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COMPLEX INVERSION FORMULAS
FOR THE OBRECHKOFF TRANSFORM

IVAN H. DIMOVSKI, VIRGINIA S. KIRYAKOVA

In 1958 N. Obrechkoff had introduced a generalization of the integral transforms
of Laplace and Meijer. One of the authors had considered a modification of the Obrechkoff
transform, which can be used as a transform basis for an operational calculus for the general

Bessel-type differential operator

d d
— %
B=t dt ™,.. dt

¢

with g=m—(ag+. . .+a,)>0.
In this paper some new results for this transform are given. Interesting relations of the

modified Obrechkoff transform with the one-dimensional and the m-dimensional Laplace trans-
forms are proved. Three different complex inversion formulas are found.

In [1]N. Obrechkoff had introduced the following generalization of the
integral transforms of Laplace and Meijer:

(1) F(x)= ol D(xt)f (f)dt
with the kernel-function
©o oo a x
¢(X):0f. . J ue, .., upp exp(—ul_. . —up—;;l—'— up) dul S du,

with arbitrary real a,,..., a, In the same paper a real inversion formula of
Post-Widder type is found. Now we propose a complex inversion formula
in several variants for a modification of the Obrechkoff transform (1). This
modification has been introduced in [2].

Definition 1. Let yy<p,<...<y, be an arbitrary sequence of real

numbers, >0 is arbitrary too, and

) = m—1
K@)=[...[exp(—t— —tiy—y— ﬁn:).gl W m du, L du,—; .
m—1
The integral transform
@ &, (f0); 2}=8 [ KI(@ty) "0 fityat
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defined for functions on 0=t<co, is said to be the modified Obrechkoff
transform.

For the sake of brevity we shall call (2) Obrechkoff transform. It is de-
termined by the non-decreasing sequence y=(»,, »s,...,7,) and by the expo-
nent g>0.

Definition 2. Q is the space of locally integrable functions f(f) in
(0, ) whick are O(tP) with arbitrary p>a=—8(y,+1) for t—+0, and are
O(exp Atfim) for t — oo with an arbitrary real .

In [2] is shown that each f(f) ¢ 2 has well defined Obrechkoff transform
R, {f(#); z} as an analytic function in the truncated angle domain D;={z:Rez
>} N {z: argz|<zwm/2B}. In the same paper the convolution of the Obrech-
koff transform (2) is found, and its relation to the m-dimensional Laplace trans-
form is established. For the sake of completeness, we give the corresponding
result with its proof. .

Theorem 1. If f(¢) € Q, then
@) RSO @ 2= (LTS ) T 15 20, 20
where by L, is denoted the m-dimensional Laplace transform

Ll o osly)s 2y ,z,,,}:df i .({ exp(—2zyti— - —Zmlm)@(ty, . . ., ty)dl,. .. dtpy,.

Proof. Relation (3) can be written in the from
(4) ﬂof [!. .. l’fexp[—ul—- U2y oo Zm BB (Uy e Upy)]

—1
S app—tm ™V du, . . . dit_] £2m™07 £ (8) dt
k=1
m oo oo m .
= 1T 2m [ Texp(—aity—— 2zt fI(Er - £a)0) 1L £, .. .,
=]

k=1 % 0 o

According to the “edge of the wedge theorem” (see [3]), it is sufficient
to prove (4) only for real 2,>0, =1, 2,...,m. In this case we make the
substitution u,=2zyts, k=1, 2,...,m—1, t=(¢ ...¢,)"# in the left-hand side
of (4). Though the corresponding integral is improper, it is easy to see that
the standard theorem for a variables change can freely be used. After routine
transformations, the left-hand side of (4) can be transformed into the right-
hand side.

Now, using the relation (3), we receive a complex inversion formula for
the Obrechkoff transform.

Theorem 2. If f() € 2 is of the form f(t)=t*f(t)with p>a= —pB(y,+1)

and with m-times continuously differentiable function f in [0, o), with fim (f)
= O(exp Atéim) for t—oo, then

- % (y,+...+ym) PRI

o+ioo
L explema -tz

o—i% o—io

) SO~ gt
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X I 2m 'k Fl(z, .. . 2a)#)d2, . . . A2,
k=1

where F(2)=8R,{f({); 2}, and ¢ is a suitably chosen real constant.

Proof. Under the hypothesis of the theorem, the function f[(Z,...¢m)""
J i t:k satisfies the conditions for validity of the complex inversion formula
of the m-dimensional Laplace transformation [4, p. 319), since

Flts o b)) = Mexplat, . . . L)V M exp (e tyt -+ 4o tm).
iThen

m o+ioo o+ico
Sty )= )2a0)" 1L 7R ] e / exP(zxt +: o+ Zplm)

—foo a—1loo
><kl_l1 Zm " F(2y ... 2,)Pd2y .o d2m,

provided o6>1/m. We put ¢,—¢,=-..=£, =t/ and get the inversion formula (5).

