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STUDIA MATHEMATICA

NEW TYPES OF TWO COMPONENT NLS-TYPE
EQUATIONS

V. S. Gerdjikov, A. A. Stefanov

We study MNLS related to the D.III-type symmetric spaces. Applying
to them Mikhailov reduction groups of the type Zr × Z2 we derive new
types of 2-component NLS equations. These are not counterexamples to the
Zakharov-Schulman theorem because the corresponding interaction Hamil-
tonians depend not only on |uk|2, but also on u1u

∗

2
+ u∗

1
u2.

1. Introduction

The non-linear Schrodinger equation

(1) i
∂u

∂x
+

1

2

∂2u

∂x2
+ |u|2u = 0, u = u(x, t)

was first solved by Zakharov and Shabat in 1971 [27]. Since then, it has found
numerous applications [6, 26]. The first multi-component NLS with applications
to physics is the Manakov model [21, 22]:

(2)
i
∂u1
∂x

+
1

2

∂2u1
∂x2

+ (|u1|2 + |u2|2)u1 = 0,

i
∂u2
∂x

+
1

2

∂2u2
∂x2

+ (|u1|2 + |u2|2)u2 = 0.
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It is natural to look for other types of multi-component generalizations. Such
generalizations were analyzed in [14] and this work can be viewed as its continu-
ation. There is a close relationship between MNLS equations and homogeneous
and symmetric spaces [7].

Soon after the pioneer paper by Zakharov and Shabat [27], Manakov [21,
21] proposed a two-component NLS model. Both NLS models have important
applications in nonlinear optics, plasma physics, hydrodynamics etc. Manakov
model was easily generalized to N -components known as vector NLS; it has also
non-Euclidean version (see [20]):

(3)
i
∂u1
∂x

+
1

2

∂2u1
∂x2

+ (|u1|2 − |u2|2)u1 = 0,

i
∂u2
∂x

+
1

2

∂2u2
∂x2

+ (|u1|2 − |u2|2)u2 = 0.

Here we should mention another famous paper by Zakharov and Schulman [28]
where they prove a theorem classifying the integrable two-component NLS sys-
tems. They request that the interaction Hamiltonian depends only on |u1|2 and
|u2|2 and prove that eqs. (2) and (3) are the only integrable MNLS.

The next step in studying multicomponent NLS equations is based on the im-
portant idea of Fordy and Kulish relating the MNLS equations to the symmetric
spaces [7].

The present paper is continuation of [7] and a sequel of papers [10, 12, 13,
14, 11, 15, 16, 17, 18] in which Mikhailov’s reduction group [23] was applied on
the MNLS thus deriving new versions with small number of components. Below
we limit ourselves with the MNLS related to the D.III-type symmetric spaces
and using Mikhailov reduction groups of the type Zr × Z2 derive new types of
2-component NLS equations. These are not counterexamples to the Zakharov-
Schulman theorem because the corresponding interaction Hamiltonians depend
not only on |uk|2, but also on u1u

∗
2 + u∗1u2.

In Section 2 we collect preliminary facts about the D.III symmetric spaces
and the types of reductions that will be applied to the Lax pairs. In Section 3
we analyze two types of Z4-reductions of MNLS related to the algebra so(8). In
Section 4 we analyze Z5-reductions of MNLS related to the algebra so(10). To
each of these cases we relate a new two-component NLS equation. In Section 5
we formulate the consequences of these reductions for the Jost solutions and the
scattering matrix, We finish with discussions and conclusions.
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2. Preliminaries

2.1. Symmetric spaces and Z2-gradings

We assume that reader is familiar with the basic properties of the simple Lie
groups and Lie algebras, see [19]. The Cartan-Weyl basis of the algebras of the
Dr-series, r ≥ 4 are given in the Appendix.

Here will briefly remind the well known facts about the D.III-type symmetric
spaces which is SO∗(2r)/U(r) and the structure of its local coordinates [19]. Each
of these symmetric spaces is generated by a Cartan involution which induces a
Z2-grading on the Lie algebra which in our case is g ≃ so(2r). The root system
of g is:

∆ = ∆+ ∪ (−∆+), ∆+ ≡ {ei − ej , ei + ej , 1 ≤ i < j ≤ r},(4)

The Z2-grading is induced by the Cartan element J =
∑r

s=1Hs. It induces a
Z2-grading of so(2r) ≡ g(0) ⊕ g(1) as follows:

g(0) ≡ {X ∈ g : [J,X] = 0}, g(1) ≡ {Y ∈ g : JY + Y J = 0}.(5)

This grading splits the set of the positive roots ∆+ = ∆+
0 ∪∆+

1 into subsets:

(6) ∆+
0 ≡ {ei − ej , 1 ≤ i < j ≤ r}, ∆+

1 ≡ {ei + ej, 1 ≤ i < j ≤ r}

i.e.

