar NLS.

By utilizing appropriate dressing factors with multiple poles one is able to
construct even more complicated families of rational solutions. The main advan-
tage of the procedure sketched in Section 3. is it allows one to do so directly, i.e.
without any knowledge of the corresponding generic soliton type solutions.

In the present report we have focused on the simplest boundary conditions
(trivial background). One further step to extend our results is by considering non-
trivial background. Nontrivial background solutions were obtained in [3, 4, 11]
for the case of the scalar NLS and in [6] for 3-wave equation. However, the
considerations required in this case are more complicated and are envisaged to
be presented elsewhere.
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