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RELATIONS BETWEEN THE INTEGRAL AND HAUSDORFF
DISTANCE WITH APPLICATIONS TO DIFFERENTIAL EQUATIONS

SVETOSLAV M. MARKOV

Bl. Sendov and V. Popov (1966) estimated the integral distance between two
functions from above by means of the Hausdorff metric. In this note a similar lower bound
is established. These estimates are used for studying the uniform distance between the
solutions of two first order ordinary differential equations by means of the Hausdorff
distance between the right-hand sides of the equations.

1. Introduction. We shall denote by B, the class of all measurable on
the interval /=|[a, b] functions, bounded by the constant B>0, so that
sup: e |p(t) =B.

The modulus of non-monotonicity of ¢ € B, is defined by (see for in-
stance [1]):

1 .
1 (8)= g SUPx—y < s{SUP=z= [ P(x) —p(2) + @9(2)—@(y) |— o(x)—o(y) }.

This module is a convenient tool for characterizing periodic functions.
When functions on a finite interval [a, b] are considered it is more convini-
ent to use

i, (3) = max{p,(3), SUP x—y =5 fx)—Ay), SUP +—y <:_;a‘f(x)—f (N

which we call the corrected modulus of non-monotonicity of ¢.

In the second part of the present note functions of two variables are
involved. We shall denote by B, the class of all measurable functions
defined on D=|a, b; ¢, d) ¢ R? and bounded by the constant B>0, i. e.
Supq, » el f(x, t) =B.

Given f¢B, and x € [c,d] denote g, the function defined on [a, 8] by
9x(t)=f(x, f). Then the modulus of non-monotonicity ps of a bounded func-
tion f of two variables is defined by pA8)=Supc=x=apqe (8).

We need next the definition of Hausdorff metric for functions of one
or two variables. It is equally easy to formulate it in the n-dimensional case
(for more detail see [2]). First the notion of complete graph is introduced.
For a bounded real function of » variables f=f(x, x,,..., x,) its complete
graph f is defined as the intersection of all closed subsets F in R"+1, ha-
ving the following properties: ¥
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Relations between integral and Hausdorff distance 113

1) F contains the graph of f;
2) if the points (xy, X3,..., Xn, Xn+y) and (x,, Xo,..., X, Xn4,) belong to F and

X <Xpt1<<Xniy, then (x,, Xo,..., Xn, Xn.1) also belongs to F.
Now for two bounded functions f and g of n variables the Hausdorff
distance between them is given by

r( f, &)= max{max ¢y mingegp(A, B), maxp¢, ming¢ s g(A, B)},

wherein f and g are the complete graphs of f and g as point sets in the
space R"*!, normed by X = (x;,X3..., Xnyy) =Max{x;, X5 ,..., Xp41}
so that g( X, Y) X—Y =max, ,...,nas { x;—¥: }.

We shall also denote shortly minge ¢ g(A4, B)—d(4 g). Finally we shall
use the notation f(a) for the intersection of the point set f with the line
x=a (in the n-dimensional case the line {x,=a;, i=1,..., n}).

2. Relation between the integral and the Hausdorff metric. The
problem of estimating [% f(x) -g(x)[dx by means of Hausdorff metric is
considered in [1]. It is established that for every two functions f, g ¢ B, the
inequality

(N 2 f(x)  g(x)dx=(b--alinfocs. b—a[4Br(E+1)/8+2u(8)]+r}

holds, where r=r(f, g) and p is the modulus of non-monotonicity of f
(or Q).

It is also shownin [1]that if f, g€ B, with pg(¢) < Kt9, where K =0,
g — 0, then
(2) Ja f(x)—8&(x)dx = c(b—a)re' @,

where ¢ may depend only on the choice of gq.

Our purpose in this section is to estimate the integral distance from
below. We shall make use of the following result which is an extension of
lemma 8 from [3].

Lemma 1. For every bounded in|a, b] function f, if the point (x,, y)
belongs to f, xo €(a, b) and 0<t < min{b—x,, x,—a}, then

i) the inequality

3) ()= yo—pr(20)

holds either for every x €[x, ¢, x,), or for every x € (x,, x,+1t];

ii) the inequality f(x)=< y,+pA(2t) holds either for every x € [x,—t, x,)
or for every x € (xq, xo+t).

