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STUDIA MATHEMATICA

POWER OF EXCEEDANCE-TYPE TESTS AGAINST

LOCATION SHIFT ALTERNATIVE

Eugenia Stoimenova

This paper deals with a class of nonparametric two-sample tests for ordered
alternatives. The test statistics proposed are based on the number of obser-
vations from one sample that precede or exceed a threshold specified by the
other sample, and they are extensions of Šidák’s test. We study their power
properties against the location-shift alternative for distributions from the
uniform, normal and exponential families. We give the corresponding power
functions, obtained by Monte Carlo simulation, and make some comparative
comments.

1. Introduction

Let X1, . . . ,Xm and Y1, . . . , Yn be random samples from continuous distribution
functions F and G, respectively. Denote the ordered X’s and Y ’s by X(1) < · · · <
X(m), and Y(1) < · · · < Y(n), respectively. For 0 ≤ r < n, define the exceedance
statistics based on thresholds from the both samples.

(1.1)
As = the number of Y -observations larger than X(m−s),

Br = the number of X-observations smaller than Y(1+r),

These statistics are potentially useful for testing whether the two random
samples are from the same population. For example classic precedence test [3]
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is based on the number of observations in the X-sample that are smaller than
Y(1+r). Large values of this statistic lead to rejection of the null hypothesis about
equality of the two distributions.

For testing the hypothesis H0 : F (x) = G(x) against the alternative

(1.2) HA : F (x) > G(x),

we consider the test statistic

(1.3) Vρ = As +Br,

where the threshold statistics X(m−s) and Y(1+r) are determined as s = [ρm] and
r = [ρn] for some 0 ≤ ρ < 1, with [·] denoting the integer part. Various values of
ρ yield a family of test statistics which we refer to as Šidák-type tests [10].

Evidently, large values of Vρ lead to the rejection of H0 in favor of the stochas-
tically ordered alternative in HA. It is reasonable for ρ to be small since we want
to reduce the possible influence of a small number of potential outliers.

The test based on the sum of A0 and B0, that is the number of observations
in the Y -sample above all observations in the X-sample, and the number of
observations in the X-sample below all observations in the Y -sample, appears as
the earliest work of Šidák on nonparametric statistics [8]. The null distribution of
this test statistic was studied in [12] and tables of critical values were produced
by these authors. A slight modification of the test statistic based on the sum
became popular as Tukey’s Quick Test (see [7] and [4]).

The proposed tests are a subclass of a general family of tests based on prece-
dences and/or exceedances of a random level specified by the order statistics from
the samples. Some basic references include [9], [11], [3], [1] and [2].

The distribution of the Vρ test orders under H0 is not affected by the un-
derlying distributions F and G [10]. However, the power of the test is not easy
to obtain due to the generality of the alternative HA. A simple subclass of this
alternative suggested by parametric theory is the location-shift alternative. How-
ever, in this case the distribution of rank statistics will depend not only on θ, but
also on F and G.

The present paper deals with the power of one of the Vρ tests against location-
shift alternatives H1. The power of the tests is estimated through Monte Carlo
simulations as a function of the shift parameter θ for uniform, normal, exponen-
tial, lognormal, and gamma distributions. We also compare the power of the
Vρ tests against Lehmann alternatives HLE : G(x) = 1 − (1 − F (x))1/η , η > 1.
Alternatives of this form are a subclass of stochastically ordered alternatives [10].
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Table 1: Critical values for m = 40 and n = 20(4)40 and different choices of s
and r at 5% level of significance

ρ m s n r c.v. α1 α2

0 40 0 20 0 7 0.043 0.068
0 40 0 24 0 7 0.030 0.050
0 40 0 28 0 6 0.034 0.069
0 40 0 32 0 6 0.034 0.061
0 40 0 36 0 6 0.032 0.058
0 40 0 40 0 6 0.032 0.058

0.05 40 2 20 1 12 0.041 0.059
0.05 40 2 24 1 11 0.043 0.064
0.05 40 2 28 1 11 0.034 0.053
0.05 40 2 32 1 10 0.048 0.075
0.05 40 2 36 1 10 0.048 0.075
0.05 40 2 40 2 12 0.041 0.062
0.1 40 4 20 2 16 0.044 0.063
0.1 40 4 24 2 15 0.044 0.062
0.1 40 4 28 2 15 0.037 0.053
0.1 40 4 32 3 16 0.046 0.066
0.1 40 4 36 3 16 0.044 0.064
0.1 40 4 40 4 18 0.036 0.052
0.15 40 6 20 3 20 0.044 0.060
0.15 40 6 24 3 19 0.042 0.058
0.15 40 6 28 4 20 0.048 0.067
0.15 40 6 32 4 20 0.044 0.061
0.15 40 6 36 5 22 0.037 0.051
0.15 40 6 40 6 23 0.041 0.056
0.2 40 8 20 4 24 0.044 0.057
0.2 40 8 24 4 23 0.041 0.055
0.2 40 8 28 5 24 0.043 0.058
0.2 40 8 32 6 25 0.047 0.064
0.2 40 8 36 7 27 0.039 0.052
0.2 40 8 40 8 28 0.043 0.056
0.25 40 10 20 5 28 0.042 0.053
0.25 40 10 24 6 28 0.049 0.065
0.25 40 10 28 7 29 0.048 0.062
0.25 40 10 32 8 30 0.049 0.064
0.25 40 10 36 9 32 0.040 0.051
0.25 40 10 40 10 33 0.043 0.055
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2. Critical values of exceedance tests

