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PARAMETRIC APPROXIMATION OF PIECEWISE
ANALYTIC FUNCTIONS

VASIL A. POPOV, GEORGI L. ILIEV

The following estimate is obtained: if f is plecewise analytic in the interval
[—1, 1], then

2u n(f)=0 (exp(—c (f) Ynlnn)),

where e, (f) is the best uniform parametric approximation of order (n, n) and ¢ (f)>0
is a constant depending only on f.

1. Parametric approximation of functions was introduced by Bl Sen-
dov([l]. Let A/, be the set of all algebraic polynomials of degree =<n
and let

H,={P P¢H,, P(—1)=—1, P()=1, P'(x)=0, x ¢[—1, 1]}.

For every function f¢ C[—1, 1] we set

e (H=int{ F(P(x) Q) ci1. P € Hm, Q€H,},
where f—g =sup{ f(x)—g(x) x€¢[—1, 1]}.
It is easy to see that for every f¢ C[—1, 1] there exist two polyno-

mials P* ¢ H,, Q% ¢ H,, so that e, ,(f)=f(P*(x)—Q*(x) .

The polynomials in the couple (P*, Q%) are called best parametric ap-
proximation polynomials of order (m, n) of f.In the general case this couple
is not unique. ’

In [2] BL. Sendov proved the following

Theorem A. Let the function f¢ C|—1, 1] be given by

f(x):{fl(x) fOI' XE[—], 0]:
f2(x) for x €0, 1], £,(0)=12(0),

where f,, i=1, 2, are dnalytic functions in the circle with radius r>1,
Then we have

enn(f)=0@<Dlm),

where the constant c(f)>0 depends only on f.
In {3] J. Szabados generalized this result as follows:
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Theorem B. Let —1=F,<E <...<Es=1 be a partition of the in-
terval [ 1, 1] and let f¢ C|—1, 1] be such that in each interval [8i—1,
El i=1,...,s, f is equal to the analytic function f; in the circle ci={z
G —&-Dr—=22—E_, &), r>1,i=1,..., s. Then

En, n(f)-": ()(e—"' (f)VM )'

where the constant k( f)>0 depends only on f.
More precisely J. Szabados proved that in this case we have

€y 0@y,
~ Let us mention that there exists an analogue between the order of
rational uniform approximations and the degree of parametric approximations
of the class of piecewise analytic functions. P. Turan and P. Sziisz [4]
have shown that for the best rationol uniform approximation of n-th degree
of a function f piecewise analytic in [—1, 1], one has
—d () Vn
(M R,(/H=0(e ),
where R, (f)=inf{ f—r r¢R.} and R, is the set of all rational functions
of degree n, d(f)>0 is a constant, depending only on f. That the order in
. ° . —c |'n —C, ]'n
(1) is exact follows from Newman’s result [5]: e ] =R, (x)=e .
In connection with this the question arises whether the order
exp(—c(f))/n) in theorems A and B is exact. In this note we shall improve
theorem B (and hence theorem A), showing that the order of the best pa-
rametric approximation of order (n, n) is better than the order of the ra-
tional uniform approximation of n-th degree for piecewise analytic functions:
we shall show that for such functions we have

(2) En.n(f):: ()(e_“(/.) l‘"l" ").
~The question whether the order in the estimate (2) is exact re-
mains open.

2. We need some lemmas. Let —1=E,<§ < ...<E=1 be a partition of
the interval [—1, 1], s> 1. Throughout the paper this partition remains fix-
e(cli.. Let us set v=min{§,—E_, 1<i<s}. The following lemma is prov-
ed in [3]: i

Lemma 1. Let k>0 be an arbitrary natural number. There exists
an algebraic polynomial P ¢ H,., r<c, (v, s)k, such that P(§)=%;, i=0,..,5;
POEN=0, j=1,°.., 2k, i=0,..., s.

Lemma 2. Let [a, b]Clc, d], P€ Hu. Then

‘ 2d—o
< , " max P(x) .
xren[?.)fnp(x)-[ b—a l x€[a. b] '
Proof. It is known that for every polynomial ¢ € and every
X €[—1, 1] we have g(x) < Th(x) q , where T, is the Chebyshev poly-
nomial of degree n: 7, (x)=cos(narccos x). For x €[—1, 1] we have
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3) Ta(x) = (x+)x2 1y (x—Yx2—1) 25(2 x)".

