Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

PLISKA STUDIA MATHEMATICA BULGARICA IN A C KA BUATAPCKU MATEMATUЧЕСКИ

СТУДИИ

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

APPROXIMATION OF PLANE COMPACTA BY MEANS OF POLYNOMIAL CURVES

TODOR P. BOJANOV

The class G_a of all compact and connected sets in the plane with a given metric dimension a, 1 < a < 2, is considered. It is shown that the estimate $o(n^{(\delta-1)/a})$ for the best approximation by means of polynomial curves (δ is an arbitrary, strictly positive number) cannot be improved in the whole class G_a .

We shall consider a problem of approximating in the metric space G of all plane compacta with the Hausdorff distance

$$r(F_1, F_2) = \max\{\max_{a \in F_1} \min_{b \in F_2} \rho(a, b), \max_{b \in F_2} \min_{a \in F_1} \rho(a, b)\},$$

 $F_1 \in G$, $F_2 \in G$, where $\rho(a, b)$ is the distance between the points a

An element γ_n of G is said to be a polynomial curve of order n if there exist two algebraic polynomials P(t) and Q(t) of degree at most n, such that $\gamma_n = \{(x, y) : x = P(t), y = Q(t), -1 \le t \le 1\}$. Let us denote by Γ_n the set of all polynomial curves of order n. Γ_n is a subset of G.

The best approximation $E_{n,\Gamma}(F)$ of $F \in G$ by means of elements of Γ_n is defined as

$$E_{n,\Gamma}(F) = \inf_{\gamma_n \in \Gamma_n} r(F, \gamma_n).$$

If F is connected then $E_{n,\Gamma}(F)$ tends to zero and may be estimated using the metric dimension of F.

The definition of the metric dimension [1] needs some additional notions:

A system of sets $\{U_r\}$ is said to be an ϵ -covering of F if $F \subseteq \bigcup_r U_{\underline{g}}$ and the diameter of each U_r is at most 2ϵ ; a subset F^* of F is said to be ϵ -distinguishable if $\rho(a,b) \ge \epsilon$ for each $a \in F^*$, $b \in F^*$, $a \ne b$.

Let us denote by $N_{\epsilon}(F)$ the minimal number of sets in the ϵ -coverings of F and by $M_{\epsilon}(F)$ — the maximal number of points in the ϵ -distinguishable subsets of F

guishable subsets of F.

Then the upper and lower metric dimension of F are defined respectively as

$$\dim(F) = \limsup_{\epsilon \to 0} \{ \operatorname{1d} N_{\epsilon}(F) / \operatorname{1d} 1/\epsilon \}, \dim(F) = \liminf_{\epsilon \to 0} \{ \operatorname{1d} N_{\epsilon}(F) / \operatorname{1d} 1/\epsilon \}$$

 $(\log_2(\cdot))=1d(\cdot)$) and the following equalities hold:

$$\dim(F) = \limsup_{\varepsilon \to 0} \{ \operatorname{ld} M_{\varepsilon}(F) / \operatorname{ld} 1/\varepsilon \}, \operatorname{dm}(F) = \liminf_{\varepsilon \to 0} \{ \operatorname{ld} M_{\varepsilon}(F) / \operatorname{ld} 1/\varepsilon \}.$$

PLISKA Studia mathematica bulgarica. Vol. 1, 1977, p. 134-136.

If $\overline{\dim}(F) = \dim(F) = \dim(F)$ then $\dim(F)$ is said to be the metric dimension of F.

Let G_a be the class of all compact and connected sets in the plane with a given metric dimension α , $1 < \alpha < 2$. We shall consider the best approximation in G_a by means of polynomial curves. It is shown in [2] that if $F \in G_a$ then for each $\delta > 0$ holds $E_{\tau,\Gamma}(F) = O(n^{-1/(\alpha + \delta)})$. An equivalent formulation of this estimate is easy to be obtained:

$$E_{n,\Gamma}(F) = o((n^{\delta-1})^{1/2})$$

for each $\delta > 0$.

A slight modification of the proof of theorem 2 from [2] gives the following

Theorem. Let α be a number, $1 < \alpha < 2$, and $\psi(x)$ be a function such that $\psi(x) = o(x^{\delta})$ when $x \to \infty$ for each $\delta > 0$. Then there exists a set $F_{a,w}^* \in G_a$ with the property

$$\lim \sup_{n\to\infty} \{E_{n,\Gamma}(F_{\alpha,\gamma}^*)/(\psi(n)/n)^{1/\alpha}\} = \infty.$$

Proof. The set $F_{a,\psi}^*$ will be obtained as the intersection of a family $\{F_k\}_{k=k}^{\infty}$, where F_k is a connected compact set and $F_{k+1} \subset F_k$.

Let us define the function $\varphi(x)$ by $\varphi(x) = \operatorname{Id} \psi(2^x)$.

We shall prove that $\varphi(x) = o(x)$ when $x \to \infty$. Indeed let us suppose, on the contrary, that there exist a sequence $\{x_i\}_{i=1}^{\infty}$ and a number $\eta > 0$, such that $x_i \to \infty$ and $\varphi(x_i) > \eta$. x_i . Then we have $\operatorname{Id} \psi(2^{x_i}) > \eta$. x_i . Let $x_i = \operatorname{Id} y_i$, so $\operatorname{Id} \psi(y_i) > \eta$. $\operatorname{Id} y_i = \operatorname{Id} (y_i)^{\eta}$. We get $\psi(y_i) > y_i^{\eta}$, where $y_i \to \infty$, $\eta > 0$, which contradicts with $\psi(x) = o(x^{\eta})$.

