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CRITICAL POINTS OF DIRAC FUNCTIONAL WITH

BROKEN SYMMETRY

Vladimir Georgiev∗ , Francesco Paolo Maiale

In this paper, we prove the existence of a radially symmetric critical point
of the Dirac functional with broken symmetry.

1. Introduction

In this paper, we shall be concerned with the Dirac equation

(1) ı
∂

∂t
ψ(t, x) +Dmψ(t, x) + V (x)ψ(t, x) = f(x, ψ(t, x)).

The unknown function ψ is defined on (t, x) ∈ [0, T ]×RN , for any N ≥ 3, and
takes value in Cd, where d := 2⌊(N+1)/2⌋.

Definition 1. The Dirac operator, denoted by Dm, is the self-adjoint opera-

tor that is defined by setting

Dm :=
N∑

j=1

ıΓ0Γj∂j −mΓ0,

where Γ0, Γ1, . . . , ΓN are the N + 1 generalized Dirac matrices, and ∂j is the

derivative with respect to the j-th space variable.
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Remark. In [3] it has been proved that the generalized Dirac matrices
generate a representation of the real Clifford algebra Cℓα, β (R) with parameters
α = 1 and β = N − 1.

Time-independent. In order to find a solution of (1), we consider the time-
independent Dirac equation

(2) Dmψ(x) + V (x)ψ(x) = f(x, ψ(x)), x ∈ RN , N ≥ 3.

The main result is the following theorem, which asserts that, under certain as-
sumptions, there exists a radially symmetric solution (in the weak sense) ψ of
the equation (2).

Theorem 1. Let m > 0 and consider the energy functional

(3) E(ψ) =
1

2
Re 〈Dmψ, ψ〉L2(RN ) + 〈V ψ, ψ〉L2(RN ) −

∫

RN

F (x, ψ) dx,

where F (x, ψ) :=
∫ ψ
0 f(x, s) ds. If f : Rn × Cd −→ Cd and V : Rn −→ R

satisfy, respectively, the assumptions (F1)–(F4) and (V1)–(V3), with ω ∈ (0, m),
then E admits a nonzero critical point

ψ ∈ H
1/2
rad

(
RN ; Cd

)
.

Time-dependent. As a corollary of Theorem 1, we can immediately obtain an
existence result concerning the equation (1).

More precisely, if ϕ denotes the solution given by Theorem 1, then one can
check that ψ(x, t) := ϕ(x) eı

2π
T
t is a periodic solution of the problem

(4) ı
∂

∂t
ψ(t, x) +Dmψ(t, x) + (V (x) +

2π

T
)ψ(t, x) = f(x, ψ(t, x)),

provided that the nonlinear term satisfies the additional property:

(5) f
(
x, ϕm(x) e

ı 2π
T
t
)
= f (x, ϕm(x)) e

ı 2π
T
t.

We also notice that the nonlinear term f(x, ψ) = ψ(x)|ψ(x)|p−2, which is our
model, satisfies this additional property.
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Potential. Let V : Rn −→ R be a potential satisfying (V1)–(V3). We may
always assume, without loss of generality, that V is equal to zero. Indeed, let

D̃m := Dm + V.

The assumption (V3) states that 0 lies in a gap in the spectrum of the operator
D̃m, and therefore it admits a spectral decomposition, which is equal to the one
introduced in the next Section for Dm.

2. Variational Formulation of the Problem

The stationary solutions for a self-interacting Dirac field are usually introduced
via critical points of the Dirac type functional (3).

Assumptions on f . We want to study the problem for a nonlinear term
f(x, ψ) similar to the model ψ|ψ|p−2, which also satisfies (5).

Therefore we now introduce suitable assumptions on f(x, ψ) in such a way
as to have a similar behavior. More precisely, we require the following conditions
to be satisfied:

(V1) The potential V : RN → Cd is continuous and periodic of period 1 with
respect to each spatial variable xj , for j = 1, . . . , N .