The exact null distribution of the Vρ is proven in [10]. For small sample sizes,
critical values of the Vr-tests are presented in Table 1. These calculations have
been carried out on a PC computer by using the statistical package R. The code
can be provided by the author upon request.

The chi-square approximation is also quite reasonable in the practical range
of sample sizes (between 25 to 100) as long as n does not differ too much from
m. In Table 2, we provide an example of the exact significance probabilities for
the Vρ-statistics (close to 5% level) for the choices of the sample size m = n = 40
and 100. It is given by a chi-square distribution with degrees of freedom [ρm]+1.

Table 2: Values of P (χ2
ν > c) (near 5% critical values)

m ρ c.v. χ2-approx. m ρ c.v. χ2-approx.

40 0 6 0.0497 100 0 6 0.0489
0.05 12 0.0571 0.05 20 0.0649
0.1 18 0.0496 0.1 33 0.0587
0.15 23 0.0535 0.15 45 0.0585
0.2 28 0.0538 0.2 58 0.0475
0.25 33 0.0529 0.25 69 0.0513

3. Location shift alternative

In this section, we compare the power of the Vρ-tests against the location-shift
alternative of the form

(3.4) H1 : G(x) = F (x− θ), for some θ > 0.

This class of alternatives, specified by θ, is a subclass of the general ordered
alternative HA in (1.2). It is a simple suggestion arising from parametric theory,
although the distribution of test statistics in this case will depend not only on θ,
but also on F .

To make meaningful comparison of the power of different tests, we calculated
power functions at prescribed exact level of significance α as follows. First, for
any Vρ-test, we determine two values α1 and α2 so that

P (Vρ ≥ c) = α1 and P (Vρ ≥ c− 1) = α2,
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where c is given by P (Vρ ≥ c|H0) ≤ α and therefore, the interval (α1, α2) contains
the critical level, say α = 0.05. Next, we calculate the power values corresponding
to the two critical values c and c− 1

β1 = P (Vρ ≥ c|HLE) and β2 = P (Vρ ≥ c− 1|HLE),

Then, the power of the test at exact level α is estimated by

β = πβ2 + (1− π)β1,

where π =
α− α1

α2 − α1
is the adjusting factor used in the randomized procedure in

(3.5).

(3.5) Pi =











1, if Vρ ≥ c
α− α1

α2 − α1
, if Vρ = c− 1

0, otherwise,

The power functions were estimated through Monte Carlo simulations as a
function of the shift parameter θ for uniform, normal, exponential and gamma
distributions. For different choices of sample sizes, we generated 10000 sets of data
in order to obtain the estimated power against specific values of the location-shift
parameter. All power values were adjusted for the fixed level of significance α =
0.05 in a manner similar to the adjustment made earlier for Lehmann alternative
(see Subsection 4.).

3.1. Uniform distribution

Take F (x) to be uniform distribution in [0; 1] and consider four alternative
distributions G(x) = F (x − θ), specified by θ = 0.05, 0.1, 0.2 and 0.3. Table 3
provides the estimated power values of the Šidák-type tests specified by ρ, for
m = 40 and different choices of n in this case. Threshold values s and r are
determined as s = [ρm] and r = [ρn].

For any ρ, the power increases when n approaches m. All tests are most
powerful when m = n. Looking at the power of different tests (ρ = 0 to 0.25),
we see that the power of the Vρ-test with ρ > 0 is less than the power of the
corresponding V0-test (Figure 1). This is because the V0-test is locally most
powerful in this case for testing H0 against a shift close to 0 in the uniform
distribution, as shown by [5] (see the highlighted values in Table 3). When ρ is
small, 5% or 1%, the Vρ-test can still retain good power to be useful against small
shifts.
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Table 3: Power of Vρ-tests against location shift alternative in the case of uniform
distribution for m = 40, n = 20(4)40 and α = 0.05 level of significance

