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ON THE BOUNDEDNESS OF ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE ON THE REAL AXIS

TATIANA ARGIROVA

Let f(z)be an entire function of exponential type o, 0<o<l=, i.e., | f(2)| = Ae°?! for every

complex z. Let there be an integer s, a constant C>0 and integers m,=0, r=0,1,2,...,s—1,
35”2 m,—s such that

| f(sk+r)|=C, | f(sk+r)|=C, ..., lf("'r“l)(sk+r)|§C: k=0, +1, +2,...,r=0,1,2,...,s—1.
Then f(z) is bounded on the real axis.

An entire function f(z) is said to be of exponential type ¢ if there is a
constant A such that f(2)|= Ael for every complex z. According to a well
known theorem of Cartwright [1], if an entire function of exponential type o,
0<o<m, is bounded at the integer points =0, *=1, +-2, ..., thenitis bound-
ed on the entire real axis. There are a lot of generalizations of this theorem.
For instance Duffin ang Schaeffer [2] replaced the integer points by
points 1, which satisfy

[Ap—n =T, n>I', I'=const, |,—24,|=y>0, n==m, y=const.
Korevaar [3] exiended Cartwright’s theorem in another direction.

Let f(z) be a function of exponential type so, where 0<o<m and s=1
is an integer. Let there be a constant C such that

f(n)|<C, f(n)|=C,...,/fe=0(n) =C, n=0, +1, +2,...

Then |f(x)|<M, M=M(s, o, C), —oo<x< 0.
Thus, Korevaar increased the type of the function, but required bounded-
ness at the integer points not only for the function, but also for some of

its derivatives.
It will be more convenient for our considerations to formulate the last

theorem in the following (equivalent) way:
Let f(2) be an entire function which satisfies the conditions :

| f(2) =Ae’?l, 0<o<n, A=const, |f(sn) =C, f'(sn) <C, ..., f&(sn) <C,

where s=1 is an integer. Then |f(x)|<M, M=const, —co<<x<co.
We shall generalize Korevaar’s theorem, showing that some freedom in the
choice of the points and derivatives is admissible. Beforehand we need a defi-

nition.

PLISKA Studia mathematica bulgarica. Vol. 4, 1981, p. 98—101.



BOUNDEDNESS OF ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 99

Let r>0 is an integer. We shall say that an entire function f(z) is
multiple bounded of order r at the points of the sequence {z,}, if there is a
constant C such that f(z)|=C, |f'(z,)|=C,...,|fr=Dz,)|=C for all z, of
the sequence.

Theorem 1. Let f(z) be an entire function and |f(2)|=Ae?, 0<o<7,
A=const. Let all integer points n—=0, +1, +2,... be distributed into s sequ-

ences: n=sk+r, k=0, =1, £2,..., r=0,1,2,...,s—1.

Further let the function f(z) be multiple bounded of order m,=0 at the
points of the sequence {sk+r}=_, r=0,1,2,...,s—1 and let my+m,-+ ---
+msg_1=S.

Then |f(x)|=K, —oo<x<oco, where K is a constant which depends on
g, s, C but not on the concrete function f(z),

Remark. We set m,=0 when no conditions are imposed on f(2) at the
points of the sequence {s&+ r}.

To prove this theorem we shall follow, just as in our paper [4] (see also
[5]) the elegant method of Duffin and Schaeffer from [2].

Theorem 1 is a consequence of a similar theorem concerning functions
regular in the half-plane Re 2=0.

Theorem 2. Let f(z) be regular in the half-plane Rez=0 and let it
satisfy the conditions

(1) f(2)| =e’?l, 0<o<m, Rez=0;

2) f(2) is multiple bounded of order m,, m,=0, by the constant C=1
at the points {sk+r}> ,r=0,1,...,s—1, and let Xs—im,=s.

Then |f(z) =MeY, M=M(o,s), y=Imz; i. e. f(z) is bounded on the
ray 0-=x<oo. .

An important step in the proof of theorem 2 is the following :

Lemma 1. Suppose the assumptions of theorem 2 hold and besides f(z
is bounded on the positive axis, i. e.), f(x)=0(1); x—oco. Then |f(x) =M,
M= M(s, o), x=0.

So this lemma states that if ¢ and s are fixed, all the functions that
satisfy the conditions of theorem 2 and in addition are bounded on the ray
0= x< oo, are bounded by a common constant.

Proof of lemma 1. Suppose lemma 1 is false. Then there exists a se-
quence {f,(2)} of functions which fulfil the conditions oi the lemma, but at the
same time c,=-sup f,(x)|-—>co when v—oco. We may choose the sequence {f,(2)}
such that ¢,>v, v=1,2,... )

From the relations |f,(x)|=c, and |f4(2) <e’?, 0<o<wm, applying the
Phragimen-Lindelof principle we infer

®3) T | fo(2) =coeV, x=0, 0<o< .
Let the real numbers x,, v=1,2,... be chosen such that
) | folxa) |= ol = 1/2).
It follows from (1) that x,—oco when v—oco. Let us set
(5) Yo2) =fo(2+[X0])/Co v=1,2...

(Here [x,] is the integer part of x,.) The function y,(2) is regular in the half-
plane Rez> —[x,] and in view of (3) and (4) satisfies the inequalities
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(6) yo(2) | <e, Re 2= —[x,]
and

) max | yo(x) =1—1/v.

0=x=1

Besides, the assumption (2) implies a corresponding condition concerning
multiple boundedness of y,(2) at the sequence

(shtr—[xllpp r=0,1,2, ..., s 1.

Let [x,)=r,(mods), 0=r,<s—1, v=1,2,... Since the integers r, get
only a finite number of different values, there are infinitely many of them
o @=1,2,... which are equal to one and the same integer, say /. Further
we shall consider the subsequence {r,} and respectively {y,,} but for simplicity
instead of r,, y,, and so on, we shall write again r,, v, and so on. Thus, we
have r,=[(=const, 0=l=s—1, v=1,2,...

Now if r is fixed, 0=r<s—1, we have r—[x,]=r—/(mods) and if we
put r—[=r*(mods), 0<r*=s—1, the sequence {sk+r—[x,]j;>, gets the form
{sky+r*}, ko= —py, —Po+1,...,0,1,...where p,>0, p,—occ when v—co.

Clearly when r runs over the set {0,1,2,...,s—1}, r* does the same
(eventually in another order). Thus, we have again s sequences {sk,+r"}, r*=0,
1,2,...,s—1 at which the function w4(2), v=1,2,..., is multiple bounded
respectively of order m, by the constant 1/c, (see (2) and (5)), i. e

(8) |wW(sk,+r*)|=1/cy, §=0,1,2,...,m—15 ko=—po, —po+1,...,0,1,..

Moreover my+m,+ -+ +ms_y=S.
Because of (6) we can apply the compactness principle to the sequence

y,(2) and find a subsequence y,,(2), which tends uniformly in any bounded
region to an entire function y(2). The inequalities (6) and (7) show that y(2)
satisfies the conditions

®) w@)|=eY,  0<o<a,
(10) max | y(x)|=1.
0=x=1

The relations (8) imply
(1) w(sk +r*)=0, p'(sk+r*)=0, ..., " sk+r*)=0,

where k=0, +1, +2,...; r*=0,1,2,...,s—1 and my+m,+ -+ +mg_=s.
By using Jensen’s formula (see [4]) one can easily prove, that an entire
function, which satisfies (9) and (11) is ideniically zero. Thus y(2) =0. But
this contradicts (10). The lemma is proved.
From here on we may proceed exactly as in [4] in order to get theorem
2 and then — theorem 1.
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