(V2) There exists a positive constant ω such that

0 ≤ V (x) ≤ lim inf
|y|→+∞

V (y) = ω <∞,

and the inequalities are strict on a Borel subset E of nonzero Lebesgue
measure.

(V3) The origin 0 lies in a gap of the spectrum of the operator D̃m = Dm + V.

(F1) The function f : RN ×Cd −→ Cd is continuous and periodic of period 1
with respect to each spatial variable xj , for j = 1, . . . , N .

(F2) There exist positive constants c1, c2 > 0 such that

|f(x, ψ)| ≤ c1 + c2 · |ψ|
p−1

for some 2 < p < 2∗, where 2∗ := 2N
N−2 is the Sobolev critical exponent.



14 Vladimir Georgiev, Francesco Paolo Maiale

(F3) There exists γ > 2 such that for any x ∈ RN and any ψ 6= 0

0 < γF (x, ψ) ≤ |ψ|f(x, ψ).

(F4) The function f is superlinear, that is, for |ψ| → 0 we have

f(x, ψ) = o (|ψ|) .

Remark. Under these assumptions, the functional E is well-defined on

H := H1/2(RN ; Cd).

Remark. It follows from (F1), (F2) and (F4) that for every ǫ > 0 there
exists a positive constant cǫ > 0 such that

|f(x, ψ)| ≤ ǫ|ψ|+ cǫ|ψ|
p−1.

The assumptions (V1) and (F1), on the other hand, imply the invariance of f
and V under the action of ZN on the space variables

We shall denote by ‖ · ‖H1/2 the norm of the space H. The next result follows
immediately from [7, Lemma 3.10].

Lemma 1. Under the assumptions of Theorem 1 it turns out that E is a

functional of class C1 (H; R), and ψ ∈ H is a weak solution of (2) if and only if

dE(ψ)[ϕ] = 0, ∀ϕ ∈ H.

2.1. Orthogonal Decomposition

The Dirac operator Dm admits a spectral decomposition and, in particular, it is
given by the positive part and the negative part. More precisely, we set

Dm = Pm −Qm, Pm =

√
DmD∗

m +Dm

2
=

|Dm|+Dm

2
, Qm =

|Dm| − Dm

2
.

Therefore, the energy space H can be decomposed as

H := E+ ⊕ E−,

where

E+ := {ψ ∈ H |Qm(ψ) = 0}, E+ := {ψ ∈ H | Pm(ψ) = 0}.
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The energy functional can be easily rewritten as follows:

(6) E(ψ) =
1

2

[
‖Pmψ‖

2 − ‖Qmψ‖
2
]
−

∫

RN

F (x, ψ) dx,

where ‖ · ‖ denotes the norm induced on H by the spectral decomposition, and
it is clearly equivalent to ‖ · ‖H1/2 .

3. Linking Method

In this section, we set the ground to prove the existence of a critical value for the
time-independent functional E(ψ) using topological means (linking results.)

We shall follow the paper [2] and generalize the notion of linking accordingly
to the Leray-Schauder’s topological degree (see [8, Chapter 2].)

Setting. We consider the two manifolds

C :=
{
ψ ∈ E+ | ‖ψ‖ = ρ

}
= E+ ∩ Sρ(H),

and

M :=
{
ψ ∈ H

∣∣ ψ = w + λe, w ∈ E−, ‖w‖ ≤ R, 0 ≤ λ ≤ ‖e‖
}
,

where ρ and R are positive real numbers, and e is a fixed point of E+ such
that ‖e‖ > ρ. Moreover, we denote by Σ the collection of all the continuous
homotopies h ∈ C0 ([0, 1]×H; H) such that

Q ◦ h(t, u) = Q(u)−W (t, u), h(0, ·) = idH

where Wt is a compact perturbation for every fixed t ∈ [0, 1].

