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THE FINITE LEONTIEV TRANSFORM:
OPERATIONAL PROPERTIES AND MULTIPLIERS '

IVAN H. DIMOVSKI

I do wish to make the point that functional analysis, or more
accurately algebraic analysis, has something to say about the subject
of Dirichlet series.

H Helson [1]

Let Z(1) be an entire function of order one and of normal type, with distinct zeros A, /s,. ..,
and let y(z) be its Borel transform. If D is a finite convex domain, such that all singularities

of y(z) lie in D, then under Leontiev's transform of a function f(z)€A(D) itis understood the
sequence

¢
Tul)=gos [1OX[EnF (E=p)it,  n=1,2, ...
aig” Ty

It is shown that the Leontiev transform gives a complex realization of an operational
calculus for a general right inverse operator of the differentiation operator. An explicit repre-
sentation of all possible convolutions of Leontiev transforms is found. The multiplier problem
for the Leonticv transform is solved.

Let L(2) be an entire function of order 1 and of normal type with infinite
sequence 1, n=1,2,..., of distinct zeros, ordered in such a way that
0< 4| =[2y|=+--=|4s|=--- Without essential loss of generality we may
assume L(0)=1.If L(A)=23.o(nl) 1 a,1*, ay—=1, then its Borel transform is
9(2) = Zpm0 ap/z7 T,

Let D be a finite convex domain in the complex plane, such that all the
singularities of y(z) are contained in D. We may assume 0¢D. Let A(D) de-
notes the space of the functions f(z), which are analytic on D. As the topo-
logy of A(D) we consider the inductive topology arising when we consider
A(D) as the inductive limit of a sequence {Aa(On)}n=1 of Banach spaces of the

bounded analytic functions on domains O,>D, such that {O,}7-, is a base of
neighbourhoods of D (see [2, p. 594]). When we speak about continuous func-

tionals or operators on A(D), we mean continuous in this inductive topology.

In 1965 A. F. Leontiev [3] introduced for each f(z)¢ A(D) the formal
expansion

(M 1@~ X T,(f) L' i)
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with
[
) Tu(f) =g (Ot ft—odn,  n=1,2,...,
¢ 0

where C is a contour, lying in the domain of analiticity of f(2), and containing
D in its inside. Leontiev ([4, p. 255]) had also shown that the coeificients
of (1), or the values of the functionals (2) uniquely determine the function
f(2), i. e. T,(f)=0 for n=1,2,... imply f(2)=0.

Theorefore, it is rather natural to look on the sequence {7,(f)}>_, as on
a finite integral transform on A(D), to a great extent like to the finite Fourier,
or Sturm-Liouville transforms [5, ch. 10 and 11]. Then the correspondence (2)
is said to be the finite Leontiev transform.

From this viewpoint we ask for the operational properties of the finite
Leontiev transform. The main such properties are: its differential law, inversion
formula, convolutions, and multipliers.

At first place, we show that each Leontiev transform (2) is connected
with a right inverse operator in A(D) of the differentiation operator d/dz.

Theorem 1. If A:A(D)—A(D) is the right inverse operator of the dif-
ferentiation operator d/dz, defined by

® @) = [ 1Ot~ [0 ([fonnyat,
then
(4) TAAN)=271TA(f), n=1,2,...

Proof. Let us, for brevity’s sake, denote If(z)= [? f(¢#)d¢ and
D(1)= (27”')_16./’ »(8) f(Ddt.
Then
TN =B [ afe)de)— Tl 1
But 7,(1}=—1/4, n=1,2,...: and :

;fe"n("’) dr_f f(o)do = 11; i!{e; nf (¢ —r)de— '11}?14{ faydr.
Therefore
TN = L dferfE—ndd=1-Tf), o ed

Corollary. If f(z)€ A(D), then
®) TAf) = 1Tl /) =g [7 O J(0)aL

Proof. Let us apply 7, to the the identity

A @)= 1@ =5z [y (O f Byt

Using (4) and T,{I1}= -1/, we get at once (5).
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The identity (5) is said to be the differential law of the Leontiev trans-
form (2). '

The right inverse operators of the differentiation operator in the real do-
main had been studied by the author [6] and by L. Berg [7]. Independently,
they found convolutions for these operators in explicit form. The corresponding
results are extendable without any difficulties in the complex domain.