α ∈ ∆+
0 iff α(J) = 0, β ∈ ∆+

1 iff β(J) = 2.(7)

We will need also the co-adjoint orbit in g passing through J which coincides
with the linear functionals (depending on x and t) over the linear subspace g(1).
We will denote it by MJ ; a generic Q(x, t) element in it is provided by:

Q(x, t) =
∑

β∈∆+
1

(qβ(x, t)Eβ + pβ(x, t)E−β) =

(

0 q

p 0

)

.(8)

where q(x, t) and p(x, t) are r×r block matrices. For simplicity and definitiveness
we will assume that the qβ(x, t) and pβ(x, t) are Schwartz-type functions of their
variables.
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2.2. Reductions

An important and systematic tool to construct new integrable NLEE is the so-
called reduction group [23]. It will be instructive to start with the local Z2-
reductions:

A1U
†(x, t, κ1λ

∗)A−1
1 = U(x, t, λ), A1V

†(x, t, κ1λ
∗)A−1

1 = V (x, t, λ),(9)

A2U
T (x, t, κ2λ)A

−1
2 = −U(x, t, λ), A2V

T (x, t, κ2λ)A
−1
2 = −V (x, t, λ),(10)

A3U
∗(x, t, κ1λ

∗)A−1
3 = −U(x, t, λ), A3V

∗(x, t, κ1λ
∗)A−1

3 = −V (x, t, λ),(11)

A4U(x, t, κ2λ)A
−1
4 = U(x, t, λ), A4V (x, t, κ2λ)A

−1
4 = V (x, t, λ).(12)

The consequences of these reductions and the constraints they impose on the
FAS and the Gauss factors of the scattering matrix are well known, see [23, 26].
Since we are dealing with Dr-algebras we take into account that X → −XT is an
inner automorphism. This means that reduction (9) is equivalent to reduction
(11) and reduction (10) is equivalent to reduction of (12). Therefore it will be
enough to consider only reductions (11) and (12).

Along with Z2 we will need also Zp-reductions:with p > 2. If p is odd, we can
use only reductions of type (12).

B1U
†(x, t, κ1(λ

∗))B−1
1 = U(x, t, λ), B1V

†(x, t, κ1(λ
∗))B−1

1 = V (x, t, λ),(13)

B4U(x, t, κ4(λ))B
−1
4 = U(x, t, λ), B4V (x, t, κ4(λ))B

−1
4 = V (x, t, λ).(14)

where the functions κ3 and κ4 if applied p times satisfy κj(κj(...κj(λ)...)) = λ,
j = 3, 4. In addition we will use also Zr-reductions of the form

(15) A1U(x, t, ǫλ)A−1
1 = U(x, t, λ), A1V (x, t, ǫλ)A−1

1 = V (x, t, λ)

where ǫ = ±1 and Ar
1 = 11 with r > 2; if r is odd then ǫ = 1. We will demonstrate

below examples when such reductions with ǫ = 1 provide new types of NLEE.

2.3. Lax pair and reductions

Below we outline the formulation of the Lax pair for the D.III-type symmetric
spaces:

L(λ)ψ ≡
(

i
d

dx
+Q(x, t)− λJ

)

ψ(x, t, λ) = 0,

M(λ)ψ ≡
(

i
d

dt
− 1

2
[Q, ad −1

J Q] + iad−1
J

∂Q

∂x
+ λQ− λ2J

)

ψ(x, t, λ) = 0,

(16)
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where Q = Q(x, t) and J are elements of the algebra so(2r). In other words they
are 2r × 2r matrices with the following block-matrix form:

(17) Q(x, t) =

(

0 q(x, t)
p(x, t) 0

)

, J =

(

11 0
0 −11

)

.