Definition 2. (Link) Let C, M and Σ be as above. We say that ∂M and C
link if and only if for every h ∈ Σ satisfying the property

C ∩ ht (∂M) = ∅, ∀ t ∈ [0, 1],

it turns out that

C ∩ ht (M) 6= ∅, ∀ t ∈ [0, 1].
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3.1. Application of the Linking Method

In this brief paragraph, we prove that C and ∂M link in the sense of Definition
2, and we also show that the functional E behaves as expected.

Lemma 2. For every positive constants ρ, R > 0, and for every point e ∈ E+

such that ‖e‖ > ρ, the manifolds ∂M and C link.

P r o o f. Let us denote by Bδ the closed ball of radius δ > 0 and center the
origin. As stated above, we have

C = E+ ∩ ∂Bρ.

On the other hand, by assumption ‖e‖ > ρ; hence it is not difficult to prove that
there is an isomorphism

M ∼= {λe | λ ∈ [0, ‖e‖]} ⊕
{
w ∈ E− | ‖w‖ ≤ R

}
.

In particular, it turns out that

M ∼= {λe | λ ∈ [0, ‖e‖]} ⊕
(
E− ∩BR

)

In conclusion, we apply [2, Lemma 1.2 and Lemma 1.3] with E1 := E+, E2 := E−,
S = C, Q = M, r := λ, r1 := ‖e‖ and r2 := R, and infer that C and ∂M link. �

3.2. Functional Properties

Following [1, Chapter 8, Section 3], we want to prove that the energy functional
E satisfies the following properties:

(J.1) There are positive real numbers α, ρ > 0 such that

E(ψ) ≥ α, ∀ψ ∈ E+ ∩ Sρ(H) = C,

that is, the functional E is bounded from below on the manifold C.

(J.2) There are positive real numbers β, R > 0 and a vector e ∈ E+ such that
‖e‖ > ρ, α > β strictly, and

E(ψ) ≤ β, ∀ψ ∈ ∂M.

Theorem 2. Under the same assumptions of Theorem 1, there exists ρ0 > 0
such that (J.1) holds true for every 0 < ρ ≤ ρ0.
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P r o o f. Let ψ be a function in C. By definition, we have

E(ψ) =
1

2
‖ψ‖2 −

∫

RN

F (x, ψ) dx.

The first term is strictly positive; hence it is enough to find a bound on the
second term that depends on ρ, and choose ρ0 in such a way that E(ψ) is bounded
from below by 0. As mentioned in the previous Section, for every ǫ > 0 there
exists a positive constant cǫ > 0 such that

|F (x, ψ)| ≤
ǫ

2
|ψ|2 +

cǫ
p+ 1

|ψ|p+1.

If we take the integral with respect to the space variables xj , then we obtain the
following estimate:

∫

RN

|F (x, ψ)| dx ≤
ǫ

2
‖ψ‖2L2(RN ) +

cǫ
p+ 1

‖ψ‖p+1
Lp+1(RN )

.

By assumption 2 < p < 2∗; hence the Sobolev embedding theorem (see, e.g., [4])
implies that there exist positive constants c1, c2 > 0 such that

∫

RN

|F (x, ψ)| dx ≤ c1
ǫ

2
‖ψ‖2

H1/2(RN )
+ c2

cǫ
p+ 1

‖ψ‖p+1

H1/2(RN )
,

and, by the arbitrariness of ǫ > 0, we infer that

∫

RN

|F (x, ψ)| dx = o
(
‖ψ‖2

H1/2(RN )

)
.

Recall that the norm ‖ · ‖ is equivalent to the ‖ · ‖H1/2(RN )-norm by construction;
hence it turns out that

∫

RN

|F (x, ψ)| dx = o
(
‖ψ‖2

)
,

as ‖ψ‖ → 0. Consequently, there exists δ > 0 small enough such that

‖ψ‖ ≤ δ ⇒

∫

RN

|F (x, ψ)| dx ≤
1

4
‖ψ‖2.

