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FINITE NONSOLVABLE GROUPS HAVING A MAXIMAL
SUBGROUP OF ORDER 2p

KEROPE B. TCHAKERIAN

The object of this paper are finite nonsolvable groups G having a maximal subgroup of
order 2p, p prime. By using group theoretic, character theoretic, and elementary arithmetical
arguments, the following result is proved: If the order of G is divisible by at most four dis-
tinct primes, then G is isomorphic to PSL(2, ¢) or Sz(29) for an appropriate value of q.

1. Introduction. In this paper we are interested in finite nonsolvable
groups G with the following property:

(%) G has a maximal subgroup /H of order 2p, p prime.

W. Feit and J. Thompson have proved [6] that if p=23 then G is
isomorphic to PSL(2,5) and G. Higman has shown [10] that G is isomor-
phic to PSL(2,5) if p=>5. The more general situation of finite groups having
a dihedral maximal subgroup of twice odd order has been investigated by se-
veral authors, see [9; 10; 12; 13].

The only known simple (x)-groups are as follows:

PSL(2, p+1), where p is a Mersenne or Fermat prime =3;

PSL (2, 2p+1), where 2p+1 is a prime power =5;

Sz(p+1), where p is a Mersenne prime =7.

Here we prove the following result.

Theorem. Let G be a finite nonsolvable (+)-group. Suppose that the
order of G is divisible by at most four distinct primes. Then G is isomor-
phic to one of the groups listed above.

The proof depends upon a method essentially due to R. Brauer and con-
sisting in analysis of the possible degrees of the irreducible characters in the
principal p-block of G. This method has been developed and applied by L.
Alex in a similar context ([1—3]).

The notation is standard. However, x(() denotes the set of all distinct
prime divisors of |G|, the order of G. B(p) is the principal p-block of G and
Z» means an irreducible ordinary complex character of degree n. If r is a
prime, the notation x, is used only for an element of order r in the center of
a Sylow r-subgroup of G, and C(x,) for the centralizer of x, in G. The sym-
bol #(x, x, y) denotes the class algebra coefficient, that is the number of
distinct ways in which the group element y can be represented as a product
of two conjugate to x elements.

2. Preliminary results. The following information concerning the princi-
pal p-block of a simple (x)-group is crucial for the proof ([1—5, 9, 10]).
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2.1. B(p) consists of the principal character, 14, a character z, and (p—1)/2

(exceptional) characters z9, i=1,..., (p—1)/2.
There is a sign =11 so that for i=1,..., (p—1)/2
(2.1.1) 2(1)=6, 2™(1)=24 (mod p).
For every p-regular element x of G
(2.1.2) 210(x)=2x(x)+ 0.
In particular,
(2.1.3) 21 =x(1)+3,

the so called degree equation for B(p).

2.2. If the degree equation is r‘=414u, where r is a prime, then r¢ is
the order of a Sylow r-subgroup of G. Hence a character of degree r¢ vani-
shes on all r-singular elements.

2.3. For every p-regular element x and 15==1.£B(p),

(2.3.1) H#(x, X, xp)=| G (n—1a())*/n(n+1)| C(x) 2.
In particular,
(2.32) FH(xg Xg Xp)=p-

2.4. All the involutions in G are contained in a single conjugate class.

Finally, we need a simple arithmetical result.

2.5. Lemma. The solutions to the Diophantine equation (.) 14+x=y,
where x and y are of the form 2°3°r’,r=13 or 17, x>25, are x=26, y=27
and x=288, y=289.

Proof. Since x and y clearly are mutually prime, at least one of them
must be a prime power. We next recall a simple fact. If r is an odd prime,
and r7=22+1, then y=1 unless y=2 and r=3. Using this it is easily seen
in each of the cases below that there is no solution to (.) with x>25 when
any of the exponents a, g, and y is zero. Thus we may assume afy==0. The
cases r=13 and r=17 will be considered separately.

1) r=13. We have three possibilities:

1.1) x (or y)=13" and (.) reads 13”=2<3/+1. Now [12] (Lemma 2) im-
plies y<2 which gives no solutions.

1.2) x(or y)=3% and (.) becomes 3/=2°13"+1. Since now 3*=1
(mod 13), 3 divides B. If 8 is even, then 3= —1 (mod7) yields 3/=1
(mod 7) whence 2213’=0 (mod 7), a contradiction. Thus g is odd. a>1 implies
that 3¥=1 (mod 4) while 33= —1 (mod 4) shows that 3= —1 (mod 4). There-
fore a=1 and we can write the equation in the form 2.13"=(u—1)(u?+u+1),
where u=23#3, Since u—1 and u?+u-+1 are mutually prime, we must have
u—1=2 which implies that x=26, y=27.

