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GLOBAL SOLVABILITY TO DOUBLE DISPERSION

EQUATION WITH BERNOULLI TYPE NONLINEARITY

VIA ONE PARAMETRIC FAMILY OF POTENTIAL WELLS∗

N. Kutev, M. Dimova, N. Kolkovska

One parametric family of potential wells for double dispersion equation
with Bernoulli type nonlinearity is introduced. Sign preserving properties of
the Nehari functionals are obtained. Global existence of the weak solution
to the Cauchy problem is proved for wider class of initial data than the
corresponding ones in the classical potential well method.

1. Introduction

In this paper we study the global solvability of the Cauchy problem to the double
dispersion equation

utt − uxx − uttxx + uxxxx = (f(u))xx for x ∈ R, t ∈ [0, T ), T ≤ ∞,(1)

u(0, x) = u0(x), ut(0, x) = u1(x) for x ∈ R,(2)

where

(3) u0(x) ∈ H1(R), u1(x) ∈ L2(R), (−∆)−1/2u1 ∈ L2(R)

Here (−∆)−su = F−1
(

|ξ|−2sF(u)
)

for s > 0, F(u) and F−1(u) are the Fourier
and the inverse Fourier transform, respectively.
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The nonlinear term f(u) has one of the following forms:

(4)
f(u) = a|u|pu+ b|u|2pu or

f(u) = a|u|p+1 + b|u|2pu, p > 0, a, b = const, b < 0.

Nonlinearity (4) covers the cases of quadratic-cubic nonlinearity f(u) = u2 + u3

and cubic-quintic nonlinearity f(u) = u3 + u5, which appear in the theory of
atomic chains [1] and shape-memory alloys [2].

We call nonlinearity (4) generalized Bernoulli type nonlinearity (or general-
ized Lenard nonlinearity) because the stationary problem corresponding to (1)

ψ′′(x) = ψ(x) + f(ψ(x)), x ∈ R

is known in the literature as generalized Bernoulli equation.
For the time being equation (1) has been intensively investigated for single

nonlinear terms

(5) f(u) = a|u|p, f(u) = a|u|p−1u, p > 1, a = const,

see [3, 4, 5, 6] and references therein. In [7] the author considers the combined
power-type nonlinearities with the following special sign conditions on the coef-
ficients ak:

f(u) =

m
∑

k=1

ak|u|pk−1u, 1 < p1 < · · · < pm and ∃ s̄ : s̄ ∈ [1,m− 1] :

ai ≥ 0 for i ∈ [1, s̄]; ai ≤ 0 for i ∈ [s̄ + 1,m− 1]; am < 0.

(6)

In the papers cited above the global existence or finite time blow up of the
solution to (1),(2) with nonlinearity (5) or (6) is proved by means of the classical
potential well method, suggested by Sattinger and Payne in [8]. An extension of
the classical potential well method is introduced in [9], where the global solvability
is studied for (1),(2) with Bernoulli type nonlinearity (4) for special choice of a
and b. In this case the classical potential well method is not applicable.

Another improvement of the potential well method is suggested in [10] for
nonlocal nonlinear wave equations with a single nonlinear term (5). In [10] the
authors consider one-parametric family of functionals which are analogue of the
Nehari functional I(u). This approach is motivated by the study in [11] of sta-
bility and strong instability of the solitary waves to (1).

The aim of this paper is to introduce one parametric family of potential wells
to (1), (2) with generalized Bernoulli nonlinearity (4), depending on a parameter
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c, 0 ≤ c2 < 1. Global solvability to (1)–(4) is proved by means of the newly
introduced one parametric potential wells. The critical energy constant d(c) is
explicitly calculated for nonlinear term (4) in the case p = 1. Moreover, the
global existence result is obtained for initial data u0, u1 with energy E(u0, u1)
greater than the energy allowed by the classical potential well method.

The paper is organized in the following way. In Section 2 we recall some
preliminary results. Moreover, one parametric family of potential wells, the func-
tionals Jc, Ic and the depth d(c) are defined. Sign invariance properties of the
Nehari functionals Ic and global existence of the solutions to (1)–(4) are proved in
Section 3. Section 4 deals with the comparison of the potential wells for different
values of the parameter c for a single nonlinearity (5).

