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SCATTERING FOR SYSTEMS OF N WEAKLY COUPLED

NLS EQUATIONS ON R
D ×M2 IN THE ENERGY SPACE

Mirko Tarulli, George Venkov

We study scattering properties in the energy space of the solution to the
following system of N nonlinear Schrödinger equations (NLS), with N ≥ 2,
posed on product spaces R

n × M2, for d ≥ 1 and M2 any 2-dimensional
compact Riemaniann manifold:















i∂tuµ + (∆x +∆y)uµ +

N
∑

µ,ν=1

Gµν(uµ, uν)uµ = 0, µ = 1, . . . , N,

(uµ(0, ·, ·))
N
µ=1

= (uµ,0)
N
µ=1

∈ H1(Rd ×M2)N .

Here, for all µ, ν = 1, . . . , N , uµ = uµ(t, x, y) : R × R
d × M2 → C,

(uµ)
N
µ=1

= (u1, . . . , uN), moreover we require that each function Gµν =
Gµν(·, ·) : C× C → C is measurable and such that

|Gµν(x, x)| ≤ βµν |x|
4

d ,

for any x ∈ C and with βµν ≥ 0 being coupling parameters, for any µ, ν =
1, . . . , N .

1. Introduction

Consider the Cauchy problem associated the system of N nonlinear Schrödinger
equations (NLS) on product spaces Rd×Mk, d ≥ 1 andMk is a compact manifold
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and k ≥ 1:

(1)















i∂tuµ +∆x,yuµ +

N
∑

µ,ν=1

Gµν(uµ, uν)uµ = 0,

(uµ(0, ·, ·))
N
µ=1 = (uµ,0)

N
µ=1 ∈ H

0,σ(Rd ×Mk)N ,

with N ≥ 2 and σ >
k

2
. Here, for µ = 1, · · · , N , uµ = uµ(t, x, y) : R×R

d×Mk →

C and (uµ)
N
µ=1 = (u1, . . . , uN ). Moreover

∆x,y =

n
∑

l=1

∂2
xl
+∆y,

with ∆y the Laplace-Beltrami operator associated to the manifold Mk, defined
in local coordinates by

1
√

|g(y)|
∂yi

√

|g(y)|ghi(y)∂yi ,

where ghi(y) is the metric tensor, |g(y)| = det(ghi(y)) and ghi = (ghi(y))
−1 . We

require that, for any µ, ν = 1, . . . , N each bilinear function Gµν = Gµν(·, ·) :
C×C → C is measurable and there exist 0 ≤ θµν ≤ 4/d such that the inequality

|Gµν(x, y)| ≤ βµν |x|
θµν |y|

4
d
−θµν ,(2)

is fulfilled for (x, y) ∈ C
2 and with the coupling parameters such that βµν ≥ 0.

|Gµν(x1, y1)x1 −Gµν(x2, y2)x2|(3)

≤ βµν

(

|x|θµν |y|
4
d
−θµν + |x|θµν |y|

4
d
−θµν

)

|x1 − x2|,

for (x1, y1), (x2, y2) ∈ C
2 and βµν ≥ 0. For any σ ∈ R, we denote the non-isotropic

fractional Sobolev spaces by

(4) H
0,σ(Rd ×Mk) = H

0,σ
x,y = (1−∆y)

−σ
2L2

x,y,

where L2
x,y = L2(Rd ×Mk), indicating by f ∈ Lq(Rd ×Mk), for 1 ≤ q < ∞, if

‖f‖q
Lq(Rd×Mk)

=

∫

Rd×Mk

|f(x, y)|q dxdvg < +∞,
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with dvg the volume element ofMk which reads in local coordinates as
√

|g(y)|dy.
Furthermore the h-th component of the gradient operator ∇y is given in local
coordinates by ghi(y)∂yi . We also denote by

H1(Rd ×Mk) = H1
x,y = (1−∆x −∆y)

− 1
2L2(Rd ×Mk).