The compatibility condition [L(λ),M(λ)] = 0 of the operators in (16) gives
the general form of the D.III-type MNLS equations on symmetric spaces. It can
be viewed as block-matrix generalization of the AKNS system [1]; see also [2]:

(18)
i

2

[

J,
dQ

dt

]

+
1

2

d2Q

dx2
−

[

ad −1
J Q, [ad −1

J Q,Q]
]

= 0.

Consider the Lax pair of the Zakharov - Shabat system

(19)

Lψ(x, t, λ) =

(

i
∂

∂x
+ U(x, t, λ)

)

ψ(x, t, λ) = 0, U = Q(x, t)− λJ,

Mψ(x, t, λ) =

(

i
∂

∂t
+ V (x, t, λ)

)

ψ(x, t, λ) = 0, V = V0 + λQ− λ2J.

Let MJ be the co-adjoint orbit of g passing through J . Then Q(x, t) ∈ MJ .
As mentioned above, the choice of J determines the dimension of MJ which

can be viewed as the phase space of the relevant nonlinear evolution equations
(NLEE). It is equal to the number of roots of g such that α(J) 6= 0. Taking into
account that if α is a root, then and −α is also a root of g then dimMJ is always
even. Since all the examples are related to symmetric spaces of D.III-type it is
natural to choose J as in (17). As a consequence g(0) which can be viewed as the
kernel of the operator ad J) is non-commutative and isomorphic to so(r)⊕ so(r).

Below the automorphisms Ai and Bk used for reductions will be inner and
will correspond to compositions of Weyl reflections. They will act as similarity
transformations with 2r×2r matrices that belong to the SO(2r) group and satisfy

(20) Ar(X)A−r ≡ X, Br(X)B−r ≡ X, ∀X ∈ g.

From eqs. (15) and (19) there follows that they must either preserve J or change
its sign, i.e.

(21)

AJA−1 = J, BJB−1 = −J,

A =

(

a1 0
0 −aT1

)

, B =

(

0 b1
b2 0

)

,

â2 = ŝ1a
T
1 s1, b̂2 = s1b

T
1 s1.
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The compatibility condition [L,M ] = 0 leads to the MNLS of the form:

(22) i
∂Q

∂t
+

1

2

∂2Q

∂x2
+ [Q,V0] = 0.

We will consider further reductions of the above system. Namely, we will
consider reduction of type Zr of the form

(23)
AU(x, t, λ)A−1 = U(x, t, λ), AV (x, t, λ)A−1 = V (x, t, λ),

BU(x, t,−λ)B−1 = U(x, t, λ), BV (x, t,−λ)B−1 = V (x, t, λ),

where A and B are automorphisms of order r. This will restrict the number of
the independent variables in Q to twice the number of orbits of A. This means
that the potential of L takes the form

(24)

QA =
∑

α∈δ+
A

qα(x, t)EA
α + pα(x, t)EA

−α, EA
α =

r−1
∑

s=0

AsEαA
−s,

QB =
∑

α∈δ+
B

qα(x, t)EB
α + pα(x, t)EB

−α, EB
α =

r−1
∑

s=0

BsEαB
−s,

and δ+A and δ+B contains only one root α from each orbit of the corresponding
automorphism.

In addition we will impose also a Z2 reductions of the type

(25) U †(x, t, λ∗) = U(x, t, λ), V †(x, t, λ∗) = V (x, t, λ).

This reduction will restrict the form of Q to p = q†.

3. MNLS with Z4-reductions related to D4

We will consider g = D4 and J = diag(1, 1, 1, 1,−1,−1,−1,−1). There are two
realizations of the reduction (23) that will give two-component MNLS:

A = Se1−e2 ◦ Se2−e3 ◦ Se3−e4 , B = Se1+e2 ◦ Se2+e3 ◦ Se3+e4(26)

In the first case A acts in the root space by A : e1 → e2 → e3 → e4 → e1 and
splits ∆ into 8 orbits

(27)

O±
1 : ±(e1 + e2) → ±(e2 + e3) → ±(e3 + e4) → ±(e1 + e4),

O±
2 : ±(e1 + e3) → ±(e2 + e4),

O±
3 : ±(e1 − e2) → ±(e2 − e3) → ±(e3 − e4) → ±(e4 − e1),

O±
4 : ±(e1 − e3) → ±(e2 − e4) → ±(e3 − e1) → ±(e4 − e2).
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four of which O±
1 ∪ O±

2 span the set of roots ∆+
1 ∪ ∆−

1 ; the other four orbits
O±

3 ∪ O±
4 span the set of roots ∆+

0 ∪∆−
0 .