Definition 1 ([6]). A bilinear, commutative and associative operation
f+g(2) in A(D) is said to be a convolution of a linear operator M:A(D)
—A(D), iff the relation
(6) M(f=8)=(Mf)=g
holds for all f, g¢ A(D).

Theorem 2. The operation

(1) f8(2)= 5t [t [f(z +1—1) gle)dn

is a continuous convolution of the right inverse A of the differentiation ope-
rator d/dz, defined by (3), and
(8) Af(@)={—1}*f(2).

Proof. Under continuity of f+g we mean the separate continuity, i. &
that f,—f in A(D) implies f,=g—f=g for all g¢ A(D). It should be noted that
the contour C in (7) ought be chosen in such a way, in order to lye in the
common domain of analiticity of f(2) and g(2). The separate continuity of (7)
follows easily from its explicit representation. It is not so evident the conti-
nuity in the sense that f,—f and g,—g imply fp*g,—f=*g in A(D). We will not
use the continuity of f=g in this sense, so we drop the proof.

The bilinearity and continuity of (7) are evident. We shall give an elabo-
rate proof of the associativity only. Let a, 8, y be three mutually different
numbers. It is not difficult to find that (see [6])

(g) . (eaZ * eﬁz) & @Y% — %% % (eﬂz * e”").

Now, let f, g, #¢ A(D) be arbitrary. In order to prove the associativity relation
(f#g)#h=fx(g+h) we shall take the contour C to lie in the common domain
of analiticity of f, g and 2 and to contain D in its inside. Let us differentiate
(9) m times in a, n times in g and p times in y. Thus, we get (2"e** x 2"e#?) = zPe"*
—2"ew « (2"ef? « zPe?). 1f we let first a— 0, then 8 —0, and at last y -0, we
get (zm# 2"« 2/ =2"#(2"«2") for m, n, p=0,1,2,.... From the bilinearity of
(7) it follows that the associativity relation is true for polynomials. It remains to
use Runge’s approximation theorem for the closed domain, bounded by the
contour C.

The proof of (8) is a matter of a simple verification.

The following lemma exhibits an essential connection between convolution
(7) and the Leontiev transform (2).

Lemma 1. If f(2)¢ A(D), then
(10) f(2) * €' = T,( f)e', n=12,...
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Proof. Let us transform the left-hand side of (10):

2 L, ER E .z L, t—1)
1)+ & = b [e'n e} = @l = [t= S @A [T )

z a
— @ ey [T (v)de = Ta( e,
0

since @ ("'}~ L(2,)=0.
Theorem 3. The linear functionals T,(f), n=1, 2, ..., are multiplica-
tive in the conwvolution algebra A (D) with multiplication (7), i. e.

an . Tulf &)= Tl f) Tnl(@), n=1,2,...

Proof. “Multiplying” term-by-term the identity fren*=Tyf)e" by g
we get (fxg)=en" = T,(f) Ta(g)€'", using the associativity of (7). By (10), we
have T,(f=g)e'"" = T (f)Tag) e ", thus proving (11). )

Relations (11) expresses the convolution property of the Leontiev trans-
form. They say that /=g is the convclution of the Leontiev transform. Some-
times, the notion of convolution of a finite integral transform is understood in
broader sense ([5, p. 320]). ;

_ Defitl ition 2. A bilinear, commutative and associative operation
f+g in A(D) is said to be a convolution of the Leontiev transform (2), iff

(12) T f+@) =T HTa®,  n=1,2,...,

where the numerical sequence u, is one and the same for all f, g¢ AD).