2. Preliminaries

Throughout the paper we denote L2(R) and Hs(R) by L2 and Hs respectively,
the norm ‖u‖L2 by ‖u‖ and ‖u‖H1 by ‖u‖1. We define the inner product (u, v)

as (u, v) =

∫

R

uv dx.

Theorem 1. Problem (1)–(4) admits a unique local weak solution u(t, x) ∈
C([0, Tm); H1) ∩ C1([0, Tm); L2), where [0, Tm) is the maximal existence time in-

terval. If

lim sup
t↑Tm

(‖u‖1 + ‖ut‖) <∞

then Tm = ∞.

Moreover, the solution u(t, x) satisfies the conservation laws

(7) E(0) = E(t), M(0) =M(t) for every t ∈ [0, Tm),

where the full energy functional E(t) and the momentum M(t) are defined by

E(t) :=E(u(t, ·), ut(t, ·))

=
1

2

(

∥

∥

∥
(−∆)−1/2ut

∥

∥

∥

2
+ ‖ut‖2 + ‖u‖21

)

+

∫

R

∫ u

0
f(s) ds dx,

(8)

M(t) :=M(u(t, ·), ut(t, ·)) =
∫

R

(

u.(−∆)−1/2ut + uxut

)

dx.

The proof of Theorem 1 is similar to the proof in [3, Theorem 2.1 and
Lemma 3.1] and we omit it.
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Let us define the following important functionals Jc(u), Ic(u) and the Nehari
manifold Nc associated with equation (1) for c2 < 1:

Jc(u) =
1

2
(1− c2)‖u‖21 +

∫

R

∫ u

0
f(s) ds dx,

Ic(u) = (1− c2)‖u‖21 +
∫

R

uf(u) dx,

Nc = {u ∈ H1 : Ic(u) = 0, ‖u‖1 6= 0}.
Let us mention that for c = 0 J0(u), I0(u) and N0 coincide with J(u), I(u) and N ,
respectively, defined in the classical potential well method, see [7, 9]. When the
argument of the functionals Ic and Jc is a function u of t and x, i.e. u = u(t, x),
we use the short notations Ic(t) = Ic(u(t, ·)) and Jc(t) = Jc(u(t, ·)).

In the following lemma the properties of functionals Jc(λu) and Ic(λu) as
functions of λ are given.

Lemma 1. Suppose f(u) satisfies (4) and u ∈ H1, ‖u‖1 6= 0. Then:

• lim
λ→0

Jc(λu) = 0, lim
λ→+∞

Jc(λu) = −∞;

• There exists a unique λc ∈ (0,∞) such that
∂

∂λ
Jc(λcu) = 0, where

λpc =







−a
∫

R

|u|p+2 dx−
√

(

a

∫

R

|u|p+2 dx

)2

− 4b(1 − c2)‖u‖1
∫

R

|u|2p+2 dx







×
(

2b

∫

R

|u|2p+2 dx

)

.

• Jc(λu) is increasing for λ ∈ (0, λc), decreasing for λ ∈ (λc,∞) and takes

its maximum at λ = λc;

• Ic(λu) = λ
d

dλ
Jc(λu) and Ic(λu) > 0 for λ ∈ (0, λc), Ic(λu) < 0 for λ ∈

(λc,∞) and Ic(λcu) = 0;

• λc < λ0 for 0 < c2 < 1.

The proof of Lemma 1 is identical with the proof of the corresponding result for
J0(λu), I0(λu) in the classical potential well method and we omit it (for more
details see [7].
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We define the function d(c) as

(9) d(c) = inf
Ic(u)=0

Jc(u),

which has a crucial role in the framework of the potential well method. By means
of Euler-Lagrange equations it follows that

(10) d(c) = Jc(ϕc),

where ϕc is a solution to the equation

(11) ϕ′′
c (ξ)− ϕc(ξ)−

1

1− c2
f(ϕc(ξ)) = 0, c2 < 1.