There is a consistent literature regarding the global well-posedness theory as well
as the bound state theory for the problem (1), on the other hand the systems
of Schrödinger equations have an important role in many models of mathemat-
ical physics: it gives a description of the interactions of M–wave packets, the
nonlinear waveguides, the optical pulse propagation in birefringent fibers, the
propagation of polarized laser beam in Kerr-like photorefractive media and in
the Bose-Einstein condensates theory, just to name a few. We remand to [2], [3],
[12] and [10] in the case N = 2 and to [9] and [11] in the general case N ≥ 2 for
a general overview on references both on mathematical and on physical setting
and applications.

Motivated by this, it is possible to investigate some relevant questions as:

• Local and global existence as well as the persistence of regularity for the
map data-solution (uµ,0)

N
µ=1 → (uµ(t, ·, ·))

N
µ=1, assuming the initial data in

the space H1(Rd ×Mk)N (or eventually in slightly different non-isotropic
Sobolev spaces).

• The long-time behavior of the solutions to (1) in the space H1(Rd×Mk)N .

The study of the Schrödinger equation posed on product spaces was recently
initiated by considering general problems involving global well-posedness (see for
example [5] and references therin), long time asymptotics (see [15], [5], [6] and ref-
erences therein) and ground states (see for example [13] and references therein).
In the above papers it arises, with some few exceptions, not only that to earn
informations on well-posedness and scattering for the NLS it is required an appro-
priate geometry for the compact manifolds, but also that the asymptotic behavior
of the solutions is poorly understood when the nonlinearity is pure power and

the nonlinearity parameter is a fractional number in the interval

[

4

d
,

4

d+ k − 2

]

.

Moreover, as well as we know, it seems that there is a lack of literature in the
case of N -systems of NLS having interacting nonlinearities such as we considered
in (1).
According to these obsevations, our main contribution is the transposition of
the well-posedness and scattering analysis to the framework of (1) with coupled
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nonlinearities behaving like pure fractional power, emphasizing that the only
assumption we impose to the manifolds Mk is the compactness. In fact the
topological structure of the manifold is not relevant in our study and the small
data theory does not need any specific property on Mk. The main tools to
prove scattering are a particular version of Strichartz estimates. We will use
the informations and numerology available for the flat part to deduce Strichartz
estimates on the whole product space.

We can state now main contributions of this paper. The first results deals with
the mass NLS.

Theorem 1. For every d ≥ 1, k ≥ 2 and
k

2
< σ <

4

d
+1 there exists a positive

number ε = ε(σ) such that the problem (1) enjoys a unique global solution

(uµ(t, x, y))
N
µ=1 ∈ Lℓ(R;Lℓ

x(R
d;Hσ

y (M
k))N ,(5)

where ℓ =
2d+ 4

d
, for any initial data (uµ,0)

N
µ=1 ∈ H

0,σ(Rd ×Mk)N such that

sup
{1≤µ≤N}

‖uµ,0‖H 0,σ(Rd×Mk) < ε. In addition (uµ(t, x, y))
N
µ=1 ∈ L∞(R;H 0,σ(Rd×

Mk))N and there exist (ϕ±,µ)
N
µ=1 ∈ H

0,σ(Rd ×Mk)N so that

(6) lim
t→±∞

‖(uµ(t, x, y))
N
µ=1 − e−it∆x,y(ϕ±,µ)

N
µ=1‖H 0,σ(Rd×Mk)N = 0.

Remark 1. In the above Theorem 1 are presented peculiar properties of the
solutions to (1). Specifically if we select in the Cauchy problem (1), for suitable

ǫ > 0, initial data (uµ,0)
N
µ=1 ∈ (H

0, k
2
+ǫ

x,y )N with size ε, one gets scattering in non-
isotropic Sobolev spaces characterized as in (4) with regularity strictly connected
with the spatial dimensions of the manifold Mk and the Euclidean part Rd. Such
an asymptotic behavior of the solutions (uµ(t, x, y))

N
µ=1 is completely independent

from the geometry of Mk, which is required only to be a compact Riemannian
manifold. Moreover, in the case k = 2, we observe that if we take a sufficiently
small ǫ > 0, then the space H

0,1+ǫ
x,y is slightly stronger than H1

x,y only w.r.t. the
y-variable.