ρ m s n r c.v. shift 0 0.05 0.1 0.2 0.3

0 40 0 24 0 6 0.0555 0.3546 0.8086 0.9961 1.0000

0 40 0 32 0 6 0.0483 0.3622 0.8208 0.9989 1.0000

0 40 0 36 0 6 0.0496 0.4506 0.8314 0.9992 1.0000

0 40 0 40 0 6 0.0408 0.4646 0.8964 0.9995 1.0000

0.05 40 2 24 1 11 0.0444 0.2336 0.5301 0.9338 0.9988
0.05 40 2 32 1 10 0.0704 0.2811 0.6360 0.9857 1.0000
0.05 40 2 36 1 10 0.0727 0.3252 0.7302 0.9932 0.9999
0.05 40 2 40 2 12 0.0489 0.2876 0.6263 0.9853 1.0000

0.1 40 4 24 2 15 0.0571 0.1550 0.4149 0.8467 0.9940
0.1 40 4 32 3 16 0.0615 0.1772 0.4589 0.9329 0.9970
0.1 40 4 36 3 16 0.0609 0.2072 0.5251 0.9416 0.9990
0.1 40 4 40 4 18 0.0431 0.1832 0.4387 0.9168 0.9985

0.15 40 6 24 3 19 0.0474 0.1338 0.3206 0.7698 0.9709
0.15 40 6 32 4 20 0.0570 0.1481 0.3927 0.8628 0.9886
0.15 40 6 36 5 21 0.0494 0.1509 0.3715 0.8316 0.9913
0.15 40 6 40 6 23 0.0456 0.1701 0.3696 0.8388 0.9925

0.2 40 8 24 4 23 0.0430 0.1121 0.2859 0.6552 0.9363
0.2 40 8 32 6 25 0.0538 0.1574 0.3078 0.7794 0.9698
0.2 40 8 36 7 27 0.0433 0.1510 0.3300 0.7616 0.9752
0.2 40 8 40 8 28 0.0542 0.1556 0.3086 0.7815 0.9801

0.25 40 10 24 6 28 0.0557 0.1249 0.2595 0.5951 0.8910
0.25 40 10 32 8 31 0.0510 0.1100 0.2392 0.6511 0.9255
0.25 40 10 36 9 32 0.0403 0.1201 0.2629 0.7059 0.9526
0.25 40 10 40 10 33 0.0458 0.1460 0.2719 0.7306 0.9634

3.2. Normal distribution

Take F (x) to be standard normal distribution and consider five alternative distri-
butions G(x) = F (x− θ), specified by θ = 0.2, 0.3, 0.5, 1 and 2. For equal sample
sizes, the parameters s and r, specifying the threshold positions, are equal and in
this case the contiguous order statistics determine the family of test statistics. For
simplicity, let us denote the family of test statistics in this case by Vr = Ar +Br

with r = 0, 1, 2, . . ..
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Figure 1: Power curves of exceedance tests against shift in Uniform distribution

Table 4 provides the estimated power values of the Šidák-type tests Vr for
equal sample sizes with r = 0, 1, 2, . . ., in this case.

From Table 4, upon comparing the power values of different Vr-tests, we find
that the Vr-test with r > 0 gives better power performance than the original V0

test of Šidák when the underlying distribution is normal. The tests with r > 4
do not give significant improvement (if any) of the power. For example, in Table
4, for m = 15 and θ = 0.5, the power of the Vr-test with r = 1, 2 or 3, is about
0.33-0.34 while the corresponding power for r = 0 is 0.2726; the power of all
other tests with 4 ≤ r ≤ 7 is about 0.30-0.31. As a “rule”, the optimal threshold
position seems to be close to 20% of the sample size, i.e. r = 0.2m − 1 (see the
highlighted values in Table 4). Four power curves on Figure 1 compare the power
of the optimal statistics: V1 from sample of size 10, V2 from sample of size 15, V3

from sample of size 15, and V4 from sample of size 25.

3.3. Exponential distribution

Having data from exponential distribution (or more general from right skewed
distribution), we do not expect our tests to detect small shift in the distribution
very well. Take F (x) to be exponential distribution with parameter 1 and consider
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Table 4: Estimated power of the Vr-test against location shift in the case of
normal distribution for m = n and α = 0.05 level of significance

m r shift 0 0.2 0.3 0.5 1 2

10 0 0.0516 0.1022 0.1489 0.2358 0.5814 0.9752
1 0.0500 0.1069 0.1512 0.2599 0.6297 0.9875

2 0.0523 0.0996 0.1414 0.2357 0.5896 0.9806
3 0.0453 0.0952 0.1305 0.2261 0.5676 0.9724
4 0.0478 0.1032 0.1325 0.2472 0.6018 0.9821