Simple computations show that d(c) < d(0) for 0 < c2 < 1. Indeed, from (10)
and the identity

(12) E(t) + cM(t) =
1

2

∥

∥

∥
(−∆)−1/2ut + cu

∥

∥

∥

2
+

1

2
‖ut + cux‖2 + Jc(u)

it follows that

d′(c) =
d

dc
(E(ϕc) + cM(ϕc)) =

(

E′(ϕc),
dϕc

dc

)

+ c

(

M ′(ϕc),
dϕc

dc

)

+M(ϕc)

=

(

E′(ϕc) + cM ′(ϕc),
dϕc

dc

)

+M(ϕc) =M(ϕc) = −c‖ϕc‖2 − c‖ϕ′
c‖2.

Thus, d′(c) < 0 for c ∈ (0, 1), d′(c) > 0 for c ∈ (−1, 0) and consequently d(c)
attains its maximum at c = 0, i.e. d(c) < d(0) for 0 < c2 < 1. The explicit
formula for the solution ϕc(ξ) of equation (11) is given in [12]. As in [12], we
obtain the following closed-form expression for d(c) when p = 1:

d(c) =
4

9b2
(1− c2)

×
{

a2 − 3b(1− c2) +

√
2a
(

2a2 − 9b(1− c2)
)

6
√

−b(1− c2)

(

π

2
+ arctan

√
2a

3
√

−b(1− c2)

)}

.

In order to formulate the sign preserving properties of the Nehari functionals
Ic(u) we introduce the following one parametric family of potential wells for the
parameter 0 ≤ c2 < 1:

Wc = {(u, ut) : E(u, ut) + cM(u, ut) < d(c), Ic(u) > 0},(13)

Vc = {(u, ut) : E(u, ut) + cM(u, ut) < d(c), Ic(u) < 0}.
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3. Global existence

The global existence of the solution to problem (1)–(4) is based on the sign
preserving properties of the Nehari functionals Ic(u).

Theorem 2. (Sign invariance of Ic(u)) Suppose u(t, x) is the weak solution

to (1)–(4) in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞ and

c2 < 1.

(i) If (u0, u1) ∈Wc then (u, ut) ∈Wc for every t ∈ [0, Tm);

(ii) If (u0, u1) ∈ Vc then (u, ut) ∈ Vc for every t ∈ [0, Tm).

P r o o f. (i) Suppose by contradiction that (u, ut) ∈ ∂Wc for some t1 ∈
(0, Tm). From the conservation laws (7) it follows that E(t1) + cM(t1) < d(c)
and hence Ic(t1) = 0. From (9) and (12) we get the following impossible chain of
inequalities:

d(c) > E(t1)+cM(t1) =
1

2

∥

∥

∥
(−∆)−1/2ut(t1, ·) + cu(t1, ·)

∥

∥

∥

2

+
1

2
‖ut(t1, ·) + cux(t1, ·)‖2 + Jc(t1) ≥ inf

Ic(u)=0
Jc(u) = d(c).

(14)

Thus (u, ut) ∈Wc for every t ∈ [0, Tm).

(ii) Suppose by contradiction that (u, ut) ∈ ∂Vc for some t2 ∈ (0, Tm). As
in the proof of (i) it follows that Ic(t2) = 0. From (14) we obtain the same
impossible chain of inequalities, i.e. (u, ut) ∈ Vc for every t ∈ [0, Tm). �

Theorem 3. (Global existence) Suppose u(t, x) is the weak solution to (1)–
(4) in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. If c2 < 1 and

(u0, u1) ∈Wc then Tm = ∞, i.e. u(t, x) is defined for every t ≥ 0.

P r o o f. From Theorem 2 it follows that (u, ut) ∈ Wc for every t ∈ [0, Tm).
From the identity

Jc(u) =
Ic(u)

p+ 2
+
p(1− c2)

2(p + 2)
‖u‖21 −

bp

2(p+ 1)(p + 2)

∫

R

|u|2p+2 dx,

and (12), b < 0, Ic(u) > 0, we get the inequalities

p(1− c2)

2(p + 2)
‖u‖21 ≤ Jc(u) ≤ E(t) + cM(t) < d(c).
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Hence

‖u‖21 ≤ 2(p + 2)

p(1− c2)
d(c) <∞ for every t ∈ [0, Tm).

