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A BAYESIAN SPATIAL ANALYSIS OF MUMPS DATA
IN BULGARIA

Maya Zhelyazkova, Roumyana Yordanova, Maroussia Slavtchova-Bojkova

Bayesian spatial methods have been widely applied in different scientific
areas such as epidemiological studies, image processing and many others. In
this work we use Bayesian hierarchical model with Gaussian conditionally
autoregressive prior to a collection of weekly mumps data from 2007 out-
break in Bulgaria. We generate a disease mapping of the crude standardized
incidence ratio across all regional centers. Similar mapping is also produced
for the smoothed relative risk. The combination of methods for estimates of
the relative risk is a powerful tool to identify high risk regions and may be
used to guide local authorities and programs.

1. Introduction

Mumps outbreaks continue to exist in developing world and although rare still
occur in vaccinated parts of the world. Spatial autocorrelation analysis is a
useful tool to analyze past outbreaks and help health authorities understand the
spatial distributions of such outbreaks over time. Several recent papers have
analyzed large mumps and measles outbreaks using spatial models. Polgreen
et al. [8] applied negative binomial regression to model Iowa mumps epidemic
of 2006 and concluded that spring-break college travel was associated with the
spread of mumps to other age groups. Porter et al. [9] applied a version of
spatial compartmental epidemic model with general latent time distributions to
model the same outbreak and came up with similar results showing spring break
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increased the mixing rate in the population and that the spatial transmission
of the disease spreads across multiple conduits. It is worth mentioning that
the Iowa outbreak happened in a highly vaccinated population and both the
waning of immunization and the social networks of the college student are the
main contributing factors. Eccles et al. [2] used Moran’s I and local indicators
Getis and Ord’s G* of spatial association analysis (LISA) to identify clusters
of high or low immunization rates. The same methods were also applied to
model time changes over space of the immunization rates. Hens et al. [3] used
multicohort model for serological information on mumps in a highly vaccinated
population of Belgium to quantify the risk of mumps outbreaks in 2012. Lieu
et al. [7] studied population of 154,424 children having electronic health records
and applied spatial scan statistics to identify five statistically significant clusters
of underimmunization and vaccine refusal.

2. Data

There was an outbreak of mumps in Bulgaria in 2007 as discussed in Kojouharova
et al. [4]. There were 997 cases registered between January 1st and March 18th
of 2007. It affected mostly younger generations between ages 15-19 and 20-24.
The main reason for the mumps outbreak was the poor immunisation in these
age groups. To deal with the outbreak, the health authorities decided to offer a
supplementary mumps immunisation. The mumps data in this study are selected
from the first 12 weeks of 2007 collected from 28 different regions of Bulgaria. For
every region we have 12 observations which represent the new cases of mumps
in consecutive weeks of 2007. The data is provided by the National Center of
Infectious and Parasitic Diseases. Our main goal is to reanalyze the mumps data
in order to get better understanding of the outbreak.

3. Disease Mapping

Disease Mapping looks for areas with elevated relative risk. There are 28 regional
centres and 262 municipalities in Bulgaria. We denote by O = (01,03, ...,0,)
the observed number of cases of mumps in each regional center, n = 28 for the
first 12 weeks of 2007. We calculate the expected number of cases F;, i = 1,...,28
by multiplying the number of people in each regional center by the incidence rate
of mumps in Bulgaria. The incidence rate is the number of cases of mumps for
the first 12 weeks of 2007 divided by the population of Bulgaria. We obtain an
incidence ratio SIR; = O;/E; for each region. The incidence ratio is a crude
estimate of the relative risk. We then search for regions with elevated risk. If the
relative risk is greater than one, then the region is exposed to a higher risk of
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the disease. If the relative risk is less than one, the population is comparatively
healthy. Sometimes, the risk is elevated by chance due to small E; because
the disease is rare or the population in the area is small. That is why we use
Bayesian hierarchical models which decrease the probability of having elevated
risk by chance.

4. Bayesian Modeling

In disease mapping spatial autocorrelation is the correlation between close lo-
cations on a geographical 2D map which violates the assumptions in classical
statistics that assumes independence among observations. If nearby areas share
similar patterns we have positive spatial autocorrelation while if they are dissimi-
lar we observe negative spatial autocorrelation. In both cases standard regression
models that do not take into account these dependencies will not work since the
parameter estimates and results will be unreliable. Since our data is spatially
autocorrelated as discussed in Zhelyazkova and Bojkova [11] we use instead hi-
erarchical bayesian models which take into account the prior knowledge about
spatial map of Bulgarian regions to achieve a reliable estimate of the mumps
risk. Basic ideas in Bayesian modeling is that the parameters within likelihood
model are considered random variables with prior distributions. The parameters
in the prior distributions can also be stochastic and this establishes a natural
parameter hierarchy that leads to hierarchical models. A simple example of hi-
erarchical model that is commonly used in disease mapping is where the data
likelihood is Poisson and there is a common relative risk parameter with the sin-
gle gamma prior distribution. Selecting proper prior distributions is important
in building the model.

The main disadvantages of gamma or beta prior for the relative risk in un-
correlated heterogeneity models are that they can not easily model spatially cor-
related parameters or extend to adjust for covariates. One flexible method to
address these drawbacks is proposed by Besag et al. [1]. He models tract count
effects by

exp{z} + v; + u;},

where 3 is fixed covariate component, v; and u; are uncorrelated and correlated
heterogeneity, respectively. Each of the components in the model has different
prior distribution. The correlated heterogeneity often follows conditionally au-
toregressive (CAR) prior distribution.
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5. Convolution model

We use one of the Bayesian hierarchical models, so-called convolution model,
described in Lawson [5].