We aim to find an explicit representation of all separately continuous
convolutions of the Leontiev transform in A(D). But this cannot be done earlier
than we have a solution for the multiplier problem of the Leontiev transform.

Definition 3. A numerical sequence p, pa, - -+ tps « - - IS said to be a
multiplier sequence of the Leontiev transform (2), iff for each f¢A(D) there
exists a function g¢ A(D), such that T,(g)=usTa(f)y n=1,2,...

Each multiplier sequence u, n=1,2,..., defines a linear operator
M: AD)—A(D) with Mf=g. For it TJ{Mf}=uaTu(f), n=1,2,... Now we shall
.Show.that each multiplier of the Leontiev transform (2) is a multiplier of con-
volution (7) in the sense of the following = N

Definition 4 (8, p. 13)). A linear operator M: A(D)—A(D) is said to
be a multiplier of the convolution algebra A(D) wijth the multiplication (7),
iff f+g is a convolution of M. :

In other words relation (6) is characteristic for the multipliers of the
corresponding convolution algebra.

~ Theorem 4. Each multiplier of the Leontiev transform (2) is a multi-
plier of the convolution (7) too. :

Proof. Let M: A(D)—~A(D) be a multiplier operator of the Leontiev
transform (2), determined by a multiplier sequence w, n=1,2,... Then

TAM(f + &) — (Mf)* gl = unT,(f * 8 — TuM)T (&) =0s
due to (11) and the multiplier property Tno(Mf)=paT.(f), n=1,2,... From the
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uniqueness theorem of Leontiev (see (3, p. 255]) it follows M(f = g)—(Mf)+g =0,
i. e. relation (6). Hence M is a multiplier of the convolution f=g.

Thus, the multiplier problem for the Leontiev transform (2) is reduced to
the multiplier problem for the convolution (7).

Theorem 5. A linear operator M: A(D)—A(D) is a multiplier of convo-
lution (7) iff it has a representation of the form

(13) Mf(2)= uf(2) + m(2)+ f(2)

with n=const., and m(z)¢ A(D). Representation (13) is unique.

Proof. Since the convolution (7) is an operation without non-zero anni-
hilators (or, in the terminology of Larsen ([8, p. 13]), the convolution . algebra
A(D) is without order), then the multipliers of (7) form a commutative ring.
Let M:A(D)—~A(D) be an arbitrary multiplier of f=+g. From (8) it follows that
A is a multiplier of (7) too. Hence M and A commute, i. e. MA=AM. From
(8) we get MAf=M({—1}=f), or

(14) AMf)=(M{—1}) = f,

where multiplier relation (6) is used. If we denote n(z)=M{—1} and differen-
tiate (14), we get

(15) Mf(2)= 1 [n(2) = f2)}

This representation is equivalent to (13) with u=®(n) and m(z)=n'(2).

Conversely, if M if an operator of the form (13), then evidently, it is a
multiplier of (7). B -

Corollary 1. If M: A(D)—~A(D) is a maltiplier operator of the Leon-
tiev's transform (2), then it is a continuous operator on A(D) and has repre-
(sentation (13).

The continuity follows from representation (13) and from the separate
continuity of (7).

Corollary 2. A sequence {u,)=_, is a multiplier sequence of Leontiev

transform (2), iff there is a function m(z)¢ A(D) such that
(16) tn= -+ Tp(m), n=1,2,..3
with an arbitrary constant u.

Proof. To each multiplier sequence {u,}y_, of (2) there corresponds a
multiplier M of (7) with representation (13). If we apply (2) to (13), we get

TlMf Y Tl F) =T f)+ Tum) Tl ),

i. e. (16). The converse is evident.