Applying the linear transformation T:la, b] | —1,1] (Tx=(2x
—(a+b)) (b—a)), we see that T ([c,d)| (d—c) /(b —a), (d—c)/(b—a)
which together with (3) implies the lemma,

Lemma 3. Let P bz the polynomial from lemma [. Then for
X €& -1, Z,+3IN]—1, 1, =<<v/4 we have P'(x) =(c,(v, s))* 2~

Proof. We may assume that x ¢ [§,—z|, 1=<i<s. Using Markov’s in-
equality we obtain for x €[ —1, 1}:

(4) P (x) =R (c, (v, 8) P — (¢, (v, ) k).
By lemma 1 we have
(5) P’ (x) ~(x =) P*(x), P*¢H,, ri-=¢ (v, )k—2k-— 1.

From (4) we obtain (x—&)* P*(x) =(c¢, (v, s)k)? and therofore
(6) max { P*(x) & =x=(%i +§&)/2}
<4k (e (v, )R /E,—Ei1)F=4% (¢, (v, §))? kv,
Using lemma 2 we obtain from (6)
(7) max { P¥(x) & Sx<E}<4a @0 k(e (v, s) k) (4/v)*.

Finally (5) and (7) give us for x € [§,—r1, £] P’ (x) <% (¢, (v, $)F that
proves the lemma.

Lemma 4. For every natural number n>1 and every 8 ¢ (81Inn/n, 1)
there exists an algebraic polynomial o, 5 ¢ Hony such that

Gn, 5 (:X) é—;" e—"% for x ¢|—1, —3],

1 c,,,,,(x)g—;- e—"°*% for x¢[3, 1],

0=6,s(X)=1 for x =8.

Proof. The lemma follows from the results in (6), but for complete-
ness we shall give the full proof. Let 7 ,(x)=cos(nzarccosx) be the Che-
byshev polynomial of degree n. Then P,(x)=T,(2x>—(1-22)/(1—8&?) have
the following properties: P,(x) =1 for 3=x=1,

p” (x)=(—1) {(l'/l X2 4- ]/52;_X2)2n 4,(!/1 _xz_],’az__xz):‘n} /(21 _52)::)

for x 3.

Consequently for even n the polynomial P, (x) is even, P,(x)=1 for
x <& and P,(x) is monotone decreasing in |0, &]; P"(x) is even for odd #,
P,(x)=—1 for x =& and P, (x) is monotone increasing in [0, 2].

Since /1 —x2 1 —x2 for x <1, we have for x <2/2

(8) Pu(x) (1 -x213]3/2)7/2 = (143/2)*/2.
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Let us denote
Gn, 5 (x) ={ _}1 P,(t)dt - E’:P,, () dt} (LP,, (¢) dt).
We have from (8)
® ~ [ Putydt —3(1+3/2/2 ~5e22.

—d

Then, since 2 =~ 8Innn and n -2, we obtain from (9):
For —15x< -¢2:

A
Gns(X) S22 [P,(H)dt '<4e"%3
=

1 1 ,
< " s 4 e—-ZIn n< e—" 54 < e—" 34
~2nn =2ninn =2 ’

for x

IIA
>

X o
0=0us(x)=([ Pat)dt)/ (] Pa(t)dt)=s1
—8 —d
and for 8<x<1:
x 4
1—Gns(x) = [P, ()dt [ ([ P,()dt)S(x—8) e ""4/25e"34/2.
é —d

Since Gy, 5 € Hau41, the lemma is proved.

3. Theorem 1. Let feC|—1, 1] be such that there exis!s .a par-
tition —1=E<E,<... E&=1 with f(x)="f,(x) for x € &i—1, &, i=1,..., s
(f(E)—'f1+l(E), i=1,..., s-1), where f, is analytic in C,={z2z—n,

SE-Ei)r, n= (&,_,+E,)/2 r>1, i=1,..., s}. Then

em n(J)= O (exp(—c,(f)VnInn)) form =c,(f)Yn/Inn.

In particular &, .(f) =0 (exp(- c;(f)Ynlnny).

Proof. We may assume that -—1=§,<§, <...<E,=1 is the partition
of 2. From the condition of the theorem it follows that there exists a num-
ber ty, to=To(?, r), v=min{(§,—E&i—,) 1<i<s}, such that f; is analytic in
the closed interval A;=|8i— —7, §;+1), i=1,..., s, ©=1,. We may suppose
also that t<<v/4. Therefore there exist algebraic polynomials Q;, Q; € Hm,
i=1,..., s, and g, 0<g<_1, such that

(10) max { f;(x)— Q,(x) x ¢ A;}<cq™, c=const=c(f).