Proof. We prove conclusion i); conclusion ii) is treated analogously-
Notice that in view of lemma 8 from [3] the inequality

4) S(x) = f(x0) — s (2¢)

holds either for every x €[x,--f, x,) or for every x €(x, x,+¢]. To obtain
conclusion i) it is enough to prove that the inequality

(5) f(X)A;:"‘ —I"'f(Qt)t 7= lim SUPx-x, f(x))

is true either for every x € [x,—%, x,) or for every x € (xo, Xo+£).
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Assunce (5) is false, i.e. {kere are x, € [xo—Z, xo) and x, € (x,, Xo+1], such
that f(x)<v,—p,(2f) and f(x,)<<7i—p,;(2¢). Choose ¢>0 so that f(x,)+¢
<7 —s(2¢) and  f(x,) ! e<w p;(2f) simultaneously hold, and a point
X3 € (xy, x;) such that f(x;)—v<Te, i. e. —e<f(x;)<7+e. Such a point does
exist because there is a sequence x,-»x, for which f(xz) -7, and x, <x,
< xy. From #— f(x))>ps(2f)+e and n—f(x;)<<e we get y—f(x,)>p (2f) e
S (204 f(xy), i e f(xg)—f(x)>ps(2()>0. Similarly is obtained that
S (xy)—f(x)>ps(<6)>0. Using the lst two inequalities and the inequalities
X, X, <21, x;<Zx;<x, we obtain o

200 2t)  fix)—f(xy) + )= f(x3) — fx)—f(x2)
=[O —f(x) + floeg) —f (x2)— f(x)—f(x,)

_ [ 2(f(x3)- f(xy), when f(x)) 'f(x'a)]

lQ(ﬂxs)' f(x)), when f(x,)<<f(x,) '

This contradiction proves (5). In order to obtain (3) it 1s sufficient to
notice that y, < max{ f(x,), limsup,,,, f(x)}. Then (3) follows from (4)
and (5).

We now can state

> 2u,(20).

Theorem 1. For every two f, g €¢B, with r-r(f, g ~min{lim,_eu/¢),
lim,) 0 t)} the inequality

b m, . m_._
(6) | f(x)—g(x)dx = max{m,r—g w20 dt, myr — [ pg26)dt }
a . 0

holds, wherein -
my=min{r, inf {£ p,(2)=r}},

my—min {r, inf {¢ wg(2¢)=r})

_ Proof. First we assume that the Hausdorff distance between f and g
is attained from f to g at some point x ¢ [a, b],i. e. 7(f, @) =max4¢s d(A, Q)
=d(x, y¥), - Then according to the definition of r(f, g), for every ¢, such
that ¢ =r—r(f, g and x+£¢[a,b] holds either g(x+7)— y*—r or g(x+1)

Case 1. Suppose that g(x-}-f) < y*—r for every ¢, such that ¢ <r,
x+1 € a, b]. Assume also that

Case la. a-lr =x =b—r. In this case x € (a, b) and according to lemma

1 for every £ ¢ (0, m,] we have either f(x—)=y*—p;(2f) or f(x+1¢) -y*

us(2f). Denote by &, the set of points ¢ belonging to (0, m,], which

satisfy the first inequality and by S, the set of points, satisfying the second

inequality. Obviously S,US,=[0, m,] and S,, S, are measurable sets. Then

b xX+r
£ f(x)—8(x) dx‘-f?_-xi ) J(Z)—g@®)dg

C— %

fx+18H)—g(x+1) dt+(]:' f(x—1t)—g(x—1)dt
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=[ flxr—glertyde+] | f(x—D—glx—bydt

S @01 — (v Dt (o= (0] (y* =)t
- [ [ @0Nt =] [r -y @0)dt=r,— p (20t
S\US. 0 0

and hence, in view of the fact that ;,(t) —ps(l),
b my
@) J 1 f(x)—g(x)dx=rm,— | p/(2)dt

holds, as well. Consider now

Case 1b. x € [a,a+r) or x € (b--r, b]. Assume that x €[a, @a+r). Notice
that if m, < x-—a, then the above considerations hold and (7) is true. Sup-
pose m>x- a. Then we can write

b xX+4r 2x—a
£ f(x) 'Ag(x)dx?;'z @) —g®dt = ‘{ fE&)—&® dE

SN GRY GIE:

and try to estimate the two integrals. For every £ ¢ (0, x—a] we have:
either f(x+£) = y*—p,(2¢) for ¢ belonging to some S,C(0,x—a), or f(x—t)
—y* »;I,(?t) for ¢ belonging to S,C(0, x—a) S;US;=(0, x—al. .

