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CONVOLUTIONS, MULTIPLIERS AND COMMUTANTS RELATED
TO DOUBLE COMPLEX DIRICHLET EXPANSIONS

NIKOLAI S. BOZINOV, IVAN H. DIMOVSKI

An algebraic approach to the problem of expanding of functions of several complex va-
riables in multiple Dirichlet series in polydomains is proposed. An explicit representation of
the coefficient convolutions and multipliers of Gromov-Leontiev’s expansion is found. By the
way, the commutant of the operators for partial differentiation in certain invariant subspaces is
determined.

Introduction. Let L(2) and M(u) are entire functions of exponential type
(i. e. of order 1 and of normal type) with infinite sequences {4,}:> |, and {ua}>° |

of simple zeros. Without loss of generality we may assume L(0)=1 an M(0)=1.
Let y(u) and &(v) are the Borel transforms of L(1) and M(u), respectively. Let
U and V are bounded convex domains in C!, such that U and V contain all
singularities of y(x) und é(v), correspondingly. We denote D=UX V and assume

(0, 0)e¢ D. By A(D) we denote the space of the functions f(u, v), analytic

on D=UXxV. B

The problem of expanding of function f(z, v) ¢ A(D) in double Dirichlet
series of the type
(1 f(u, v)= S ajme " m?

I,m==1

had been studied by V. P. Gromov [1] and by A. F. Leontiev [2]. Here
an attempt for developing of an algebraic approach to this and to related prob-
lems is made. By means of a suitable convolution, an explicit representation
of the coefficient multipliers and coefficient convolutions of tlie Gromov-Leon-
tiev’s expansion is found. By the way, another way of derivation of V.P. Gro-
mov’s formulas for the coefficients is given. A convolutional representation

of all continuous linear operators in A(D), commuting with d/0u and 0/0v in
certain invariant subspaces is found. For sake of simplicity, the considerations
are made for functions of two complex variables only, but there are no diffi-
culties to transfer them to functions of n» complex variables in polydomains.

Before proceeding to our main aim, we should formulate some well-known
facts about the topology of the space A(D), not in their full generality, but
in a form, needed for our considerations.

Let £ be convex compact set in C! or C2 Let OF be a family of open con-
vex domains, containing E. For O ¢ OF, by A(O) we denote the space of the
analytical functions in O, with the usual compact topology. Two functions
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f.g¢ U A(O)are said to be equivalent iff there exists O ¢ OF such that f ,
0eOF

= glo. The set of these equvalence classes is denoted by A(E). In the linear

space A(E) we introduce the inductive topology, determined by the family

{A(0)}p¢@rF and the canonical maps @o : A(O)— A(E) which map each function

f€ AlO) in the equivalence class ¢ A(E), such that f ¢ 7. Thus, we introduce
the strongest local convex topology in A(E), such that all maps ¢, are con-
tinuous. It is well-known that this topology is separable, and it coinsides with
the inductive topology of the countable family {A(O,)}=_,, where {O,}r_, is a
countable base of open, relative compact, convex sets, containing E. An exten-
sive study of such kind of spaces can be found in 3, pp. 378~ 381].

In our case of E=D=UXxYV,UcC! VcC!as a countable base {Onm},,_,
of £ we can choose Onm=0,X2m, where {G,}>_, and {Q,}> are such bases
for U and V.

Lemma 1 (Sebastiao e Silva [4]). Let E be a compact convex set
in C. If F is a continuous linear functional on A(E), then there exists an
unique function y ¢A(C'\ E) with yz(c0)=0, such that for each f¢ A(E) the
representation

(2) F(f= g [ FO2() ds

holds. Here I' is a contour lying in the domain of analyticity of the repre-

sentative f ¢ f, such that I' contains E inside. Conversely, if x ¢ A (C'\ E),
x(c0) =0 is arbitrary, (2) defines a continuous linear functional on A(E).

For a proof see [3, p. 380]. Let us note that the functional F defined by
(2) does not depend neither on the special choice f ¢ f nor on the choice on
the contour I'.