Representation formulas (13) or (15) can be written at once, using a ge-
neral representation formula for the multipliers of a convolution of right inverse
operator [9, theor. 2], but we prefer to proceed directly. 2

Theorem 6. If a continuous linear operator M: A(D)—A(D), commutes

with the right inverse operator A of d|dz in A(D), then M is a multiplier of (7).
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Proof. We begin with the evident identity (M{l1})={1}={1}= M{1}. Using
the commutating relation MA=AM and the fact that fxg is a convolution of
A, we can write (MAP{1})=(A9{1})= (AP{1}) = (MA9{1}) for p,q=0,1,2,... The
functions A"{1}, n=0,1,2,... are polynomials exactly of n-th degree. There-
fore, the relation (pr)*g,,:f,,*(ng) holds for polynomials f, and g, of arbit-

rary degrees p and ¢. Let f, g¢ A(D) be arbitrary. We take a contour C in

the common domain of analiticity of f and g and containing D inside. Accor-
ding to Runge’s theorem we can choose polynomial sequences {f,(2)}>_, and

{84(2)}_,, converging uniformly on the closed domain, bounded by C, to f(z)

and g(2) correspondingly. Now, from the separate continuity of f=g it follows
that (Mf)=g=f=(Mg). The last relation implies the complete convolution rela-
tion (6) (see [8, p. 15]). - ‘.

Corollary. A continuous linear operator M: A(D)—A(D) for which the
hyperplane ®(f)=0 is an invariant subspace, commutes with the differen-
tiation operator djdz in this hyperplane iff M is a multiplier of
convolution (7).

The proof in the real case can be seen in [10]. In the complex case it pro-
ceeds in the same way. That's why we omit it.

Now we are ready to characterize all continuous convolutions of the Le-
ontiev transform (2).

Theorem 7. If f=g is a continuous convolution of the Leontiev trans-

form (2) in A(D), then it has a representation of the form
~ @
(17) f=8=gzlex(f=8)]

with ¢ € A(D), where by = operation (7) is denoted. Conversely, each operation
feg of the form (17) in A(D) is a convolution of (2).

Proof. Let f«g be an arbitrary convolution of (2) in A(D). If f¢ A(D) is
arbitrary, but fixed, let us consider the linear operator Mg=f=g. From (12)

it follows that Myg is a multiplier operator of the Leontiev transform (2).
According to theorem 5, M; can be represented in the form
d
Mg = [(MA—1}) =gl
But My{—1}=M(_1}f= 4= {Mi—}{—1}»f}, and hence

frg=Mg=— (o (e+f)* &)=z lo*(f+8)]
with = M(_){—1}={1}+{1}.

Let us mention at last about inversion formulas for the Leontiev trans-
form (2). This problem is treated in chapter 4 of Leontiev’s book [4]. We here

say only that if the formal expansion (1) represents the function f(2) in D, i. e. if
(18) f@)= = T(1)e L)

then we can consider (18) as an inversion formula.
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From the viewpoint of analysis it is desireable to extend above results for
the space A(D) to the space A(D) of the functions, which are analytic in the
open domain D and continuous on D. Then, instead of (2), we take

(19) T =5 | 7 (6) ([en"f(t—re)dr)t.
a i}

In order to ensure an unicity theorem, additional resirictions on the function
L(7) are needed. Leontiev [4, p. 260] had proved that if L(4) is such that
| L(re‘v) |< Ae* @7 re, u>1, r>0, where h(p) is the indicator function of (1),
and A is a constant, then if 7,(f)=0, n=1,2,..., for f¢ A D), then f(z)=0.

Operation (7) is a convolution of (19) too. As for the representation for-
mula (13), some mild restrictions on the boundary behaviour of f(z) are needed.
A sufficient condition is f’(z) and f’(2) to be continuous on D. Here an illus-
trative example of an application of representation formula (13) will be given.