Using the assumption that g(x+£)=< y*—r for ¢ < x—a<r we obtain

2x—a a a
J f(E)—g(E)vth:{) f(x—t)—g(x—t)!dt+g f(x+t)—gix+t)adt

=] fx—O—glx—tydt+] flx+D)—gx+0)at
= Ly @O — (=t + [ [ v —py @0 —(y*—n)ldt
= lr—w @)t

In order to obtain a bound for the second integral, wherein ¢ takes
values {=x-—a, notice that
(8) ;/(20;'5“[’ 5:2252%1 f(E)"" f("l)f’_;—fsup X Ht—py =2t f(x+t)_f(7l) &

In the second inequality above we have chosen §=x--£, which is allowed
because of {==x—a, i. e. . x+f—a =2{. The number 7 satisfies the inequali-

ties x—¢ <% =< x+3t and hence there is a sequence 7w, — x, for which
{ f(y)} tends to limsup,,.f(£). Passing to the limit in (8) yields

fr 2= lim supes f () —f (x +-1)
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which implies

9) fx O =lim sup,. f(H)—pp(2t), t-—x  a.
Stilll easier we obtain that for f ~x—a

(10) Fx 1) (x) —ps (20).
Indeed,

b (26 Zp (@) =supn-i fE R~ f(E)

Supiza -« fETH—SE = f(x+D—f(x).
Combining (9) and (10) yields for any y, v, < max{ f(x), limsup .. f(£)}
[ty =vo—py(20),

which is enough to conclude that f(x | #) —~y* u,(2f), t.-x a (recall that
v* satisfies (x, y¥) € f(x)).
For the second integral we obtain then

m

[ fE)—gE) dE — | fxi+t)—gx i bhydt - [ {(yF—ps@0)—(yF—r)dt

X 1
2x—a xX—a x—a

”l| ~
= | {r-—-p(20))dt,
so that eventually we have

[ ir—py(2t))at

X—a

b x—a .
| flx)—g(x)dx-— |[, lr—ps(26))dt +

m

- lj)'{r (20t = rm, — (j) 5, (20)dt,

which is again (7). When x € [b r, b] we proceed similarly.

Case 2. g(x )= y*+r, t <r. By proceeding as in case 1 and using
conclusion ii) of Lemma 1, one obtains again (7).

Thus inequality (7) is proved by the assumpticn that the Hausdorff
distance ri f, g) is attained from f to g. In case that it is attained from g to

f, i e. r(f, @)= max, e¢gwd(A, ), we obtain similarly
b m,
| f(x)—g(x)dx-—=rm,— ‘I' pe(20)dt.
This inequality and (7) imply, (6), which completes the proof.
Corollary 1. For every two functions f, g ¢ B,, with ps(2t)=pg(2f) =19,
q—=0, the inequality

? f(x)—g&(x)dx=Cr*
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holds, where 3—1{2, when q ~1; (1 1q)q, when g =<1}, and C depends
only on gq.

Indeed we have m, m,—{r, when g ~1; r'% when ¢ =1}, which
substituted in (6) yields

r2—[29/(q - Drta-ri g -1,

b

;[7 f(\)g—g(X) ’{r(, _,1),,,,“[.‘_(/’/(] 'r'(]\‘x]r“ L) q - (:(q)'r(l~fq)’q’ qé 1.
Remark 1. Results (1) and (6) suggest the question: are there func-

tions, for which both the bounds are of the same order with respect to r. For

() pety t7, g -1 and b a--const.r in view of (2) and Corollary 1

we have

b
Pl f(x) gx)dx = Criiaisa,
a

Because of lim, (14 2¢9)/(1+ g)= 2, we might expect that the expres-
sion in the right-hand side will attain the order O(r?) perhaps only for mo-
notone functions Indeed it is easy to check that for monotone functions
(u(¢) 0), defined on an inlerval [a,b], such that & a=const.r, the
inequalities

b
r<f f(x)—gx)dx £Cr?

hold, showing that the estimates (1) and (6) are exact by order in B,.

3. An application in the theory of ordinary differential equations.
We shall use the results (1) and (6) for bounding the uniform distanc»
between the solutions of two ordinary differential equations by means of
the Hausdorff distance belween the right-hand sides of the equations.