Using the notations of 2, let us consider the algebraic polynomial Q
of a degree at most 2([n/4]+c, (v, s)km

Q(x)= Qi (P (X))~ ‘; S ap, « (X —8) {Qit 1 (P (%) — Qi (P (XD},
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where P is the polynomial of lemma 1. Let us estimate f(P(x))—Q(x)
a) If x €&, —r, &, -+t for some i,, 0=i,<s, then

(11) f(P(x)—Q (x)

ig—1

S QP+ X s« (X = E){ Qi+ 1 (P () = Qu(P ) — Qi, (P (x)

+ f(P))—(1 2) Qi) (P (X)) —a Qi1 (P(x))

s—I1

+ 2 Oa) (x- E){Qis 1 (P (x)—Q(P(x)},

i=i, 1

where a=g, 4. .(x-—&;,) and therefore 0<az=<1 (see lemma 4). Using lemma
2 we obtain for every i, i—1,..., s:

(12) max Q (x) =(4/v)m max' Qix)=2 f (4/'0)"".

x€l—1I. x ’*l*l
Using (11), (12) and lemma 4 we obtain
(13) F(P(x)—Q(x) £2s  f (4/xyme—indics

+(1-—a) f(P(x)—-Qi,(P(x)) e f(P(x))—(Qio»u(P(X)j, O=sasl.

We have x €1§ —=, €] or x €[&,, &, ! tJ]. Consider the first case, the
second one may be treated in the same way. In this case we have P (x)
€[&,—1, &), therefore f(P(x))=fi,(P(x)) and consequently obtain from (10)

(14) F(P(x)— Qi (P(x)) =cg™.
In order to estimate |f(P(x))—-Q,u 1(P(x)) we mention first that since
fi are analytic in A, i-—=1,..., s, then f, are Lipschitz functions, e. g.
fi(x)—f,(y) =K; x—y forx,y € A, and for some Ky, independent cfi, i1,
Since fi, (&)= fi,+1(&,), &,=P (), we have
fP(x) Qi1 (P(x) = [fi,(P(x)—Qi,-1(P(x))
< fi, 1t (PO)—Qiyc1 (P (X)) + | fi,sr (P ) —fiy o1 (&) + fi, o1 (Gi)—fi, (P(x))

Scqm+ Ky P()—PE) + fi, G)—fi,(P(X)) Scqm+2K;x max P’ (x).

x€ [&,—r. Eiul

Using lemma 3 we obtain
(15) f(P (X))— Q,'" 1 (P (.V))'éC(]’"-}- QK/ g2k +1 (c, ('l’, SH.

From (13)—(15) it follows for x € [§;,—=, &, 1]
(16) f(P(x)—Q(x)=2s | f (4/v)yme 41t cqgm 2K, <% 1 (c,y (v, s)k

The case when x € (&, {1, §,—=] is not so difficult:
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(17 f(P(x)—Qx)

—1

v

< Qi (P(x) .'" 26 a (x—=E) {Qis1(P(x))— Qi (P(x))}- Qi, (P(x))

s—1
i‘ fio (P(-\)) QL,(P(X))’{'_ A.\_.cln 4].r(x - El){Ql I(P(x))—Q,(P(X))}

I -l

§23 f (4/&2,)"’ 8{_"”(4%1'(]'".
Finally from (16) and (17) we obtain
(18)  f(P(\)—Q(x) S25 f (4 v)yme4sdfcgm L2K % 1 (cy (1, S)F.

Moreover (Q is an algebraic polynomial of degree at most 2(n/4]
+c, (v, s)km and P¢ H,y t=c, (v, s)k.
Let us set m:[; annn], k=[c7" (v, 8) Vn/inn), :=32(1+In %)

VI njn.
Obviously z<<v/4 and t=<t, for sufficiently large n. Moreover, Q€ H,

and P¢ H,, t__<_Vn Inn. We have for this choice of m, k£ and <

(19) 25 f (djvymeinditd
TV
=0,
2K, 1 (¢, (v, =0 ((c;(f))In n/rl)[l mirel e frin ",
since if  (c;(f)]'In nim) "N then

1 ,
a-[[n/lnnjc, (@, 5)] (y Inn—In(c;(f) }Inn)

eg(NHVrInn—c;(f), € (/)>0.
—c(f) Ininn

Therefore (18) and (19) give f(P(x)—Q(x) =0(e ), where
P¢ Hy, t<Ynnn, Q¢ H, This proves theorem 1.
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