Now determine an integer s > 1 for which $s + 3 \le \alpha s$ and denote $\gamma_k = s(\alpha + \varphi(2s(k+1)) - \varphi(2sk))$. Let k_0 be such that for $k > k_0$ holds

$$\alpha + \varphi(2sk)/k < 2, \ \alpha + \varphi(2s(k+1)) - \varphi(2sk) < 2, \ \gamma_k \leq 2s - 1.$$

The integer k_0 exists because of $1 < \alpha < 2$, $\varphi(2sx) = o(x)$ and we may suppose, without loss of generality, that $\varphi(x)$ is convex upwards and an increasing function.

We shall construct the sets F_k $(k=k_0, k_0+1,...)$ by an iterative procedure. Let S_k be a square with side ε_k (Fig. 1) and let us have a partition of S_k consisting of 2^{2s} squares with side ε_k . 2^{-s}. If $k > k_0$ we take $[2^{\gamma_k}]$ of

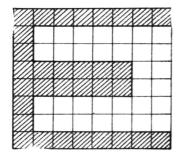


Fig. 1

them in such a way that their union is a connected subset of the set E(hatched on Fig. 1) and contains the contour of E. This may be done because of the inequalities $8 \cdot 2^s \le 2^{7s} \le 2^{2s-1}$.

Now let us denote $\varepsilon_k = 2^{-sk}$, $\delta_k = \varphi(2sk)/k$, $N_k = 2^{sk(\alpha+\delta_k)}$ and let F_{k_0} be a connected set consisting of N_{k_0} squares with side ε_{k_0} . If F_k is determined as the union of N_k squares with side ε_k , then we obtain F_{k+1} taking in each of them, after the manner above mentioned, $[2^{rk}]$ squares with side ε_k . 2^{-s} . Thus F_{k+1} is connected and consists of N_k . $2^{rk} = N_{k+1}$ squares with side ε_{k+1} .

The set $F_{\alpha, \gamma}^* = \bigcap_{k=k_0}^{\infty} F_k$ is a connected compactum and has an ε_k distinguishable subset consisting of N_k points (the apexes of the squares of F_k). We shall prove that $F_{a,\psi}^* \in G_{\alpha}$.

Given a sufficiently small $\varepsilon > 0$, let $k > k_0$ be such that $\varepsilon_{k+1} \le \varepsilon \le \varepsilon_k$.

Then

$$\begin{split} &\operatorname{Id} N_{\varepsilon}(F_{\alpha,\psi}^*)/\operatorname{Id} 1/\varepsilon \leq \operatorname{Id} N_{k+1}/\operatorname{Id} 1/\varepsilon = s(k+1) \ (\alpha+\delta_{k+1})/(sk), \\ &\operatorname{Id} M_{\varepsilon}(F_{\alpha,\psi}^*)/\operatorname{Id} 1/\varepsilon \geq \operatorname{Id} N_k/\operatorname{Id} 1/\varepsilon = sk(\alpha+\delta_k)/(s(k+1)). \end{split}$$

If $\varepsilon \to 0$ then $k \to \infty$ and $\delta_k \to 0$, thus $\overline{\mathrm{dm}(F_{\alpha,\nu}^*)} \leq \alpha$, $\mathrm{dm}(F_{\alpha,\nu}^*) \geq \alpha$ and we get $dm(F_{\alpha,\psi}^*) = \alpha$.

It is easy to see (taking account of Fig. 1) that if γ_m is a polynomial curve of order m,

$$\gamma_m = \{(x, y) : x = P(t), y = Q(t), -1 \le t \le 1\}$$

and $r(F_{\alpha,\psi}^*, \gamma_m) < \varepsilon_k/8$, then P'(t) must have at least N_k zeros, one for each square of F_k . Thus $m > N_k$. Now let $n = N_k$. We have $E_{n,\Gamma}(F_{\alpha,\psi}^*) \ge \varepsilon_k/8$, so

$$\begin{split} E_{n,\Gamma}(F_{a,\psi}^*)/(\psi(n)/n)^{1/\alpha} &\geq \frac{1}{8} \cdot 2^{-sk}/\{\psi(N_k)/N_k\}^{1/\alpha} \\ &= \frac{1}{8} \cdot 2^{-sk} \cdot \{2^{sk(\alpha+\delta_k)}/\psi(N_k)\}^{1/\alpha} = \frac{1}{8} \cdot 2^{sk\delta_k/\alpha}/(\psi(N_k))^{1/\alpha} \\ &= \frac{1}{8} (2^{s\cdot\varphi(2sk)}/2^{\varphi(\log_2 N_k)})^{1/\alpha} = \frac{1}{8} (2^{s\cdot\varphi(2sk)}/2^{\varphi(sk(\alpha+\delta_k))})^{1/\alpha} \geq \frac{1}{8} \cdot 2^{(s-1)\varphi(2sk)/\alpha}. \end{split}$$

If $k \to \infty$ then $2^{(s-1)\varphi(2sk)/\alpha} \to \infty$. The theorem is proved.

A similar theorem holds in the case of the approximation by means of trigonometrical polynomial curves.

REFERENCES

- 1. А. Н. Колмогоров, В. М. Тихомиров. с-энтропия и с-емкость множеств в функциональных пространствах. Успехи мат. наук, 2, 1959, 3 86.
- 2. Т. Боянов, Бл. Сендов. Метрическая размерность и приближение полиномиальными кривыми на плоскости. Serdica, 2, 1976, No. 4, 295-299.

Centre for Research and Education in Mathematics and Mechanics 1000 Sofia P. O. Box 373

Received 30. 9. 1976