To clar'fy this, suppose y and wu satisfy in [a, b] the differential equa-
tions y'=f(x,y), resp. u'=g(x,u), and for the sake of simplicity suppose
that y(a)=u(a). Assume that f, g ¢ B, satisfy a Lipschitz condition (with
respect to the second variable) in D. It is easy to show (for more detail
see for instance [4, ch. I, §2]) that if max( ,ep f(x, ¥)—g&(x, y) =e, then

b
Y—Uu ¢ =suPa b Y(X)—u(x)) = [ flx, y(x) —g(x, ulx))dx

b b
[ f(x, y(x) - flx, u(x) dx [ f(x, u(x))—g(x, u(x)) dx

a
Kb—a)'y—u ¢ e(b—a),
where K is the Lipschitz constant of f. Hence we have
v—uc b a)l - Kb—a)),

assuming that K(b—a)<1.

Our purpose in this section is to obtain an upper bound for y—u ¢
by means of the Hausdorff distance r(f, g) instead of the uniform di-
stance e.
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In order to use inequality (1) for estimating the integral [2 f(x, u(x))

—g(x, u(x))dx we need some preliminary results.

Lemma 2. Suppose that f(t, u) satisfies a Lipschitz condition (with
respect to u) with constant K in D=|a, b; c,d). Suppose y=y(t) satisfies
a Lipschitz condition with constant k in |a, b) and let y(t) € [c, d] for every
t €la, bl. Then for the modulus of non-monotonicity of the function

defined on |a, b] by (t)=f(t, y(t)) the inequality

(11) 1,(3) s (3) - 4Kk3
holds.

Proof. For ¢, £, t €[a, b] let us put y,=y(t,), y,=y(t), y=(f). We
have f(¢, y,)—f(¢, y) =K y,—y, — Kkt,—t,. Obviously

mPe sup, | f(t, y)—F(& y) + | fts, ya)—Ft, W)= [tz y2)—flty, ¥y,
supn=i=e[ [ (&, YO =S, v) + &, y)—f (& ¥) + [tz y2)— [E, v2)
+ [ ) —f & ) |— [ty ya)— [}, 3))
Cosupei=e [ f(EL, y)—f(t y) +KRE—1 + | f(ts. yo)—f (£, ¥o) + Kkt~ t
— fts, y2)—f(t, 31)
supn=i=r, | f(E, ) ~F&y) + [y, y2) [ ¥2) |— f(ts, y2)— [t y)
+Kkt,—t,.

But )
fuy)—ft,y) ~ [, yO—f(t,y2) 4 [ty ya)—F (& yo) + (&, y2)—f(E 1)
= Kkty—t, + [, y)—f (6 v + KR tz_ix. = f(t, y)—f(t, ;) 1 2Kkity—t,

and hence
m == sup,——. | flt,, Vo) —f(t, ¥2) + f(€e y2)— fE, y2) |~ f (&2 ya)—flty, y1)

' 3Kk t-z"'tl
=supg=i=n[ fEy,Yo)—f (&, y:) + [ty yvo)—ft, v2) ] f(l2. y2)—f(t,, y5)
+A+43Kkt,—t,,

wherein A= f(t,, yo)—f(t,, ¥2) — f(ty, yo)—f(, y) = | @&, y)—f(L,,
“/Kktz—t,.Thérefzore, v no e nI)=S G ya)

m= sup:,«__grgr,l f(tn yz)“f(tny-_g) -+ f(tzv ,Vz)—‘f(t, yZ) ]— f(tz’ yz)_' f(tlv y2)
+4Kkt,—t,.
Thus we have
1+(8) =SUP 1,1, <o M = SUPcy,-d SUP 1,1, s M

= SUPc=y,<d SUP 1,—1, =5 {Sup!,::.l:it:[ f(t,, yz)——f(t, yz) - f(tZy yz)ﬁf(t’ yz) ]
— f(ta ¥o)—f(t, y3) }+4KkE = s (8)+ 4Kk 8,

which was to be proved.
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Lemma 3. Suppose that f and g are bounded in D--|a,b;c, d] and
satisfy the Lipschitz condition (with respect to y) with constant K. Sup-
pose y=y(t) and u-=u(t) satisfy the Lipschitz condition in [a, b] with
constant k and y(t), u(t) € |c,d| for every t ¢ |a,bl. Then

(12) (e ¢) Mr+ y—ulc

where o(t) - f(t, y(£), b(t) =g, u@)), r =r(f, & and M—=Kk+ K- 1.