1.3) x (or y)=2¢ that is 22=3#13"+1. 2°=+41 (mod 13) yields a is di-
visible by 6 whence 2¢=1 (mod 7). Now we have 2+ 1=3%13" so that 2=0
(mod 3), an impossibility.

2) r=17. We have again three possibilities:

2.1) x (or y)=17” and (.) becomes 177=2°3/+1. Again [12] (Lemma 2)
implies y<2 which forces x=288, y=289.
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2.2) x (or y)=3# in which case 3/=2:17"+1. If a=1 or 2, then =2
and we are led to 2(—1)’=1=0 (mod9) or 4(—1)’+1=0 (mod9), both
these congruences being impossible. Let now a=3. Then 3= 41 (mod 8) so
that we have 3#=2¢17"4+1. Now 3/=1 (mod 17) shows that 16 divides g
and then 34=1 (mod 5) produces 2¢17"+1=3/=1 (mod 5), a contradiction.

23) x(or y)=2¢ and (.) reads 2¢=3/17r+1. Now 2¢= +1 (mod 51)
whence 8 divides a and then 285=1 (mod 5) yields 3/17r=0 (mod 5), again
an absurd. This proves the lemma.

3. Proof of the Theorem. Let G be a finite nonsolvable (#*)-group and
|7(G)|=<4. Then it follows from [14] that G is simple and /7 is nonabelian so
that A is the dihedral subgroup of order 2p, p>2. If p<5, G is PSL(2,5)
([6] and [10]). So we may suppose p=7. Let P be the subgroup of order p in
H. Since P is normal in H, NgiP)=H and hence P is a Sylow p-subgroup
of G. Furthermore, CgyxP)=Cy(P)=P. It is clear, because of the maximality
of H, that P cannot lie in two distinct subgroups of order 2p and therefore
G has exactly one conjugate class of subgroups of order 2p.

If every proper subgroup of G is solvable Thompson’s work [15] implies
that G is one of the groups PSL (2, 29), PSL (2, 39), PSL (2, ¢) or Sz (29) for
suitable primes ¢, or PSL (3,3). The latter oneis not a (=*)-group, since
the normalizer of a Sylow 13-subgroup is not of order 26. Each of the re-
maining groups possesses, as mentioned above, the property () for some g-

Now we can suppose that G contains nonsolvable proper subgroups. Let
K be a minimal nonsolvable subgroup of G. We shall first show that p does
not divide | K|. For in the contrary case we may assume Pc K. Then Ng(P)
=KNH=P=Cy(P) and Burnside’s well known theorem [7] implies that K
has a normal p-complement A. Obviously P acts on A as a fixed point free
automorphism of prime order and by another result of Thompson [7] A is
nilpotent. Hence K is solvable. This contradiction proves the assertion. Let
now L be a maximal normal subgroup of K. Then K/L is a simple group
whose all proper subgroups are solvable by the minimal choice of K. Further-
more, it is clear that |x(K/L)|=3. Now the above list of the minimal simple
groups yields n(G)={2, 3, r, p}, where r=5,7,13 or 17.

If r=5 it follows from [11] that G=PSL(2,¢) for some ¢. If r=7,[1]
implies that G=PSL (3, 4) or PSL (2, g) for some ¢. The former one is not a
(*)-group, since the normalizer of a Sylow 7-subgroup is not of order 14, and
the normalizer of a Sylow 5-subgroup, of order 10, is not maximal in PSL (3, 4)
which contains a subgroup isomorphic to PSL (2, 5).

Hereafter we shall suppose that r=13 or 17. Consider now the principal
p-block B(p). If B(p) contains a nonidentity character of degree =25, then
[3] can be applied to obtain G is PSL (2, ¢g) for some ¢. Thus, we may assume
that x(1)>25, x¢X(1)>25 in the degree equation. Since these character degrees
are also relatively prime to p, Lemma 2.5 yields two possibilities for the deg-
ree equation; 1+26=27 and 1+ 288=289.

Consider first the degree equation 1+26=27. Now 2.2 implies that |G|=
243813¢p, and (2.1.1) yields the unique choice p=7. Furthermore, (x4, Xq, X7)=7
from (2.3.2) and then (2.3.1) becomes 7.2.13.3% | C(x,) [?=| G |(26 — xo6(X2))%. If
2% a=0, is the highest power of 2 dividing 26— xy4(xg), then this equality
shows that a=2a—1 is odd. Since 0<26—yx5(%3)<52, a<5 whence a=<9,
The same equality yields ¢ odd and a similar consideration of F(x.5 X3, X7)
forces ¢=<1 so that ¢=1. The number of Sylow 7-subgroups in G is 29—13%13
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and is =1 (mod 7) which yields 2°—'=1 (mod 7). It follows a=1 or 7. But
a=1 is impossible since the order of a simple nonabelian group is divisible
by 4, and, therefore, | G|=273%13.7=314,496. Now [8] shows that there is no
simple group of this order, a contradiction.