Then we have the second result in the special case k = 2, that is the case of
mass-energy system of NLS. More precisely, assuming now that, for any µ, ν =
1, . . . , N each function Gµν = Gµν(·, ·) : C× C → R enjoys

Gµν(x, y) = βµν |x|
θµν |y|

4
d
−θµν ,(7)
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with 0 ≤ θµν ≤ 4/d, for (x, y) ∈ R
2 and βµν ∈ R, one achieves:

Theorem 2. For every d ≥ 1 and 1 < σ < 1 +
4

d
there exists a positive

number ε = ε(σ) such that the problem (1) with Gµν as in (7) enjoys a unique
global solution

(uµ(t, x, y))
N
µ=1 ∈ L∞(R;H1(Rd ×M2))N ∩ Lℓ(R;Lℓ

x(R
d;Hσ

y (M
2))N ,(8)

where ℓ =
2d+ 4

d
, in the following cases:

1. if βµν < 0 (i.e. (1) is defocusing), for initial data (uµ,0)
N
µ=1 ∈ (H1(Rd ×

M2) ∩ H
0,σ(Rd ×M2))N such that sup

{1≤µ≤N}
‖uµ,0‖H 0,σ(Rd×M2) < ε;

2. if βµν > 0, for initial data (uµ,0)
N
µ=1 ∈ (H1(Rd ×M2)∩H

0,σ(Rd ×M2))N

such that such that sup
{1≤µ≤N}

‖uµ,0‖H1(Rd×M2)∩H 0,σ(Rd×M2) < ε (i.e. (1) is

focusing and the initial data are small).

In addition there exist (ϕ±,µ)
N
µ=1 ∈∈ H1(Rd ×M2)N so that

lim
t→±∞

‖(uµ(t, x, y))
N
µ=1 − e−it∆x,y(ϕ±,µ)

N
µ=1‖H1(Rd×M2)N = 0.(9)

Remark 2. As we noticed in Theorem 2, by pickung up k = 2, the N -
system of NLS in (1) becomes both mass and energy critical. In such a fashion
the technicalities developed along the proof of the Theorem 1 can be improved
guaranteeing also well-posedness and scattering in the energy space (other than
H

0,σ(Rd×M2)N ) if we consider additionally that initial data areH1(Rd×M2)N -
bounded. This phenomenon is completely new, because we neither require par-
ticular geometries for the manifold M2, nor make an use of multiplier techniques
such as Morawetz identities and inequalities (as used for example in the work
[16]).

2. Preliminaries

We introduce the following further notations: for any Banach space X we define,
for q ≥ 1,

‖f‖Lq
tX

=

(
∫

R

‖f(x)‖qX dt

)1/q

,
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(for its version local in time we adopt the symbol Lq
(t1,t2)

X, with preassigned

t1, t2 ∈ R). We denote, from now on, by Hσ
y = W σ,2

y with

(10) Lr
xW

σ,l
y = (1−∆y)

−σ
2Lr

xL
l
y,

for σ ∈ R, where Lr
xL

l
y is the space Lr(Rd;Ll(Mk)) for l, r ≥ 1.

We need to recall the following useful facts concerning Strichartz inequalities:

Definition 1. An exponent pair (ℓ, p) is Schrödinger-admissible if 2 ≤ ℓ, p ≤
∞, (ℓ, p, d) 6= (2,∞, 2), and

2

ℓ
+

d

p
=

d

2
.(11)

Then we earn, for the free systems of N Schrödinger equations, that is (1)
with general initial data (fκ)

N
κ=1 and forcing terms (Fκ)

N
κ=1 the following:

Proposition 1. (Strichartz estimates) Let be d ≥ 1 and indicate by Di the
operators D1 = ∇x and D2 = ∇y, then we have for any κ = 1, . . . , N and γ = 0, 1
the following estimates

‖Dγ
i e

it∆x,yfκ‖Lℓ
tL

p
xHσ

y
+

∥

∥

∥

∥

Dγ
i

∫ t

0
e−i(t−τ)∆Fκ(τ, ·)dτ

∥

∥

∥

∥

Lℓ
tL

p
xHσ

y

≤ C‖Dγ
i fκ‖L2

xH
σ
y
+ ‖Dγ

i Fκ‖Lℓ̃′
t Lp̃′

x Hσ
y

,(12)

if for the pairs (ℓ, p) and (ℓ̃, p̃) the condition (11) is satisfied for ℓ, ℓ̃ ≥ 2, if d ≥ 3,
ℓ, ℓ̃ > 2 if d = 2, and ℓ, ℓ̃ ≥ 4 if d = 1.