Theorem 8 (see [4, p. 320)). In order that Leontiev’s expansion (1)
to be uniformly convergent on D for each function f(2), analytic in D, and
continuous in D together with its two first derivatives f'(z) and f"'(2), provided

(20) U ) =gz | 70)f(00t=0,

it is necessary and sufficient this to hold only for Leontiev's expansion of
the linear function z—®.(;). If Leontiev's expansion of z—®x¢) is known to
be uniformly convergent on D to z—(¢), then Leontiev's expansion of f(2)
is uniformly convergent to f(z) for each function, which satisfies the condi-

tions of the theorem.
Proof. It is easy to find that

@1 Z2- D)~ 3 2L ().
n=1

Let us assume that the series is uniformly convergent on D. If f(z)¢ A(D) is
a function with continuous f(z) and f”(2) in D, then it can be represented in
the form

(22) f(2)=[z—2Q)P(f)+[z2— D) * f(2),

where the condition (20) is taken into account. It is easy to see that

oo —e),”z *f”({)_

(23) [—2(]=A2)~ = 22

and hence the Leontiev expansion (23) is uniformly converegent on D. If the
expansion of z—®(;) converges uniformly to z—&(;), then from (22) it is
clear that the Leontiev’s expansion of f(z) is uniformly convergent to f(z) on D.

Formula (21) is a special case of a general Taylor formula for the opera-
tor A. To write it explicitly, we introduce a class of Bernoulli-type polyno-
mials. The polynomial B,(2)=n! A4"{1}, n=0,1,2,..., is said to be n-th gene-
ralized Bernoulli polynomial for the operator A, defined by (3). For example,
By(2)=2z—D(2).
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Theorem 9. If f(2)¢ A(D), then for each n

1) =% B OB k1 + Rl
where

@4 Rel)= 4(@) = — @ [ o = foeye)

with @ (f)=(2ni)~! é y(O)f(t)dt.

Proof. We may use the general Taylor formula [11] for a right inverse
operator, but it is simpler to proceed directly. If / is the identity operator of
A(D), we use the evident operator identity

d d d d d ., d .,
I=(I—A )+ (Mg — A )+ -+ -+ [A ) — A5+ A ()
which easily can be written in the form

f@)="2 NI~ 4 f) + Af ).
k=0 _

But (I—A:—Z)f(z): &(f) and hence f(2)=Zp)d(f®)A*{1}+ A" f(")(2). Then the
remainder term can be written in the form Ru(2)= A" f ")(2) = — (A—D{1}) = f ()(2),
thus proving formula (24).

It seems that the idea to consider the Dirichlet expansions as eigenfunc-
tion expansions is due to A. P. Hromov [12]. Eventually, there remain other
possibilities for applications of the algebraic approach to the subject of Diri-
chlet series and relative Leontiev transform.

REFERENCES

1. H. Hels on. Foundations of the theory of Dirichlet series. Acta Math., 118, 1967, 61—67.

2. P. 9a8apac. PyakuvoHasbHblit aHanus. Mocksa, 1969.

3. A. . JleouTbes. O npeactaBAeHHH [POU3BOALHBIX (QYyHKuni psnamu Jlupuxae. Joxaads
AH CCCP, 164, 1965, 40 —42.

4. A. ®. JleoHThbeB. Pansl skcnoHedT. Mocksa, 1976.

5. R. V. Churchill. Operational mathematics. New York, 1972.

6. 1. H Dimovski. On an operational calculus for vector-valued functions. Math. Balkanica,
4, 1974, 129—135.

7. L. Berg. Generalized convolutions. Math. Nachr., 72, 1976, 239 —245.

8. R. Larsen. An introduction to the theory of multipliers. Berlin, Heidelberg, New York, 1971.

9. I. H. Dimovski. Convolutions of right inverse operators and representation of their
multipliers. C. R. Acad. bulg. Sci., 31, 1978. 1377—1380.

10. I. H. Dimov s ki. Representation of operators which commute with differentiation in an

invariant hyperplane. C. R. Acad. bulg. Sci., 31, 1978, 1246 —1248.

11. D. Przeworska-Rolewicz. Algebraic theory of right invertible operators. Studia
Math., 48, 1973, 129—143.

12. A. Il. XpowmoB. Onepatop auddepennnpoBanus u psasl Thna upuxae. Mam. samemxu, 6,
1969, 759—766.

Centre for Mathematics and Mechanics Received 26. 2. 1979
1090 Sofia P. O. Box 373