Corollary. If y,=—»/2, y,=»/2 with »=0 (the case m=2) and -2,
then the Obrechkoff transform (4) coincides up to a constant with the Meijer
fransform Q, {f(¢); z}= [ K.(2f) (28)'? f(t)dt.

The inversion formula (5) of the Obrechkoff transform is identical with
the well-known complex inversion formula [5, p. 81] of the Meijer transform
J@O)= (@)= [ 252 (=0 (0)'°R, { 1) ; 2}dz.

It is especially interesting that there exists a definite relation between
Obrechkofi transform (2) and the usual Laplace transform g{f(¢); 2}
— [z exp(—zf) f(t)dt.

Definition 3. If l,=ym—yr+k/m, k=1,2, ..., (m—1), and f(f) ¢ Q2
then
1 ’m—-l
(6) o f@)=[" " V7 TGy
k=1
1 1 m—1 1
X[ f (1 =) k] f[tmb(z, ... tmy)Vidry . . dyy .
0 0 k=l

Theorem 3. If f(f) ¢ Q, then identically
(7) o {f (2)5 (z/myme} = (27)m=12m'2 e f(t) 5 2}
Proof. We should prove the identity

® [ exp(—zt)aftt)dt
()0 mm g [ #0m D Ktz my") £ (Bt

To this end, we shall transform the left-hand side of (8) to the right-hand side.
Substituting ¢ f(¢) with (6), we get
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oo m—1
Clof(0); 2)= [exp(—zt) (11 T 1At gt

1 1 m—1
X U; T UG URN me0 2 C P S LU 7 L

v k=1

After the substitution u,=#"1,, ug= 1479, ..., Up—y =111 . .. 7,_,, We receive
m—1 oo .
elofit); 2=/ 1 T'Gy) [ exp( 2ty "m0 gt
k=1 ]

Uy 23

m
. —1 .
X | (tm_ul);_._lu;'.—(rﬁ-l:) diy... [ (Um_s ‘um_‘z)l"'_2 lly’"'.)‘z (ym—1 + "”“])dllm_g
0

h n—.
B 2 —1 7
X @ng—tp) ™, f ()t
If we interchange the order of integrations, we get

Lo f(O); 2= Flye Jurs ditm

-]

- i1 —1 _9 — —1 iy

Xl l(lm—l) ,,f l(um—Z—um—l)/m ! ul,;l”-l—22 o) " ”dum—Q
m—

X1 () [ (g —w) "l ™
as

mly,,—+i)— -!”;+1]

X I'(3,) Z (" —u, 't exp (—zt)dt.
m
“

The inner integrals here can be calculated in succession using the formula
ay,...,a,
by .oor by

Q,...,0p 0 ]
—A by by )

I'—(2) 7 (x—u)y—1Gpe [ax ]dx

p+lg+1

—_—_ulGM+l,ll [au

valid for p+¢<2(m-+n) and |arg (au) <(m+n-—% pP— %q)n (see [7, p. 212,
(79))). For the first of these integrals we get after the substitution #7- x:

m_l['—l(ll) 7 (x-ul)l|*lx7m'—(yl+ll) exp (_le/m)dx

= (2a)—mV2 =12 [1(3,) ? (x __ul)l‘"’x’m—‘"Jf’-‘)Gg,';g[(%)”' X
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|G m)7s' ldx = (2a) =m0 13z )™ O]
Ry L—1Gmo[ 2 m j R P
XI'— (11);[()6—11,) Gl (—,;) X | (_,;,“+7m_(71+11))/=o ldx=

(@)= )™ N G (2 my g O =245 Ll m et g (- )
Finally, after (m—1) similar steps, we get

o f(t); z}=22)"""m "2 (2/m)™ Tt orm—rHim—1)]

m—1, 2m—

X J st st et Gt () e

A — ma A=)l
! dul""l'

; [7/' — (Ym—1 +1m_1)]/.lm_1 ’ [',in‘ +Vm (Vm—l + lm-l)];":ol :

After the substitution u,_,=125, we get Q¢ f(¢); 2}= [7 f(t)A(z, t)dt with

(9) A(z, t):(Qn)(l—m)/zm—lm (z/m)—m(ym+1_|/ﬂ,
\[j/m+ym+1—1/B)!
X @m—1,0 | (2 " J
m—1, 2m~l[( m ) ¢ Hy+1— I/ﬂ]/-lm—p [j/m+y,+1— 1/517:1’]

—(22)" 22 (2 my O U GEO [(_zm_) | [y;+1—1/81 ).