In addition, from the conservation law (8) and the embedding theorem H1(R) →֒
Lp(R), p > 2, we obtain ‖ut‖2 ≤ const <∞ for every t ∈ [0, Tm). From the local
existence result in Theorem 1 it follows that Tm = ∞, i.e. u(t, x) is defined for
every t ≥ 0. �

The following corollary generalizes the classical potential well method extend-
ing the set of initial data for which problem (1)–(4) has a global solution.

Corollary 1. Suppose u(t, x) is the weak solution to (1)–(4) in the maximal

existence time interval [0, Tm), 0 < Tm ≤ ∞. If (u0, u1) ∈ W∗ =
⋃

c2<1

Wc then

Tm = ∞, i.e. u(t, x) is defined for every t ≥ 0.

4. Comparison of the potential wells Wc

In this section we compare the global existence result to (1)–(4), obtained by the
classical potential well method (c = 0 or M(u0, u1) = 0) with the corresponding
result for 0 < c2 < 1 andM(u0, u1) 6= 0 in Theorem 3. For simplicity we consider
only the case of a single nonlinearity, i.e.

(15) f(u) = b|u|p−1u, b = const < 0, p > 1.

For nonlinearity (15) we get the following expression for d(c), see [13],

(16) d(c) = d(0)(1 − c2)
p+1
p−1

Without loss of generality we suppose thatM(u0, u1) < 0 and consider the poten-
tial wells Wc for c ∈ [0, 1). The case M(u0, u1) > 0 can be analyzed analogously
for c ∈ (−1, 0].

In the classical potential well method the solution to (1), (2), (15) is glob-
ally defined if I(u0) = I0(u0) > 0 and the initial energy E(u0, u1) satisfies the
condition

E(u0, u1) < d = d(0).

Now, from (13) we define the new critical energy constant

(17) D(c) = d(c)− cM(u0, u1) c 6= 0.
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c

d(0)

D(c)

c
mc

0 10

Case 1

Case 2

Figure 1: Graph of D(c), defined in (17); cm =

√

p− 1

p+ 3
, c0 ∈ (0, cm)

From Theorem 3 the solution to (1), (2), (15) exists for every t ≥ 0 if Ic(u0) > 0
and

E(u0, u1) < D(c).

Below we prove that D(c) > d(0) for c ∈ [0, c0), c0 ≤ 1. This means that the
result in Theorem 3 for c ∈ (0, c0) is true for initial energy E(u0, u1) greater than
the energy allowed for c = 0.

Simple computations give us

(18) D′(c) = −2(p + 1)

p− 1
d(0)c(1 − c2)

2
p−1 −M(u0, u1),

(19) D′′(c) = d′′(c) =
2(p + 1)(p + 3)

(p− 1)2
d(0)(1 − c2)

3−p

p−1

(

c2 − p− 1

p+ 3

)

.

From (18) and (19) it follows that

D′(0) > 0, D′′(cm) = 0 for cm =

√

p− 1

p+ 3
,

D′′(c) < 0 for 0 < c < cm, D′′(c) > 0 for cm < c < 1.

The function D′(c) has minimum at the point cm =

√

p− 1

p+ 3
and

D′(cm) = −
(

4

p+ 3

)
p+3

2(p−1) p+ 1√
p− 1

d(0) −M(u0, u1).
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Case 1: If M(u0, u1) ≤ −
(

4

p+ 3

)
p+3

2(p−1) p+ 1√
p− 1

d(0), i.e. D′(cm) ≥ 0,

then D(c) is an increasing function for c ∈ [0, 1) and consequently D(c) > d(0)
for every c ∈ (0, 1).

Case 2: If M(u0, u1) > −
(

4

p+ 3

)
p+3

2(p−1) p+ 1√
p− 1

d(0), i.e. D′(cm) < 0,

then D(c) is an increasing function for c ∈ [0, c0), where c0 ∈ (0, cm) and D′(c0) =
0, see Fig 1. Hence D(c) > d(0) for every c ∈ (0, c0).

Thus for c > 0 Theorem 3 holds for initial data with energy larger than
the initial energy in the case c = 0. In this way the one parametric potential
well method, introduced in the present paper, essentially extends the classical
potential well method.
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