In the second case B acts in the root space by B : e1 → −e2 → e3 → −e4 → e1
and splits ∆ into 8 orbits

(28)

Õ±
1 : ±(e1 + e2) → ∓(e2 + e3) → ±(e3 + e4) → ∓(e1 + e4),

Õ±
2 : ±(e1 + e3) → ∓(e2 + e4),

Õ±
3 : ±(e1 − e2) → ∓(e2 − e3) → ±(e3 − e4) → ∓(e4 − e1),

Õ±
4 : ±(e1 − e3) → ∓(e2 − e4) → ±(e3 − e1) → ∓(e4 − e2).

four of which Õ±
1 ∪ Õ±

2 span the set of roots ∆+
1 ∪ ∆−

1 ; the other four orbits
Õ±

3 ∪ Õ±
4 span the set of roots ∆+

0 ∪∆−
0 .

We will consider the first case. The potential of the Lax operator Q(x, t) (see
(8)) is given by

(29) q(x, t) =









q1
√
2q2 q1 0√

2q2 q1 0 q1
−q1 0 q1 −

√
2q2

0 −q1 −
√
2q2 q1









, p(x, t) = q†(x, t).

Imposing also the second reduction (25) (pi = q∗i ) the equations become

(30)
i
∂q1
∂t

+
1

2

∂q1
∂x2

+ 2q1(|q1|2 + 2|q2|2) + 2q22q
∗
1 = 0,

i
∂q2
∂t

+
1

2

∂q2
∂x2

+ 2q2(2|q1|2 + |q2|2) + 2q21q
∗
2 = 0.

They admit a Hamiltonian formulation, with a Hamiltonian density given by

(31) H =
1

2

∣

∣

∣

∣

∂q1
∂x

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂q2
∂x

∣

∣

∣

∣

2

− (|q1|2 + |q2|2)2 − (q1q
∗
2 + q∗1q2)

2

4. MNLS with Z5-reductions related to D5

Let g = D4 and J = diag(1, 1, 1, 1, 1,−1,−1,−1,−1,−1). Again, we will also
impose (23) with A = Se1−e2 ◦ Se2−e3 ◦ Se3−e4 ◦ Se4−e5 , that is A : e1 → e2 →
e3 → e4 → e5.

This splits ∆ into orbits

(32)

O±
1 : ±(e1 + e2) → ±(e2 + e3) → ±(e3 + e4) → ±(e4 + e5) → ±(e1 + e5),

O±
2 : ±(e1 + e3) → ±(e2 + e4) → ±(e3 + e5) → ±(e1 + e4) → ±(e2 + e5),

O±
3 : ±(e1 − e2) → ±(e2 − e3) → ±(e3 − e4) → ±(e4 − e5) → ∓(e1 − e5),

O±
4 : ±(e1 − e3) → ±(e2 − e4) → ±(e3 − e5) → ∓(e1 − e4) → ∓(e2 − e5).
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The Z5 reduction is realized by a type-A automorphism as in (21) with

(33) a1 =













0 0 0 0 1
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0













.

The reduced potential Q(x, t) as in (17) with
(34)

q(x, t) =













q1 q2 q2 q1 0
q2 −q2 q1 0 q1
q2 q1 0 q1 −q2
q1 0 q1 q2 q2
0 q1 −q2 q2 −q1













, p(x, t) =













p1 p2 p2 p1 0
p2 −p2 p1 0 p1
p2 p1 0 p1 −p2
p1 0 p1 p2 p2
0 p1 −p2 p2 −p1













.

After imposing the second reduction p = q† the equations become

(35)
i
∂q1
∂t

+
1

2

∂2q1
∂x2

+ q1(3|q1|2 + 4|q2|2) + q2(2|q1|2 − |q2|2) + q21q
∗
2 + 2q∗1q

2
2 = 0,

i
∂q2
∂t

+
1

2

∂2q2
∂x2

+ q1(|q1|2 − 2|q2|2) + q2(4|q1|2 + 3|q2|2)− q∗1q
2
2 + 2q21q

∗
2 = 0.

