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APPROXIMATION OF PLANE COMPACTA BY MEANS
OF POLYNOMIAL CURVES

TODOR P. BOJANOV

The class Ga of all compact and connected sets in the plane with a given metric
dimension a, 1< a<2, is considered. It is shown that the estimate o(n(®—1)/a) for the best
approximation by means of polynomial curves (8 is an arbitrary, strictly positive number)
cannot be improved in the whole class Ga.

We shall consider a problem of approximating in the metric space G
of all plane compacta with the Hausdorff distance

r(F,, F;)=max{max,¢ rminy ¢ r.p(a@, b), Maxy¢ r,Mina¢ rp(a, b)},

F,e¢G, F,¢d, where- p(a, b) is the distance between the points a
and b.

An element y, of G is said to be a polynomial curve of order n if
there exist two algebraic polynomials P(f) and Q(¢f) of degree at most 7,
such that y,={(x,y):x=P(¢), y=Q(f), —1=t=<1}. Let us denote by /", the
set of all polynomial curves of order n. I', is a subset of G.

The best approximation E,+(F) of F ¢ G by means of elements of T,
is defined as

Ear(F)=inf, ¢ r,r(F, Yn).

If Fis connected then £,r(F) tends to zero and may be estimated
using the metric dimension of F.

The definition of the metric dimension [1] needs some additional
notions:

A system of sets {U,} is said to be an e-covering of F if Fc|J, U
and the diameter of each U, is at most 2e; a subset F* of F is said to be
e-distinguishable if p(a, b))=¢ for each a ¢ F* b ¢ F* a=+b.

Let us denote by N,(F) the minimal number of sets in the e-cove-
rings of F and by M,(F) — the maximal number of points in the e-distin-
guishable subsets of F.

Then the upper and lower metric dimension of F are defined respect-
ively as

dm(F)=lim sup,o {Id N(F)/Id 1/e}, dm(F)=1im inf,,o{1d N,(F)/Id 1/e}
(log,( - )=I1d( - )) and the following equalities hold:
dm(F)=lim sup,_o{ld M(F)/Id 1/e }» dm (F)=1im inf,,o{1d M(F)/d 1/e}.
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If dm(F)=dm(F)=dm(F) then dm(F) is said to be the metric dimen-
sion of F.

"Let G, be the class of all compact and connected sets in the plane
with a given metric dimension o, 1 <<«< 2. We shall consider the best appro-
ximation in G, by means of polynomial curves. It is shown in [2] that if
F ¢ G, then for each >0 holds E,(F)=0@n—"("9). An equivalent formu-
lation of this estimate is easy to be obtained:

E/l.r(F)=0((ndﬁl)l *)
for each 2>0. . )
A slight modification of the proof of theorem 2 from [2] gives the
following
Theorem. Let o be a number, 1 <<2<2, and Y(x) be a function such
that Y(x)=o0(x?) when x-» o for each &>0. Then there exists a set
Fa. € G, with the property

lim Sup,,_,1{E,,‘|-(F;,,,.)/('~!)(fl)/’7)l’a}= .

Proof. The set F,, will be obtained as the intersection of a family
{F}~_, . where F, is a connected compact set and F, . CF.

Let us define the function @(x) by @(x)=1d $(2%).

We shall prove that g(x)=o0(x) when x — co. Indeed let us suppose, on
the contrary, that there exist a sequence {x;}*, and a number %>0, such

that x, -~ co and ¢(x;))>%.x;. Then we have 1d ¢(2%)>%.x. Let x,=1d y, so
Id $(yv,)>n.1dy,=1ld(y:)”. We get 4(y)>yr, where y;, — o, %>0, which
contradicts with §(x)=o(x").

Now determine an integer s> 1 for which s+ 3 <as and deno.e

Y= |-9(2s(k+ 1)) —¢(2sk)). Let k, be such that for 2>k, holds
o+ p25R) k<2, 2 | Y2s(k | 1) —$(2s5k)<< 2, v §_23 1.

The integer k, exists because of 1<a<2, p(2sx)=0(x) and we may
suppose, without loss of generality, that ¢(x) is convex upwards and an
increasing function.

We shall construct the sets /7, (k=k, k,+1,...) by an iterative pro-
cedure.-Let S, be a square with side ¢, (Fig. 1) and let us have a partition
of S, consisting of 2% squares with side g,.2— If K>k, we take [27] of

them in such a way that their union is a

7 connected subset of the set FE(hatched on

’//A%%A*/é Fig. 1) and contains the contour of E.

This may be done because of the inequali-
ties 8.25<2vs <221,

N

Y Now let us denote ¢, =25, 3, = p(2sk)/k,
/;%é%é N,=25x@+50 and let F,, be a co;mected set
G4 consisting of N, squares with side e,. If

F, is determined as the union of N, squa-
res with side ¢,, then we obtain F,,, taking
in each of them, after the manner above
mentioned, [2v«] squares with side g,.275.
Thus F, ., is connected and consists of
Fig. 1 N, .27k=N, ., squares with side e, ,.

)
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The set F;_,,,=ﬂ:°=kuF,‘ is a connected compactum and has an g,-

distinguishable subset consisting of N, points (the apexes of the squares of
F,). We shall prove that F,,, ¢ G,.

Given a sufficiently small >0, let' 2>k, be such that g, Se=<e.
Then

Id N(FL)Md 1/e <1d Ny oy /1d 1e=s(k+ 1) (& +3,4,)/(sk),
1d M(Fr)/1d 1/e=1d N/Id 1 e= sk(a+ 8,)/(s(k+ 1)).

If e — 0 then 2— oo and 8, —0, thus EIE(F;,,,,)éa, dm(F.;,)=a and we
get dm(F;,)=q.
It is easy to see (taking account of Fig. 1) that if y, is a polynomial
curve of order m, . '
Ym={(x, ¥): x=P), y=Q), —1st=1}

and 7(F;., Ym) <& /8, then P’(f) must have at least N, zeros, one for each
square of F,. Thus m>N,.
Now let n=/N,. We have E, (F.,)=¢/8, so

EortF2) (40} =g - 24 {HN/N}

=; . Q7 sk, {st(z “”‘)/’(P(Nk)}l a=; . Qskdy a/(,“Nk))l/a

1
]
If #— oo then 26 De@sk)z . oo, The theorem is proved.

A similar theorem holds in the case of the approximation by means of
trigonometrical polynomial curves.

(25..,,(251() /2 (10g: Nk\)l Ja =; (23.w(25k)/2¢(8k(u +6k)))1w’a2% « Qs 1) p(25k)
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