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STUDIA MATHEMATICA

FOREST FIRE MODEL ON CONFIGURATION GRAPHS

WITH RANDOM NODE DEGREE DISTRIBUTION

Marina M. Leri

We consider two types of configuration graphs with node degrees being
i.i.d. random variables following either the power-law or the Poisson dis-
tribution. The distribution parameter is a random variable following the
uniform distribution on a predefined interval.

We consider a destructive process which can be interpreted as a fire
spreading over the graph links, and could be used for modeling forest fires
as well as banking system defaults. This process is often referred to as a
“forest fire model”. The probability of fire transfer over a graph link ei-
ther possesses a predefined value and is fixed for all the graph links or is a
random variable following the standard uniform distribution. By computer
simulation we study the robustness of such graphs from a viewpoint of node
survival in the two cases of starting a fire propagation process: the “random
ignition” and the “targeted lightning-up”. The results on finding the opti-
mal interval of the node degree distribution parameter that would ensure
maximum survival of trees in case of a fire are presented. A comparative
analysis of various graph models in terms of their robustness to various fire
propagation processes was performed.

1. Power-law random graph

We consider random graphs the number of nodes in which is equal to N . Node
degrees ξ1, ξ2, . . . , ξN are independent identically distributed random variables
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drawn from either one of the following distributions. Power-law distribution:

(1.1) P{ξ ≥ k} = k−τ , k = 1, 2, . . . , τ > 1,

or the Poisson distribution with a single shift:

(1.2) P{ξ = k + 1} =
λk

k!
e−λ, k = 0, 1, 2, . . . , λ > 0.

Node degrees form stubs, numbered in an arbitrary order. Then all stubs
are joined one to another equiprobably to form links. If the sum of node degrees
appears to be odd, one stub is added to a randomly chosen node to form a lacking
connection. In our work we consider power-law graphs with the parameter τ

of distribution (1.1) following the uniform distribution on a predefined interval
[a, b] and Poisson graphs with the parameter λ of distribution (1.2) uniformly
distributed on a predefined interval [c, d]. The studies of configuration graphs
have been attracting consistent interest because of the wide use of these models
for representing massive data networks (see e.g. [3, 4, 6]).

2. Forest fire model on configuration graphs

An interesting trend in the studies of random graphs is the aspect connected
with the transmission of various destructive influences through graph links. In
particular, we consider the process which can be interpreted as spreading of a
fire over the graph links [2], and could have some other applications, for example,
modeling of banking system defaults [1].

To study a forest fire model we view graph nodes as trees growing in a certain
area of a real forest. Since we consider this area to be limited, the number of trees
in it also has to be limited. For this purpose we proposed to use auxiliary square
lattice graphs sized 100× 100 (see [5]). If a real fire can be transferred from one
tree to another, corresponding graph nodes are connected by a link. Thus, in
case of full packing every inner auxiliary graph node has 8 adjacent neighbours.
Having considered different link allocations on our lattice graphs for about 14
values of an inner node degree m (see [5]) and knowing that m = ζ(τ) (where
ζ(x) is the Riemann zeta function), we derive a regression relation between graph
size N ≤ 10000 and the parameter τ of node degree distribution (1.1):

(2.1) N = [9256τ−1.05], R2 = 0.97.

The expectation of the distribution (1.2) is equal to λ + 1, therefore λ = m− 1
and using our auxiliary square lattice graphs we can derive the relation between
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N and the parameter λ by analogy with (2.1):

(2.2) N = [907.5λ + 2509.4], R2 = 0.98.

Figures 1 and 2 show regression relations between the number of graph nodes N
and the parameters of node degree distributions τ for power-law graphs and λ

for Poisson graphs.
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Figure 1: Regression relation between N and τ
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Figure 2: Regression relation between N and λ

These relations (2.1) and (2.2), where τ = τ =
a+ b

2
and λ = λ =

c+ d

2
,

confine the number of nodes N in corresponding configuration graphs. Thus, we
study a fire propagation process on configuration graphs with N nodes, where
N is calculated from (2.1) for the power-law distribution and from (2.2) for the
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Poisson distribution with the parameters τ and λ uniformly distributed on various
intervals [a, b] and [c, d], correspondingly. The probability of fire transition p over
the graph links is either a predefined value and is fixed for all the graph links or is
a random variable following the standard uniform distribution. The purpose is to
find for each graph topology the optimal interval for the node degree distribution
parameter (τ or λ) that would ensure maximum survival of graph nodes in case
of a fire.