It remains to show that this expression for A(z,£) is identical with the-
kernel #"=*"~' K[(2£)%] of the Obrechkoff transform, up to the numerical mul
tiplier (27)'—™72m—12, To this end we shall use the Melline transform M {f(¢);
pi=/[tP— f(t)dt and its complex inversion formula

t—0)+4fit+0 ] ctie
(10) LEIED o L P MUS 5 Pldp.

i N
We have
M {Pmt VK| (20); p}=<1/mz—ﬂ<r'"+*+<ﬂ—'>fﬂ)~'jl I(ye+1+(p—1)/B).

By inversion formula (10) we get

(1 Pom* DK (28]

c+.loo m

= RtV o= 1T D(ye+1+(p—1)/B)dp
2xif e—i k=1

=2 DG 2ty yat 1 /BYia] = 2P0V GER (2] (14 7, — 1/B)i1),

If multiply this expression by (2z)'~™/72 m—12 and substitute z by (z/m)"/#, we
get (9) (see [6, p. 207, formula (1)]).
Thus the theorem is proved.
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Corollary. If m=8=2, y,==—»/2, ya=v/2 with v=0 then the identity
(7) gives the relation between Meijer and Laplace transforms ([7, p. 122]):

J; 2 zr-l»l/? 4
0 2=V [ iy inpde; 2)

Using the relation (7) between Obrechkoff and Laplace transform, we give
one more complex inversion formula for the Obrechkofi transform. By means
of the well-known complex inversion formula f(£)=(2ni)=![o*!=exp (2f) & { f({);
z}dz of Laplace transform, (7) leads to

Theorem 4. If f({) € 2 and is continuous+on (0, o) then

f(t)=(2r)~m+2 m—=12 (1 /i)=Y OZ: exp (2£) Ky {(%)mug ; 2}dz}.

Proof. As it is shown in [9], transformtation ¢, defined by (6) is inver-
tible. There the following inversion formula for ¢ is found: If ¢ f(f)=g(f),
then
—1 &+l

Arteatdpy 1 1m m 1
{g[(tx.--t,.,_o 1 Bt = }

m—1
St oty )= 1 £ O 7
k=t ot'. .. ot
where 0%/0t}', 0/0ty,. .., d'm—1 Jot:m~1 are the operators for fractional par-
tial differentiation of orders 1y, 4,, ..., 4m—1 with respect to the variables #,,
ty, ...., t, , correspondingly. If 4,>0 is an integer, then d‘k/’dt:kdenotes simp-
ly the operator of partial differentiation with respect to #, of order 1,, but
if 2,>0 is not an integer, then
Ok fty .ty N AT Tk e
: = g = Y (TR YR
ok ot (1—{4e})

.y tm_l)dlk.

Then, the proof of the theorem follows immediately from (7).
At last, we give one more complex inversion formula for the Obrechkoff

transform.
Theorem 5. If f(f)¢ 2 and if f(t) has bounded variation in a neigh-

bourhood of a point t, then

[f(te—0)+f(to+0))/2

c+ioo m o e
=g I t57) DOt 1=pif)dp [ R 13 222D,
provided the integrals [ te—'f(f)dt and [7 2"'m*V"7'Q,(f; 2)dz are absolutely
convergent for p=c—+iT, —oo <T< co with a suitably chosen constant ¢<—a
=B+ 1)

Proof. We integrate the expression 2?’»™"?"' @ {f: 2] along the real
axis from O to oo. According {o a theorem of Vallée-Poussin (see Bromwich
[10, p. 504]) from the hypothesis it follows that it is allowed to change the

order of integration:
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B ;f 2t NP1 dz;f K[(zt)] £on D7 f(8) at

=B ] #ontV7 (0t [ 2O K2tz
0

Now, using formula (11), derived in the proof of theorem 3, we get for the
inner integral:

(12) R Pl ¢ (€7)
. 0
- ;fo 2P GpR((zty (1 +ye—1/B)7 Jdz=(t""1/B) kI_"I'] I'(yx+1—p/B)
(see [7, p. 418, formula (3)]). The formula used is valid for argz|<mn/28,

which is the case for real z ¢ (0, o).
Now, using (11), it is not difficult to see that

c+ico m -
ﬁ I Ly ,,I—Ix I'(ya+1 —p/ﬂ)]dpl{@, {32} m* V71 gz

1 C+ioo oo £ —0 +ft 0
=ﬁ:_‘{mt°—pdpb{ tp—lf(t)dt=f(o )2 (to+ ),

according with the Riemann-Mellin inversion formula (10).
Complex inversion formulas for a special case of the Obrechkoff trans-
form are found by E. Kriatzel [11].
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