1. A convolution in A(D). Multipliers. Let @ and ¥ are two arbitrary

linear continuous functionals in A(U) and A(V), respectively with @(1)= (1)
=1, According to lemma 1

3) D= gmi | fw) v(wyda, e Ao
and
(4) V(@) 5 [ £@)N(), ZeAWV)

with some y ¢ A(C\U), »(c2)=0 and 8¢ AC'\ V), 6(00) -0. The contours [”
and A are chosen to lye in analiticity domains offef and g € g, respective-

ly, containing (/ and V inside.
By means of the functionals we define the following two linear operators:

©) Lf W)= [ f@)da— e [ f(a)do), f@) ¢ AD)
and

©) L1@= [ 1) de— (] fie) i), f@) € AV).
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They are right inverse operators of d/du and d/dv in A(U)and A(V), res-
pectively. Let us introduce the following two operations :

(7) f*g:¢s{g‘f(u+f—o)g(a)do}; f, g € AU)
and
(8) f N g=Y,{ f f (@ +n—r)g(x)dr}; 1, g€ A(V)

in A(U) and A(V), respectively. As it‘is shown in [5], (7) and (8) are conti-
nuous, bilinear, commutative and associative operations in A(U) and A(V), res-

pectively. /, and [, can be represented in the form [, f= {1} f and [f= {l}*f
(@)
From the assoctatxvxty, 1t follows that l,(f* g) UL hH=g=f *(llg) for f, gc A(U)

and L(f+ @)= (of)* & ~ + (Lg) for f, g€ A(V).
The operators /; and /, make sense in A(D) too

(7) Lifw 0} = [ flo, o | flo, v)do}
and o
(®) Wl f(a, 0} = [ @, de— 2, {['f (u, v)de).

In this case, !, and [/, are right inverse operators of d/du and in d/dv, respec-
tively, and @,{l, f(z, v)}=0 for v¢ V and W,{l,f(u, v)}=0 for u¢ U.

The basic means in our approach is a convolution in A(D) for the operators
L, and [,. First we remind a general definition of convolution of linear opera-
tor, which maps a linear space into itself.

Definition 1 (see [6]). A bilinear, commutative and associative ope-
ration #: XX X— X in a linear space X is said to be a convolution of a
linear operator T : X — X iff the relation

(9) T(f=8)=(T))+g=f=(Tg)

holds for all f, g¢ X.
Theorem 1. The expression

def a v
(10) feg=®:PA[ [ f(u+&—0, v+n—7)g(o, r)dodr}
&

defines a continuous convolution for l, and L, in A(D), such that
(11) Liaf={1}+f.

_ Proot. First, we shall show that (10) defines a function of A(D). Indeed
it f, g ¢ A(D) we choose representatives f¢ A(O,) and g ¢ A(O,), where O, ¢ 0%,

0,=G,; X2, G, ¢ 0OV, Q,¢ O”. Then the statement of the theorem should be
understood as
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~ o def

(12) f#g = fsg.

Here f+g5 ¢ A(O,N O,) is defined by (10) for f¢ A(O)), g € A(O,). It is easy to
see that (12) defines an operation which does not depend on the representa-
tives f¢ f and g€ g.

' Let B denotes the bilinear operator A(D)X A(D)— A(D) induced by (12).
We shall prove that B is continuous. Let O, and O, are from OP and are of
the form O,=G, X2, G, ¢ OY, Q,¢ OV. Let Bo,o, be the operation f+g con-
sidered as a bilinear map A(O,)XA(Oy) — A(O;N O,). It is clear that Bo,o, is
continuous operator with respect to the compact topology in A(O;), A(O;N O,).
Let go, X o, is the correspondence (f, 8 — (vo.f, v0.8)=(f, &), where @o, o,
are the canonical maps. Since another form of (8) is Bo @o, X ¥0,= ®0,n0. © Bo, 0.
then Bogo,X¢o, is a continuous bilinear map A(O;)X A(O,) — A(D) and from a
well-known theorem (see [7, p. 670]) it follows that B is a continuous ope-
rator.

The bilinearity and the commutativity of f«g are evident. We give an ela-
borate proof of the associativity only. First, we shall prove that the relation
(f+Q)+h=f+g+h) holds in A(O), where O is an arbitrary convex domain of the
form O=GxQ with G¢OU and Q¢ OV. It is easy to see that for functions
of the form

(13) £ (@, 0)=f,@fsv); £, € AQ), fo € A)
we have
(14) f (1, ))elgl DY =1f1(1) » g1()] [fs() »2:(®)}

(@) (@)
where = and = are one-dimensional operations (7) and (8). Due to the associa-
tivity of these operations (see [5]), we obtain

(fogyeh—[(f(@) * £(@) . (ful®) e 2(@)] * (@) ho(D)]
(u) (a) (v) (v) () () (v) (v)
=[(f,#&1)* k) [(fox &) * hg]l=[/f1 % (g * ) [ fox (g = h2)1=f*(g*h).