Thus, the degree equation for B(p) is 14+288=289. The results of the
preceding section yield G =293°17%p, where p=7, 29 or 41. Furthermore,
H(x,, X9, X,) and FH(x3, Xs, X,) show that @ is odd, 3=a<13, and b is even,
b=8. Also a count of Sylow p-subgroups of G implies that 2¢-132172 =1
(mod p). We shall consider the cases p=7,29, and 41 separately. The following
lemma provides a usefull test for the analysis of the various cases appearing
below.

Lemma. Let S be a Sylow 17-subgroup of G. Then

(i) p does not divide | Ny(S)|;

(ii) a=5, and if a=5o0r b=4, the number of conjugates of S in G is
congruent 1 (mod 172).

Proofi. If p divides | NygS)| then CyxP)=P implies that S has an auto-
morphism of order p. But S, of order 172, is either cyclic or elementary Abe-
lian and its automorphism group is of order 2¢.17 or isomorphic to GL(2, 17),
of order 2932.17, respectively. This contradiction proves (i). :

Furthermore 2.2 yields 7oa9(x,7)=0, and $(x;4 X;7 X,) then yields a=5
and  C(x,q)|=172273%, where 0=r=4, 0=s=<3. If a=5 or b=4, then r=0 or
s<1. Now a count of Sylow 17-subgroups of C(x;;) forces Sis normal in
C(xy,). Hence clearly S is a trivial intersection set in G. Consider the action
(under conjugation) of § on the set zx of the remaining Sylow 17-subgroups
of G. Since no element ==1 of S fixes any point of =, the congruence in (ii)
is obvious.

Case p=7. Now the congruence for the number of the Sylow p-sub-
groups of G becomes 223°=1 (mod 7). This leads to the following possibilities
for | G|: 233%1797, 25321727, 25381727, 27341727, 29361727, 211321727, 211381737,
and 23341777,

G |=283%17%7 is impossible by the lemma.

If | G|=2832177 or 253%1727 (8] or the above lemma produces a contra-
diction. Similarly, if | G|=273417%7, the lemma is contradicted.

If |G|=293%1727, then 27 divides 288 — yyee(X5) and 0<<288 — x,64(X) < 576,
whence 288 — yg55(X9) =128 or 128.3. Thus xges(x)=160 or —96 and |C(x,)|
=2932 or 2933, respectively. In both cases we have |C(x,)|<(xoss(X2))

+(2a50(X%9))? = 2 (2(x5))?, where the sum is taken over all irreducible charac-

ters of G. But this is incompatible with the orthogonality relations for group
characters.

The possibility |G| =211321727 is rejected by the lemma or the argument
of the preceding paragraph, since now B(7) contains three characters of deg-
ree 289.

When |G| = 211351727, $:(xs, Xy, X;) yields |C(x,) =2!133 Since all the in-
volutions are conjugate in G by 2.4, this implies that 2 does not divide
C(xy7) |- Then F(xyq, X7, Xq) yields |C(x;)|=1723%, 0=s=<3. Thus, a Sylow
17-subgroup is normal in C(x,;) and the argument in the proof of the lemma,
(if), shows that the number of Sylow 17-subgroups of G is =1 (mod 172),
This congruence leads to an impossibility. :
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Finally, if | G|=2133%1727, we must have yogq(Xg)= —224, xog9(Xq)= —223
and | C(x,) =2133. Now again (%gs(Xa))?+(22se(x2))>>| C(x5)|, a contradiction.

Case p=29. Now we have 29-13= —1 (mod 29), whence | G|=283%17229,
253217229 or 2133617229,

The former possibility is rejected by the lemma.

If | G|=253217%29, the lemma yields no choice for the number of Sylow
17-subgroups of G.

When | G|=2'33617229, a computation by FH(x,, X5 Xo9) Yyields xogs(Xa)
= —224, y9g9(Xg)=—223, and |C(x,)|=2'332. This leads to the contradiction
| C(x9) | <(%oss(2))? + (2289( X)) )

Case p=41. Here 2%3°=1 (mod 41) which yields the unique possibility
| (G|=253217241. This is however impossible, since the congruence of the lemma
fails even modulo 17.

This completes the proof of the theorem.
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