Moreover we have also the following estimates satisfied

‖Dγ
i e

it∆x,yfκ‖L∞

t L2
xH

σ
y
+

∥

∥

∥

∥

Dγ
i

∫ t

0
e−i(t−τ)∆Fκ(s, ·)dτ

∥

∥

∥

∥

L∞

t L2
xH

σ
y

(13)

≤ C‖Dγ
i fκ‖L2

xH
σ
y
+ C ‖Dγ

i Fκ‖Lℓ̃′
t Lp̃′

x Hσ
y

,

with (ℓ, p) and γ as above.
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3. Proof of Theorems 1 and 2

In this section we give the proof of the two our main results. In the former
we show that to any choice of n ≥ 1, k ≥ 2 and small initial data in H

0,σ
x,y it

is possible to prove that (uµ(t, x, y))
N
µ=1 ∈ (Lℓ

tL
p
xH

σ
y )

N ∩ (L∞
t H

0,σ
x,y )N for any

Schrödinger admissible pair (ℓ, p) by using only the modified Strichartz estimates
presented in the previous section. Moreover, we get scattering in H

0,σ
x,y . In the

latter we exhibit in which way the previous analysis leads to the well-posedness
in the spaces L∞(R;H1

x,y)
N in the case k = 2 for the solutions to the Cauchy

problem (1). Finally we get, in this framework, scattering in H1
x,y.

P r o o f o f T h e o r em 1. Let be defined the integral operator associated
to the Cauchy problem (1) ,

T (uµ)
N
µ=1 = eit∆x,y(uµ,0)

N
µ=1(14)

+I
N
∑

µ,ν=1

∫ t

0
ei(t−τ)∆x,yGµν(uµ(τ), uν(τ))uµ(τ)dτ,

with I the N × N identity matrix. One needs to show that for ℓ = p =
4

d
+ 2,

any µ = 1, . . . , N ,

∀uµ,0 ∈ H
0,σ
x,y s.t. ‖uµ,0‖H

0,σ
x,y

< ε, ∃! (uµ(t, x, y))
N
µ=1 ∈ (Lℓ

tL
p
xH

σ
y )

N ,

satisfying the property

(15) T (uµ(t))
N
µ=1 = (uµ(t))

N
µ=1.

As well as we require

(uµ(t, x, y))
N
µ=1 ∈ (L∞(R;H 0,σ

x,y ))N ∩ (Lℓ
tL

p
xH

σ
y )

N .

For simplicity, we split the proof in four further different steps

Step One:

For any σ >
k

2
, ∃ ε = ε(σ) > 0 and an R = R(σ) > 0, such that

(16) T B
(Lℓ

tL
p
xHσ

y )
N (0, R)) ⊂ B

(Lℓ
tL

p
xHσ

y )
N (0, R),

for any uµ,0 ∈ H
0,σ
x,y so that ‖uµ,0‖H

0,σ
x,y

< ε.
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It is sufficient to deal directly with the case (t1, t2) = R, specifying a different
domain for the t-variable when it is required. We need to show (16), to this end
by (2) we start first by recalling the following result (we remand to [15] for more
details).

Proposition 2. Assume Mk a compact manifold with dimension k ≥ 1.
Then for any f ∈ Hσ(Mk) ∩ L∞(Mk) let G(f) = f |f |µ be a real function with
µ > 0. Then one has

(17) ‖f |f |µ‖Hσ(Mk) ≤ C ‖f‖µ+1
Hσ(Mk)

,

with C > 0, provided that 0 < σ < 1 + µ.