i. e. the associativity relation holds for functions of the form (13). Therefore,
from the bilinearity of f«g, the associativity holds for polynomials of # and v.
But, according to a well-known variant of Runge’s approximation theorem (8,
p. 53], these polynomials are dense in A(O). Hence, the associativity holds
in {‘X(O)

Let now f, g k¢ A(D) and f, g, k are their representatives in a space
A(O) with some O= GX Q. Then, by (8), we have

(f+&)*h=(Frg)wh = fog)+h=fu(geh) =+ (geh)=] +(g+h).
Hence, the associativity of the operation f+gin A(D) is proved.
Since /,f=1[,f, then it is enough to prove the convolution relations

(15) L@ =T +g

in a space A(O) with O=Gx 2 only. This could be proved in the same way
as the associativity by approximation.
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At last, (11) can easily be verified directly.

Henceforth we shall not make any difference between the elements of A(D_)

and their representatives from the family {A(O)}oecﬁ" Thus, we instead of (12)

shall use directly (10) as a convolution in A(D). In doing so, no confusion
would arise.
Now, we shall find all the multipliers of convolution (10).

Definition 2. An operator T:AD)— A (D) is said to be a multi-
plier of the convolution (10) iff

(16) (Tfyrg=r«Tg)
holds for all f, g ¢ A(D).

Lemma 2. The polynomials of u and v are dense in A(D).

Proof. If Vi € A(D), then there exists f¢ A(O) with O = G X 2, where
GHoU, and Q> V are convex open sets. There existsa polynomial sequence

A(0) ~ A(D) S

{P.)_,» such that P, — f and then P,=g¢o(Pa)— @o(f)=f since @o:A(0) —
A(D) is continuous.

Theorem 2. The following four propositions are equivalent:

a) T:A(D)— A(D) is a multiplier of the convolution (10).

b) T :AD)— A(D) is an operator of the form
(17) Tf =(0?/0udv) (r = f) with r= T{1} ¢ A(D).

¢) T:A(D)— A(D) is an operator of the form

(A7) T =00/t )-Horw)) * 1@, 0)-+os@)* {f @ D}+{elw, {f, vl

where ¢o=const, oy() ¢ AWD), i) € A(V) and o(u, v) € AD).
d) T:AD)— A(D) is a linear continuous operator, commuting with 1,
and ly in A(D).

Proof. a) —) b). Let 7: A(D)—A(D) be a multiplier of (10). Then 7(1)+f
=1=Tf=11,Tf, and (17) follows immediately, with r= T{l}.

b) —) c). With direct differentiation under the integral sign (using re-
presantations (3) and (4)) we get after some elementary algebra, the formula

SE(J8) = osgHpe WL, DY {8, O}
(18) |
Bl & Ol (e, O+ DS G ) - g, )
By means of (I18), we get at once (17’) with
o= DA f & mhy eal@)="T,lser, M 0s®)=Ds Ly 7(E D olty V)=—gur

¢) — d). It is evident that each operator of the form (17’) is a conti
nuous linear operator in A(D). The commutation relations 77,=/7 and 7l,=1, T
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. . . (2) ' ()
can be verified easily, using the fact that f«g is a convolution of /,, f:g is

a convolution of [, and f+g is a convolution of both in A(D).
' d) - a). From the obvious identity 7(1)={1}={1}=7(1) and the commutat-
ing of 7 and [, i=1, 2, it follows

(11 Y Ll5{1 ) = Ioig{ = TYLI5{1})

for p, g, 1, s=0, 1, 2,.... Therefore, the multiplier relation (16) holds for
functions of the form X l4{1}=urv?/p! q!, p, ¢=0, 1, 2,.... From the bilinea-
rity of f«g it follows that (16) holds for polynomials. By lemma 2, (16) holds
in A(D). The theorem is proved.

Remark. The multiplier operators 7': A(D)— A(D) satisfy not only the
relation (16), but the convolution relation (9) too. Indeed, if f, g ¢ A(D), then
from the chain of identities

Ll T(feg) =1+ T( frg)=T(1)(f+g)
=(T()sfyrg =T f)sg = 1:(T frg)=LlT f+g)
it follows 1,1, T(f+g)=1l,(T f+g). By applying 0%/oudv we get T(f+@)=(Tf)+g

2. A comutant of 0/du and Jd/dv. Our next aim is to find all continuous
linear operators T7':A(D)— A(D) which commute with d/0u in A, and with d/dv
in Ay, whereA, and Ay are invariant subspaces of A(D) defined by

(19) Apmt fe AD): ®uf fla, 0)}—0 for v V)
and ot
(20) Aw = {f ¢ AD): Vol f @, ©)} =0 for uc¢U).