Therefore, if we take ρ0 := δ, then for any ρ ∈ (0, ρ0] the property (J.1) is
satisfied (as a consequence of the previous estimate) with α > 0 strictly. �
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Theorem 3. Under the same assumptions of Theorem 1, there exists R0 > 0
such that (J.2) holds true for every R ∈ (R0, +∞).

P r o o f. By definition, the boundary of the manifold M is the disjoint union
of three connected components, namely

∂M1 = SR(E
−)⊕ {λe : λ ∈ [0, 1]},

and
∂M2 = BR(E

−), ∂M3 = BR(E
−)⊕ {e}.

By (F3), for every ǫ > 0 there exists a positive constant kǫ > 0 such that

F (x, ψ) ≥ kǫ|ψ|
γ − ǫ|ψ|2,

for every x ∈ RN and ψ ∈ Cd. If ψ ∈ ∂M, then the functional E is given by

E(ψ) =
1

2

[
λ2 − ‖w‖2

]
−

∫

RN

F (x, w + λe) dx

and, clearly, we have the estimate

E(ψ) ≤
1

2

[
λ2 − ‖w‖2

]
+ ǫ‖w + λe‖2L2(RN ) − kǫ‖w + λe‖γ

Lγ (RN )
.

By the Sobolev embedding theorem, there exists a positive constant c > 0 such
that

E(ψ) ≤
1

2

[
λ2 − ‖w‖2

]
+ cǫ‖w + λe‖2 − kǫ‖w + λe‖γ

Lγ(RN )
.

The decomposition H = E+ ⊕E− is orthogonal; hence

E(ψ) ≤
1

2

[
λ2 − ‖w‖2

]
+ cǫ

(
λ2 − ‖w‖2

)
− kǫ‖w + λe‖γ

Lγ(RN )
.

If we take ǫ > 0 such that c · ǫ ≤ 1/4, then it turns out that

E(ψ) ≤
3

4

[
λ2 − ‖w‖2

]
− kǫ‖w + λe‖γ

Lγ (RN )
.

We are finally ready to conclude the proof. First, we notice that

E(ψ) → −∞ as ‖w + λe‖ → +∞,

and thus it follows immediately that, if we choose R > ρ0 > 0 big enough, then

E(ψ) ≤ 0, ∀ψ ∈ ∂M1.
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If ψ ∈ ∂M2, then ψ = w ∈ E− and

E(ψ) ≤ −
1

2
‖w‖2 − kǫ ‖w + λe‖γ

Lγ (RN )
< 0,

and the inequality is strict (i.e., E is strictly negative on the second component
of the boundary).

Finally, if ψ ∈ ∂M3, we can choose e ∈ E+ such that ‖e‖ = R and E(e) = 0,
and we can argue as in [9, Proposition 2]. �

4. Existence of a Critical Point

Let us consider

(7) c := inf
h∈Σ

[
sup
ψ∈M

E ◦ h(ψ)

]
.

In Theorem 2 we proved that ∂M and C link; therefore it is easy to infer that
c ≥ ρ > 0 (see, e.g., [1, Theorem 8.22]).

In particular, if we prove that c is a critical value for E, then we automatically
get a nonzero critical point ψ ∈ H for E, which is enough to conclude the proof
of Theorem 1.

Recall that, a straightforward application of the interpolation inequality (Riesz-
Thorin) and [6, Theorem 1], for any N ≥ 3 and p ∈ (2, 2∗), the following embed-
ding is continuous and compact:

H
1/2
rad

(
RN

)
→֒ Lp

(
RN

)
.

The same duality argument presented in the paper [5, Chapter 3] shows the
existence of a Palais-Smale sequence (un) ⊂ H at the level c.

The invariance of f with respect to the group of translations ZN implies
that there exists a Palais-Smale sequence (vn) ⊂ H at the level c such that vn
converges to v ∈ H weakly in H.

On the other hand, the compactness of the embedding stated above also
implies that vn converges to v strongly in L2

loc(R
N ), which means that v is a

weak solution to the equation (2), and this completes the proof of Theorem 1.
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