We consider the three intervals [a, b]: (1, 2), [2, 3], (1, 3] with the N values
obtained from (2.1) being equal to 6046, 3536 and 4470, respectively, and the
three intervals [c, d]: (0, 1], (0, 2], (0, 3] with the following N obtained from (2.2):
2963, 3416 and 3870, respectively. The two considered cases of starting a fire
propagation process are the “targeted lightning-up”, when the fire starts from
the node with the highest degree, and the “random ignition” starting from an
equiprobably chosen node. For both cases we found the relations between the
average number of nodes surviving in a fire n and the probability of fire transition
p. Figures 3 and 4 show how the number of remaining nodes n depends on the
probability p for the two cases of starting a fire for the power-law graph topology.
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Figure 3: Relation between n and p for power-law graphs (“targeted lightning-
up”)

Obviously, the number of remaining nodes n is decreasing with the increase of
p. The results show that graphs with the distribution parameter τ ∼ U(1, 2)
are more resilient to fire at lower values of the probability p in both cases of
fire ignition. But as the value of p increases the topology with the parameter
τ ∼ U[2, 3] will ensure a better survival of graphs nodes. As for power-law graphs
with τ ∼ U(1, 3], they are the most vulnerable to fire in both fire start cases.
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Figure 4: Relation between n and p for power-law graphs (“random ignition”)

Similar results were obtained for configuration graphs of the Poisson topology.
Here for both fire start cases, which one of the three topologies would ensure a
better survival of nodes in case of a fire depends on the value of the probability
of fire transition p (see Figures 5 and 6).
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Figure 5: Relation between n and p for Poisson graphs (“targeted lightning-up”)

Furthermore, we study a case when the probability of fire transition p is a
random variable drawn from the standard uniform distribution. Table 1 shows
the results obtained for power-law configuration graphs.

Thus, in the case of targeted lightning-up more nodes will survive in a fire if
the graph topology has the parameter τ ∼ U[2, 3]. But in the case when a fire
starts from an equiprobably chosen node, graphs with τ ∼ U(1, 2) will be more
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Figure 6: Relation between n and p for Poisson graphs (“random ignition”)

Table 1: An average number of nodes surviving in a fire n for power-law graphs

τ ∼ U[a, b] “targeted lightning-up” “random ignition”

(1, 2) 3146 4933
[2, 3] 3464 3533
(1, 3] 2917 3927

resilient. As for the Poisson node degree distribution (see Table 2), graphs with
the parameter λ ∼ U(0, 2] are more resilient to fire in the case of a targeted
lightning-up, whereas in the case of random ignition graphs with λ ∼ U(0, 3] will
ensure a better nodes survival.

Table 2: An average number of nodes surviving in a fire n for Poisson graphs

τ ∼ U[c, d] “targeted lightning-up” “random ignition”

(0, 1] 2957 2960
(0, 2] 3392 3409
(0, 3] 2975 3498

Furthermore we have the aim to compare the two considered configuration
graph models: with the power-law node degree distribution (1.1) and the Poisson
distribution (1.2). Here we have to fix the initial number of nodes N . Then using
auxiliary lattice graphs and the correspondence between the inner node degree
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m and the number of nodes N (see above) we derive the relations between the
parameters τ and λ and the number of nodes N :

(2.3) τ = 16813N−1.067, R2 = 0.87,

(2.4) λ = 0.0011N − 3.61, R2 = 0.98, N ≥ 3350.

We consider configuration graphs of the same sizes 4000 ≤ N ≤ 7000 calculating
the corresponding values of τ and λ from (2.3) and (2.4). Here we consider
a random probability of fire transition p ∼ U(0, 1). For each N were carried
out 100 simulations and calculated the values V = V(N) that are equal to the
difference between the number of nodes remaining after a fire in the model (1.1)
and in the model (1.2). Figures 7 and 8 show how values of V depend on N in
two cases of fire ignition.
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Figure 7: Comparing power-law and Poisson graphs (“targeted lightning-up”)
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Figure 8: Comparing power-law and Poisson graphs (“random ignition”)
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Thus in the case of “targeted lightning-up” if N < 4800 graphs with the Poisson
node degree distribution will ensure a better survival of nodes but, as the number
of graph nodes increases, the power-law topology will be more resilient to the fire.
In the case of random ignition this threshold for the number of nodes will be 4400.

Applications of these results to the real data may include forest planting
procedures, as well as ways to stabilization of banking systems [1].

The study is supported by the Russian Foundation for Basic Research, grant
16-01-00005.
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