Proof. According to the definition of r=r{f, g), to every ¢ ¢|a, 8]
correspond ¢, €|a, b] and u, €[c,d] with the rproperties that ¢, —¢ ~ r,
y(t)y—u, r and f(¢, y(2£)—g(t,, u,)  r. Similarly to every £ ¢[a, b] corres-
pond ¢, € [a, b] and 3, € [c, d], such that £, —¢ - r, u(t) -y, — rand f(¢,5, ;)
—&(t, u(t)) - r. Hence

(13) r(p, )~ max{r, max fit, y(1))- ‘g(h.u(h)),‘_naxb [y, y(t2))—g(t, u(®) }.
But - B
S, y(t)—g't, u(t) - f(t, W) —g(t,, u) + g, u)—gt,, ult,)
=r - Kuy—u(t) =r+K{ ul—'y(t) + Y@ —y(t) - y(t) -u(t))}
SriKr+kt -ty 4+ y—uc¢) r+Kr-t-kr+ y—u )=Mr+| y—ulc,
where M= Kk+ K- 1. A similar proceeding yields
g, @) —f(ty y(t3)) SMr+ y—u c.
The substitution of these inequalities in (13) lzads to the conclusion (12)
of the lemma.
Particularly, assuming that y(f) _ u(f) on [a, b], we obtain
Corollary 2. Suppose f and g are bounded on D=|a, b;c,d] and
satisfy the Lipschitz condition (with respect to y) with constant K. Suppose
v=y(t) satisfies the Lipschitz condition on |a, b] with constant k and

¢y € [c, d] for all t € |a, b]. Then the Hausdorff distance between o= f(t, y(t))
and Y =g(t, v(t)) satisfies €

(14) r(e, $)S(Kk+ K+ Dr( f, 2.

Let us formulate also the following :

Corollary 3. Suppose f, g are bounded in D=|a,b; c,d] by the
constant B>0 and satisfy the Lipschitz condition (with respect to y)
with constant K. Suppose y=y(t) and n=u(t) satisfy the differential equa-
tions y =[(t, ), ya)=u,; resp. w'=g(t, u), u(a)=u, Then the inequa-
lities

i) oy, uy-Mr+ y—uc

ii) V=t ¢c=(1 -BYMr+ y—u ¢)
hold, wherein M- KB+ K+1, r=r(f, 9.

Using some of the results one can verify the following

Theorem 2. Suppose f, g€B, and sitisfy the Lipschitz condition
(with resp. to y) with constant K, such that K<(b—a)~'. Then the solu-
tions y—=(x), u=u(x) of the initial problems y’ = f(x, y), y(a)=X; u’' = g(x, u),
u(@) =1, satisfy the inequality
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) ) b—a . g+1 —
(15 y-uc | —(b— a)K{()élgf,-a“BM’ 5 T 2u/(3) - BKB3]+Mr},

wherein M=KB+ K1, r=r(f, g).
Proof. Indeed it follows from y(x)—u(x)=[*[f(t y(t)) — g, u(t)))dt
that

b
y—u c=f fit, y(t)—g(t, ut)) dt
(16) .,
b b
=J St y) —gt, y®) dt -] gt, yt)—g(t, w®) dt=1I,+ 1.

Relying on inequality (1) we have

Ly =(b—a){infocs<o—d4Br(&+1)/5+2p,(8) ] +r},

where r=r(f(¢, y(®)), g(¢, y(®)) and p, is the modulus of non-monotonicity of
®(t)=f (¢, y(t)). Hence, in view of (11) and (14)

1 =(b—a){infoxs<p—a 4BMr(&+1)/8 4 2ps (8)-1-8KB8]+ Mr},

where M=KB+K+1, r=r(f,g) and p; is the modulus of non-monotonicity
of f with respect to £.

On the other hand, /,=[*K y—u cdt=K |y—u|c(b—a), using the
assumption that g satisfies a Lipschitz condition. Substituting the bounds
for /, and /, in (16) yields

y—ul c=(b—a){into<s<s—o[4BMr(5-+ 1)/5+4-2p;(8) + 8KB3] + Mr}
+K(b—a)| y—uc,

which in view of K< (b—a)~! leads to (15).

Remark 2. Recalling Remark 1 one can easily observe that the bound
for /, is exact by order, which immediately implies that the bound (15) is
also exact. )

Remark 3. As we have shown, if we have bounded ¢(y,u)= y—u ¢
by means of the integral distance between f and g, then using relation (1)
we can bound g(y,u) by means of the Hausdorff distance between f and g.
Inversely, if we have bounded in some way p(y,u) by means of r(f, g),
then applying (6) we can find a corresponding bound for p(y, #) based on
the integral distance between f and g.
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