The above equations admit a Hamiltonian formulation, with a Hamiltonian den-
sity given by

(36)
H =

1

2

∣

∣

∣

∣

∂q1
∂x

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂q2
∂x

∣

∣

∣

∣

2

− (|q1|2 + |q2|2)2

− 1

2
(|q1|2 + q∗1q2 + q1q

∗
2)

2 − 1

2
(|q2|2 − q∗1q2 − q1q

∗
2)

2

5. Direct and inverse scattering problems

Basic tools in this analysis are the Jost solutions (we will avoid writing explicit
time dependence, to avoid cluttering the notation)

lim
x→−∞

φ(x, λ)eiJλx = 11, lim
x→∞

ψ(x, λ)eiJλx = 11.(37)

Formally the Jost solutions must satisfy Volterra type integral equations. If we
introduce

(38) ξ(x, λ) = ψ(x, λ)eiλJx, η(x, λ) = φ(x, λ)eiλJx,
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then ξ±(x, λ) must satisfy

ξ(x, t) = 11 + i

∫ x

∞

dy e−iλJ(x−y)Q(y, t)ξ(y, λ)eiλJ(x−y),

η(x, t) = 11 + i

∫ x

−∞

dy e−iλJ(x−y)Q(y, t)η(y, λ)eiλJ(x−y).

(39)

The Jost solutions can not be extended for Imλ 6= 0. However some of their
columns can be extended for λ ∈ C+ or λ ∈ C−. The Jost solutions can be
written in the following block-matrix form

(40) ψ(x, λ) =

(

ψ−
1 (x, λ) ψ+

1 (x, λ)
ψ−

2 (x, λ) ψ+
2 (x, λ)

)

, φ(x, λ) =

(

φ+
1 (x, λ) φ−

1 (x, λ)
φ+
2 (x, λ) φ−

2 (x, λ)

)

,

where the superscript ± shows that the corresponding r× r block allows analytic
extension for λ ∈ C±. Then the scattering matrix is introduced by

T (λ) = ψ̂(x, λ)φ(x, λ), T (λ) =

(

a+(λ) −b−(λ)
b+(λ) a−(λ)

)

(41)

where by ”hat” we denote matrix inverse. Since without loss of generality the Jost
solutions are group elements the scattering matrix will also be a group element.
Note that if we impose one of the Zr reduction (A or B) on the Lax pair then
T (λ, t) must satisfy one of the relations below.

(42) AT (λ, t)A−1 = T (λ), BT (−λ, t)B−1 = T (λ).

This imposes the following constraints on the blocks a±(λ) and b±(λ, t):

(43)
a+(λ) = a1a

+(λ)â1, b−(λ, t) = a1b
−(λ, t)â2,

b+(λ, t) = a2b
+(λ, t)â1, a−(λ) = a2a

−(λ)â2,

for the type-A reductions and

(44)
a+(λ) = b1a

−(−λ)b̂1, b−(λ, t) = −b1b+(−λ, t)b̂2,
b+(λ, t) = −b2b−(−λ, t)b̂1, a−(λ) = b2a

+(−λ)b̂2.

where the constant matrices ak and bk, k = 1, 2 are given in eq. (21).
The second reduction Q(x, t) = Q†(x, t) imposes on the Jost solutions and on

the scattering matrix the constraints (below ”hat” denotes matrix inverse) :

(45)

ψ†(x, t, λ∗) = ψ̂(x, t, λ), φ†(x, t, λ∗) = φ̂(x, t, λ),

T †(λ∗, t) = T̂ (λ, t), T̂ (λ, t) =

(

c− d−

−d+ c+

)

.



62 V. S. Gerdjikov, A. A. Stefanov

The corresponding blocks of T (λ, t) and its inverse T̂ (λ, t) must satisfy

(46)
(a+)†(λ∗) = c−(λ), (b−)†(λ∗, t) = d−(λ, t),

(b+)†(λ∗, t) = −d+(λ, t), (a−)†(λ∗) = c+(λ).

We end this section by formulating the time-dependence of the scattering
matrix which follows naturally from the Lax representation (16):

(47) i
∂T

∂t
− λ2[J, T (λ, t)] = 0, i

∂T̂

∂t
− λ2[J, T̂ (λ, t)] = 0,

i.e.