Thus, by applying for fixed µ the elementary inequality (see for example [4])

|uν |
4
d
−θνµ |uµ|

θνµ ≤ C
(

|uµ|
4d + |uν |

4d
)

,(18)

in combination with the above Sobolev inequality (17), which reads in our setting
as

‖|uν |
4
d
+1(t, x, ·)‖Hσ

y
≤ ‖uν(t, x, ·)‖

4
d
+1

Hσ
y
,(19)

satisfied if
k

2
< σ < 1 +

4

d
, we are able to estimate the nonlinear term in the

Lℓ
tL

p
xH

σ
y -norm by using the inhomogeneous Strichartz estimates in (12) with γ =

0, that is

‖|uν |
4
d
+1(t, x, ·)‖

Lℓ̃′
t Lp̃′

x Hσ
y

≤ ‖‖uν(t, x, ·)‖
4
d
+1

Hσ
y
‖
Lℓ̃′
t Lp̃′

x
.(20)

Let us select

1

ℓ̃′
=

4 + d

dℓ
=

4 + d

4 + 2d
,

1

p̃′
=

(4 + d)

dp
=

4 + d

4 + 2d
,(21)

then the r.h.s. of inequality (20) can be controlled by

‖‖uν(t, ·, ·)‖
4
d
+1

Lp
xHσ

y

‖
Lℓ̃′
t

≤ ‖uν‖
4
d
+1

L
( 4
d
+1)ℓ̃′

t Lp
xHσ

y

≤ ‖uν‖
4
d
+1

Lℓ
tL

p
xHσ

y

.(22)

Then, summing twice over µ, we arrive at the following

‖T (uµ)
N
µ=1‖(Lℓ

tL
p
xHσ

y )
N ≤ C‖(uµ,0)

N
µ=1‖(H 0,σ

x,y )N + C‖(uµ)
N
µ=1‖

4
d
+1

(Lℓ
tL

p
xHσ

y )
N
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and by a standard bootstrap argument (see for example Theorem 6.2.1 in [1]) the
previous estimate guarantees the existence of an ε > 0 and R(ε) > 0 such that
lim
ε→0

R(ε) = 0, provided that ‖(uµ,0)
N
µ=1‖H

0,σ
x,y

< ε, for any µ = 1, . . . , N . Thus we

achieve the proof.

Step Two:

T is a contraction on B
(Lℓ

tL
p
xHσ

y )
N (0, R), equipped with the norm ‖.‖

(Lℓ
tL

p
xL2

y)
N .

Given (vµ,1)
N
µ=1, (vµ,2)

N
µ=1 ∈ B

(Lℓ
tL

p
xHσ

y )
N we get, by (3), (18) and the inhomoge-

neous estimate in (12), the chain of bounds

‖T (vµ,1)
N
µ=1 − T (vµ,2)

N
µ=1‖(Lℓ

tL
p
xL2

y)
N(23)

≤ C

∥

∥

∥

∥

∥

‖(vµ,1)
N
µ=1 − (vµ,2)

N
µ=1‖(L2

y)
N sup

i=1,2

{

∥

∥(vµ,i)
N
µ=1

∥

∥

4
d

(L∞

y )N

}

∥

∥

∥

∥

∥

(Lℓ̃′
t Lp̃′

x )N

≤ C

∥

∥

∥

∥

∥

‖(vµ,1)
N
µ=1 − (vµ,2)

N
µ=1‖(Lp

xL2
y)

N sup
i=1,2

{

∥

∥(vµ,i)
N
µ=1

∥

∥

4
d

(Lp
xHσ

y )
N

}

∥

∥

∥

∥

∥

(Lℓ̃′
t )N

,

where in the last inequality we used the second of the identities in (21),Minkowski
and Hölder inequalities and the Sobolev embedding Hσ

y ⊂ L∞
y . By a further

application of the Hölder inequality the term in the third line of the previous
(23) can be controlled as follows

C

∥

∥

∥

∥

∥

‖(vµ,1)
N
µ=1 − (vµ,2)

N
µ=1‖Lp

xL2
y
sup
i=1,2

{

∥

∥(vµ,i)
N
µ=1

∥

∥

4
d

(Lp
xHσ

y )
N

}

∥

∥

∥

∥

∥

(Lℓ̃′
t )N

≤ C‖(vµ,1)
N
µ=1 − (vµ,2)

N
µ=1‖(Lℓ

tL
p
xL2

y)
N sup

i=1,2

{

∥

∥(vµ,i)
N
µ=1

∥

∥

4
d

(Lℓ
tL

p
xHσ

y )
N

}

.(24)

The last inequality of the above (24) is a consequence now of the first of the
identities in (21). Thus, by combining (23) and (24) and what we got in the
previous step, we arrive at

‖T (vµ,1)
N
µ=1 − T (vµ,2)

N
µ=1‖(Lℓ

tL
p
xL2

y)
N(25)

≤ C(R(ε))µ‖(vµ,1)
N
µ=1 − (vµ,2)

N
µ=1‖(Lℓ

tL
p
xL2

y)
N .