15 0 0.0509 0.1150 0.1562 0.2726 0.6746 0.9910
1 0.0505 0.1243 0.1760 0.3403 0.7715 0.9989
2 0.0529 0.1262 0.1797 0.3370 0.7902 0.9993
3 0.0510 0.1243 0.1836 0.3339 0.7764 0.9996
4 0.0497 0.1165 0.1595 0.3031 0.7363 0.9971
5 0.0494 0.1100 0.1627 0.3019 0.7091 0.9969

20 0 0.0493 0.1203 0.1747 0.3148 0.7367 0.9957
1 0.0486 0.1304 0.1987 0.3728 0.8343 0.9996
2 0.0485 0.1373 0.2071 0.3963 0.8659 0.9999
3 0.0496 0.1439 0.2142 0.4177 0.8816 1.0000

4 0.0526 0.1390 0.2112 0.4013 0.8722 0.9999
5 0.0503 0.1364 0.2062 0.3881 0.8619 0.9999
6 0.0502 0.1296 0.1885 0.3735 0.8354 0.9997

25 0 0.0513 0.1225 0.1804 0.3377 0.7656 0.9971
1 0.0489 0.1352 0.2198 0.3983 0.8729 0.9998
2 0.0493 0.1501 0.2281 0.4474 0.9049 1.0000
3 0.0470 0.1572 0.2363 0.4640 0.9279 1.0000
4 0.0445 0.1590 0.2520 0.4823 0.9368 1.0000
5 0.0515 0.1507 0.2383 0.4652 0.9326 1.0000
6 0.0499 0.1535 0.2348 0.4602 0.9302 1.0000

five alternative distributions G(x) = F (x − θ), specified by θ = 0.2, 0.3, 0.5, 1
and 2.

Table 5 provides the estimated power values of the Šidák-type tests for equal
sample sizes, and α = 0.05 level of significance, in this case. Figure 2 plots the
statistics with highest power for n = 10, 15, 20 and 25. We might conclude that
the proposed Vρ-tests would be useful when the underlying distribution is close
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Figure 2: Power curves of exceedance tests against shift in Normal distribution
and Exponential distribution

Table 5: Estimated power of the Vr-test against location shift in the case of
exponential distribution for m = n and α = 0.05 level of significance

m r shift 0 0.2 0.3 0.5 1 2

10 1 0.04952 0.12235 0.1750 0.3161 0.7043 0.9773
15 2 0.0503 0.1648 0.2506 0.5117 0.8842 0.9954
20 3 0.0482 0.2141 0.3374 0.6151 0.9540 0.9999
25 4 0.0467 0.2466 0.4017 0.7008 0.9803 1.0000

to symmetric or when there is small or moderate skewness in the underlying
distributions.

4. Power against Lehmann alternative

In this section, we express the distribution of Vρ under the Lehmann alternative
given by

(4.6) HLE : G(x) = 1− (1− F (x))1/η ,

for some η > 0. When η = 1, the resulting distributions satisfy the null hypothe-
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Table 6: Power comparison of Vr-tests for m = n = 20 at 5% level of significance

Vr-test η = 2 η = 3 η = 4 η = 5 η = 6 η = 7

V0 0.4566 0.7859 0.9207 0.9705 0.9894 0.9952
V1 0.5061 0.8292 0.9436 0.9808 0.9931 0.9974
V2 0.5230 0.8379 0.9476 0.9818 0.9928 0.9969
V3 0.5182 0.8355 0.9445 0.9795 0.9918 0.9957
V4 0.5149 0.8262 0.9416 0.9774 0.9901 0.9956

sis H0, while η > 1 yields various distributions in the alternative hypothesis HLE,
with larger values of η indicating stronger attraction towards HA : F (x) ≥ G(x);
see [6] for further discussion on this class of alternatives.

Figure 3 illustrates the gain in power of using any of the first five Vρ-tests
with ρ > 0 instead of Šidák’s V0-test.
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Figure 3: Power functions of Vρ-tests form = 40 and n = 40 against the Lehmann
alternative with η = 2 at 5% level of significance.
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For any 0 ≤ s ≤ m and 0 ≤ r ≤ n, the joint probability mass function
of As and Br, under HLE in (4.6), is given derived in [10]. Consequently, the
distribution of Vρ-statistic under HLE is distribution free.

For m = n = 20 and η = 2(1)7, the power values of the Vρ-tests corresponding
to r = 0, . . . , 4, against the Lehmann alternative HLE in (4.6), are presented in
Table 6, where the significance level is set as α = 0.05.

From Table 6, we see that the power values of all tests increase with increasing
η. For each of the six fixed values 2 (1) 7 of η, the power increases up to the
third Vr-test, showing that the V0-test, based on the extremal thresholds, is less
powerful than the tests based on the next extremal thresholds pairs (Y(2),X(m−1))
and (Y(3),X(m−2)).
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