(48)

∂a±

∂t
= 0, i

∂b±

∂t
∓ b±(λ, t) = 0,

∂c±

∂t
= 0, i

∂d±

∂t
± b±(λ, t) = 0.

In particular, the diagonal blocks can be viewed as generating functionals of the
integrals of motion of the MNLS.

6. Discussion and conclusions

The inverse scattering method, applied to the scalar NLS equation has all the
properties of a Generalized Fourier Transform (GFT). The derivation of these
properties is based on the Wronskian relations [1, 3, 4]. These results allow
natural generalizations to the MNLS equations, see [11] and references therein.

So the mapping F : MJ → T (λ, t) is directly related to the GFT which
instead of the usual exponentials e±iλJ uses the so-called ‘squared solutions’
of L, e±α (x, λ) = π0,J(χ

±Eαχ̂
±(x, λ). Here χ±(x, λ) are the FAS of L and

π0,JX = ad−1
J ad JX is a projector onto the image of the operator ad J . Next, one

can: i) prove that the system of ‘squared solution’ e±α (x, λ), α ∈ ∆1 are complete
set of functions on MJ ; ii) the minimal set of scattering data can be viewed as
expansion coefficients of Q(x, t) over e±α (x, λ); ii) the variations of the minimal
set of scattering data can be viewed as expansion coefficients of ad−1

J δQ(x, t)
over e±α (x, λ). Finally these expansions can be used to derive the fundamental
properties of the whole class of multi-component NLEE, for more details and
proofs see. [11]. In particular this means that the MNLS equations (22) admit
a hierarchy of hamiltonian formulations, see [11]. The simplest of them has as
Hamiltonian

H(0) =
1

2r

∫ ∞

−∞

dx

(〈

∂Q

∂x
,
∂Q

∂x

〉

−
〈[

ad−1
J Q,Q

]

,
[

ad−1
J Q,Q

]〉

)

.(49)
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The relevant symplectic form is given by

Ω(0) =
i

2r

∫ ∞

x=−∞

dx

〈

ad−1
J δQ∧

′

ad −1
J δQ

〉

.(50)

The other members of the hierarchy are generated by the recursion operators
Λ±. The proof of their compatibility is based on the completeness relations
for the ‘squared solutions’ that are eigenfunctions of Λ±. Thus it is natural to
expect that the new 2-component NLS will also possess hierarchies of Hamiltonian
structures. These type of results can be viewed also as more strict proofs, that
he been formally derived by Dickey and Gelfand [8, 9], by Drinfeld and Sokolov
[5] and by Lombardo and Mikhailov [24, 25], see also [17, 18].

Our last remark is that one can apply similar ideas also to the other types
of symmetric spaces. Thus one can find other 2-component MNLS related to the
other symmetric spaces: BD.I, C.I etc. These and other natural problems, such
as deriving their soliton solutions, the construction of their integrals of motion,
derivation of the fundamental properties etc . which will be published elsewhere.
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Appendix

The simple Lie algebras Dr ≡ so(2r) are usually represented by a 2r × 2r anti-
symmetric matrices. In this realization the Cartan subalgebra is not diagonal, so
we will use a realization for which every X ∈ Dr satisfies

(51) SX +XTS = 0, S =

(

0 s

ŝ 0

)

, S2 = 11.

Here the block s is a r × r matrix given by s =
∑r

k=1(−1)k+1Ek,r+1−k, where
Ekj are r × r matrix given by (Ekj)mn = δkmδjn. This definition is convenient,
because with it the Cartan subalgebra is given by diagonal matrices.

The root system ∆ of Dr consists of positive roots ∆+ and negative roots
∆−. If α ∈ ∆+ then −α ∈ ∆−. If ei is an orthonormal basis in R

r then the set
of positive roots ∆+ consists of ei − ej , ei + ej with 1 ≤ i < j ≤ r.

The Cartan-Weyl basis of Dr is given by

(52)

Hi = Eii − E2r+1−i,2r+1−i, 1 ≤i ≤ r,

Eei−ej = Eij − (−1)i+jE2r+1−j,2r+1−i, 1 ≤ i <j ≤ r,

Eei+ej = Ei,2r+1−j + (−1)i+jEj,2r+1−i, 1 ≤ i <j ≤ r, E−α = (Eα)
T ,
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where by Eij we denote a 2r × 2r matrix that has a one at the i − th row and
j − th column and is zero everywhere else.
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