Then T is a contraction provided that ε > 0 is suitable small.
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Step Three:

The solution exists and it is unique in (Lℓ
tL

p
xH

σ
y )

N .

We apply the contraction principle to the map T defined on the complete metric
space B

(Lℓ
tL

p
xHσ

y )
N (0, R) and equipped with the topology induced by ‖.‖

(Lℓ
tL

p
xL2

y)
N .

Step Four:
Regularity of the solution: proof of (uµ(t, x, y))

N
µ=1 ∈ (L∞(R;H 0,σ

x,y ))N .

It is enough to argue as in the previous steps just exploiting estimates (13) instead
of (12) in the proof of Step One. This observation enhances to

‖T (uµ)
N
µ=1‖L∞

t H
0,σ
x,y

≤ C‖(uµ,0)
N
µ=1‖(H 0,σ

x,y )N + C‖(uµ)
N
µ=1‖

4
d
+1

(Lℓ
tL

p
xHσ

y )
N
.(26)

The above inequality with ‖uµ,0‖H
0,σ
x,y

< ε guarantees the fact that

(uµ(t, x, y))
N
µ=1 ∈ (L∞(R;H 0,σ

x,y ))N . The proof of the part of Theorem 1 concern-
ing the global well-posedness is obtained. The remaining asymptotic complete-
ness property (6) follows easily by standard arguments (we remand for instance
to [1] and [14]). �

Remark 3. We underline here that the unique global solution (uµ(t, x, y))
N
µ=1

∈ L
4
d
+2

t (R;L
4
d
+2

x (Rd ×Hσ
y (M

k))N earned in Theorems 1 fulfills also

(uµ(t, x, y))
N
µ=1 ∈ Lℓ

t(R;L
p
x(R

d;Hσ
y (M

k))N

for the full set of Strichartz exponents (ℓ, p) as in Definition 1 because of

‖(uµ)
N
µ=1‖(Lℓ

tL
p
xHσ

y )
N ≤ Cε < 1.(27)

P r o o f o f Th e o r em 2. From the proof of the Theorem (1) we know that

there exists a unique solution (uµ)
N
µ=1 ∈ (Lℓ

tL
p
xH

σ
y )

N to the problem (1), once

k >
σ

2
and sup

1≤µ≤N
‖uµ,0‖H

0,σ
x,y

< ε. Consider now the auxiliary norms

‖(uµ)
N
µ=1‖(X (1)

t,x,y(ℓ,p))
N =

∑

k=0,1

∥

∥

∥
∇k

x(uµ(t, x, y))
N
µ=1

∥

∥

∥

(Lℓ
tL

p
xL2

y)
N
,(28)

‖(uµ)
N
µ=1‖(X (2)

t,x,y(ℓ,p))
N =

∑

k=0,1

∥

∥

∥
∇k

y(uµ(t, x, y))
N
µ=1

∥

∥

∥

(Lℓ
tL

p
xL2

y)
N
,(29)
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where (ℓ, p) are Schrödinger-admissible pairs. We can start by proving the fol-
lowing.

Step One:
Let uµ(t, x, y))

N
µ=1 be the unique solution to (1) with initial data (uµ,0)

N
µ=1 ∈

(H1
x,y ∩ H

0,σ
x,y )N such that ‖uµ,0‖H

0,σ
x,y

< ε, for any µ = 1, . . . , N . Then

‖(uµ(t, x, y))
N
µ=1‖(X (1)

t,x,y(ℓ,p))
N + ‖(uµ(t, x, y))

N
µ=1‖(X (2)

t,x,y(ℓ,p))
N < ∞,(30)

with ℓ = p =
4

d
+ 2.