We begin with the following notation. Let W be the neighbourhood matrix,
where w;; = 1, if 7 and j are neighbours or if the areas ¢ and j share a common
border, otherwise w;; = 0. We denote that 7 and j are neighbours by i ~ j.

We fit the model 0; = exp(Sy + v; + u;), where 6; is the Standardized Inci-
dence Ratio (SIR), which can be interpreted as a relative risk, 5y is the model
intercept with a non-informative prior, v; are the structured random effects that
assume a normal distribution with variance o2 and u; are the random effects that
capture the spatial autocorrelation between regions in a Gaussian CAR model
with variance 0’5. More precisely the model is

O;|E;, 0; ~ Poisson(Ei0;),i=1,...,n

In(0;) = Bo + vi + u;
Vi|a ~ N(Ov 012/)

. . 9 1 03
Ui‘“ja]#%m%‘ ~N|— E Uj, —
n; n;

i~vj

This model accounts for overdispersion and this is an advantage over the
pure Poisson model. The Poisson model induces Var(O;) = E(O;), but in most
of these studies Var(O;) > E(O;) or we have overdispersion.

6. Results

We apply the convolution model to the mumps data from the 2007 mumps out-
break in Bulgaria. We use the cumulative data from 28 regional centres. There
are 12 consecutive observations per region each corresponding to weekly reports
of mumps in 2007.

The results were obtained using CARBayes (Duncan Lee, [6]) package of soft-
ware “R”. Summary of the estimated parameters from the model is presented in
Table 1. Inference for the model is based on 80,000 MCMC simulations obtained
by running the chain for 100,000 samples where 20,000 were discarded as burn-in
period.

The high density posterior intervals does not contain zero and the random
effect variance due to spatial autocorrelation ¢, is much larger than the variance
of structure random effects o,. We also calculated the Deviance Information
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Median | 2.5 % 97.5 %

intercept Bo | —0.7892 | —0.8620 | —0.7214
o2 3.4644 2.4786 4.6446

o2 0.1773 0.0371 0.4085
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Table 1: Model estimates and 95% high density posterior intervals (HDPI)

Criterion (DIC) and the effective number of parameters (pD), see Spriegelhalter
et al. [10]. The DIC=1566.6615 and pD=227.2521. pD is close to the number of
the true parameters 262, assuming independence of the ratios.

In order to check whether the convolution model is appropriate we apply the
Moran’s I test to the residuals of the convolution model as discussed in Lawson
[5]. If the p-value of the Moran’s I test is high it means that there is no spatial
autocorrelation in the residuals and consequently the convolution model works
well. In our case p-value = 0.9338 which is interpreted as a good model fit.

The maps in Figures 1 and 2 give a visual indication of the degree of risk of
morbidity in different areas. The incidence ratio SIR; = O;/E; for each region
in Figure 1 is calculated from the observed data where the expected number of
cases F;, ¢ = 1,...,28 is equal to the number of people in the regional centre
multiplied by the incidence rate of mumps in Bulgaria. The model estimate of
the relative risk 6; is plotted in Figure 2.

Figure 1: SIR ratio on the map of Bulgaria across all 262 municipalities. It is
plotted applying sppplot function as in Lee [6].
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Figure 2: Model estimate of the relative risk from the convolution model on the
map of Bulgaria. The magnitudes of the relative risk are mapped into the colour
bar.

The relative risk in Figure 2 is smoother in comparison to the one in Figure
1. The reason is that the convolution model makes a smooth transition between
the risk of morbidity in different areas because is takes into account the influence
of their neighbours. Along with the analytical part the model gives a visual
representation of the risk in each municipality of the country. In this way we get
a more complete and accurate picture of the morbidity risk.

Our analysis shows that the highest risk of mumps is in the southwest part
of Bulgaria. These are mountain regions at the border of Bulgaria. There is also
a pomak population with higher percentage of younger children which facilitate
the mumps spread. We have found in preliminary studies that mumps outbreaks
are due to poor immunization culture of minorities. However, this hypothesis is
not confirmed here as we found small non significant negative correlation between
the number of cases and the percent of gypsy population in Bulgaria. The results
might be different if there was not a suspension of mumps immunization for
the whole population of Bulgaria for the time period 1982-1986 as stated in
Kojouharova et al. [4].

7. Discussion

The convolution model takes into account the influence of neighbouring areas on
the outcome of the selected area, which is closer to the real picture in studying the
spread of infectious disease. This is evident in the analysis of incidence in different
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areas of the country. The SIR mapping is a crude approximation and sometimes
is hard to interpret. That is why we consider a smooth version which is disease
mapping of the relative risk as a model estimate from the convolution model. On
the other hand the smooth mapping in some cases can produce oversmoothing
and it will not reveal all the features of the relative risk.

All the results in this paper are scale dependent. We consider 28 regional
centres, but we may as well fit the model on 262 municipalities for which we
expect better local risk estimation.

In order to reduce the risk of future mumps outbreaks the health authorities
need to work on the prevention and the immunisation culture of the nation. As
a future research we could include more covariates in the convolution model, so
that we have better overview of the mumps outbreak. Another direction of future
investigation would be to fit negative binomial model to the mumps data and to
compare the results with the convolution model.
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