The classical Strichartz estimates (12) in connection with the bound (18) and the
Hölder inequality, yield for any i = 1, 2 and (ℓ̃′, p̃′) as in (21),

‖T (uµ)
N
µ=1‖(X (i)

t,x,y(ℓ,p))
N(31)

≤ ‖Dk
i (uµ,0)

N
µ=1‖(L2

x,y)
N + C

N
∑

µ,ν=1

‖Dk
i (uµ|uµ|

4
d
−θµν |uν |

θµν )‖
(Lℓ̃′

t Lp̃′
x L2

y)
N

≤ C‖Dk
i (uµ,0)

N
µ=1‖(L2

x,y)
N + C‖‖Dk

i (uµ)
N
µ=1)‖(L2

y)
N ‖(uµ)

N
µ=1‖

µ
(Hσ

y )N

∥

∥

(Lℓ̃′
t Lp̃′

x )N

≤ C‖Dk
i (uµ,0)

N
µ=1‖(L2

x,y)
N + C‖Dk

i (uµ)
N
µ=1‖(Lℓ

tL
p
xL2

y)
N ‖(uµ)

N
µ=1‖

4
d

(Lℓ
tL

p
xHσ

y )
N
.

In that way we must have

‖T (uµ)
N
µ=1‖(X (i)

t,x,y(ℓ,p))
N

≤ C‖(uµ,0)
N
µ=1‖(H1

x,y)
N + C‖(uµ)

N
µ=1‖(X (i)

t,x,y(ℓ,p))
N ‖(uµ)

N
µ=1‖

4
d

(Lℓ
tL

p
xHσ

y )
N

≤ C‖(uµ,0)
N
µ=1‖(H1

x,y)
N + C(R(ε))

4
d ‖(uµ)

N
µ=1‖(X (i)

t,x,y(ℓ,p))
N ,

(32)

where in the third line we have used the bound (27). The proof of (30) is thus
complete.

Step Two:
Regularity of the solution: proof of (uµ(t, x, y))

N
µ=1 ∈ L∞(R;H1

x,y)
N .

It is enough to argue as in the previous step just using estimates (13) instead
of (12) in the proof of (31). This fact gives

‖T (uµ)
N
µ=1‖(L∞

(t1,t2)
L2
x,y)

N +
∑

i=1,2

‖DiT (uµ)
N
µ=1‖(L∞

(t1,t2)
L2
x,y)

N(33)
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≤ C‖(uµ,0)
N
µ=1‖(H1

x,y)
N

+C
∑

i=1,2

‖(uµ)
N
µ=1‖(X (i)

(t1,t2),x,y
(ℓ,p))N

‖(uµ)
N
µ=1‖

4
d

(Lℓ
(t1,t2)

Lp
xHσ

y )
N
,

An use of (27) and (30) provided that ‖uµ,0‖H
0,σ
x,y

< ε allows to take (t1, t2) = R

and it leads to (uµ(t, x, y))
N
µ=1 ∈ L∞(R;H1

x,y)
N .

As a direct consequence we have (8) in the case of (2). In the focusing case we
are forced to necessitate in (2) also that ‖uµ,0‖H1

x,y
< ε, for any µ = 1, . . . , N , in

order to avoid some blow-up phenomena, as noticed in [8].

It remains to show the asymptotic completeness property (9). By the integral
equation associated with (1) it is sufficient to prove that, for any µ, ν = 1, . . . , N

(34) lim
t1,t2→∞

‖

∫ t2

t1

e−is∆x,yGµν(uµ, uν)uµds‖H1
x,y

= 0.

The dual estimate to the homogeneous inequality in (12) gives

(35) ‖

∫ t2

t1

e−is∆x,yF (s)ds‖L2
x,y

≤ C‖F‖
Lℓ̃′

(t1,t2)
Lp̃′
x L2

y

,

where (ℓ̃′, p̃′) are as in (21). Hence (34) follows if one earns

lim
t1,t2→∞

(

‖Gµν(uµ, uν)uµ‖Lℓ̃′

(t1,t2)
Lp̃′
x L2

y

+ ‖∇yGµν(uµ, uν)uµ‖Lℓ̃′

(t1,t2)
Lp̃′
x L2

y

)

+ lim
t1,t2→∞

‖∇xGµν(uµ, uν)uµ‖Lℓ̃′

(t1,t2)
Lp̃′
x L2

y

= 0,(36)

which is given by the argument used along the proof of the previous steps in
conjunction with (30). �
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