The solution is given by the following theorem.

Theorem 3. A continuous linear operator T: A(D)— A(D) with invariant
subspaces Ay and Ay commutes with 0/ou in Ay and with 0/0v in Ay iff T
is a multiplier of convolution (10), (and hence it can be represented by (17)
or (177)).

Proof. First, we shall show that the two conditions T[A.;]cAf, and
(0/0u)Tf=T(d/ou)f for f¢ Ap are equivalent to the condition 7/,~[,T in
A(D). Let g¢ A(D), then l,8 ¢ Ap and hence (9/0u)Tl,g= T(0/ou)l,g= Tg. Since
Tl,g € Ay, thenl, Tg=1,(0/0u)Tl,g=Tl,g— @,{Tl,g}=Tl,g. Conversely,let/, T=Tl,
in AD). If f¢ A,, then there exists a g¢ A(D), such that f—=1,g. Then 7f=1[,Tg
¢ Ap. Hence T[As]cAp. With the same f we get (9/du)Tf—(0/ou)Tl g
=(0/0u)l,Tg = Tg= 1(d/ou) f. Analogously, the conditions 7[Aw|c Ay and (0/0v)Tf
= T(0/0v)f for f¢ Ay are equivalent to [,7-=Tl, in A(D).

Hence, according to theorem 2, 7 is a multiplier of the convolution (10).

3. Coefficient multipliers of Gromov-Leontiev’s expansion. In this section
we suppose that the functionals @ and ¥ are defined by (3) and (4) in the
special case, when y(#) and &(v) are the Borel transforms of the given entire
functions L(1) and M(u) (see the Introduction). It is well known that [9, p.24]:
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L) = Pfe"} =5 [w)end,

(@n 1
M)~ Voters) = o[ d(@)eredo.

In [5] is shown that this choice of the functionals @ and ¥ is closely
connected with the exponent systems {e'“}7; and {¢“m"},_; by the formulas
L’(l;)e"l": l=i; and eumv(::)eujv o M’(,um) e/lm‘”, m:_{.i
0 , lFi: 0 y mEj.

It happens that such “convolutional orthogonality” holds for the two-dimension-
al exponent systems too.

(@) 7.4
(22) e se ={

Theorem 4. The exponent system {e‘l"+"

gonal with respect to convolution (10), i. e.

m®)ee -, IS convolutionally ortho-

(23) {ell“ﬂmv}*{e*i"+ujv}={ L'A)M (up)et'm” s 1=i, m=j;
0 s (L m==3, ).

) @ Q)
Proof. From (14) it follows {e"t"*"m”} s (" ¥/} —[€'1" & €' "] [e"m" + "/" ).
Then, using (22), we get (23).

Lemma 3. If f(u, v)€ AD) and i, u are complex numbers, then
(24) o {eatm) = garuo{ [()M(u) [ [ e—io—ws f (o, t)dods
00
—L(3) [ e | eio=nif(o, t)deldo—M(u) | Bs et fe—irnif(a, v)dolds
0 0 0

g
+<155'P,,[fzex"+“'f(5—o, n—r1)dodr]}.
0
Proof. It is easy to verify the identities

(25) £ — emra) 0ﬁrzof(a, v)do— b, [j'e*vf(s— o, O)da]}
and

(v) v
(26) [ env=env| M(#)ofe“‘"f(uv r)dr — ‘1";[0}1 esf(u, n—r)dr]}.

From the evident identity

(a) (v)
(27) fr{entni=|f(u, v)=e'] «er
and from (25) and (26) we get at once (24).

the Theorem 5. If 4, and u, are zeros of L(}) and M(u) respectively,
n

(28) f Py {ellu-h«mv} =wl.m(f) el®t
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where

(29) tml )= DTN [ €t ime f (5—0, n—v)dadr)
00

are continuous linear functionals in A(D).
Proof. Since L(4;)=M(um)=0, then (28) follows immediately from (24).
As in theorem 1 we can prove that for an arbitrary O ¢ OP of the form

0-GxQ, GEOU, Q ¢ OV the linear functionals w;n 0@, (given also by (29))
are continuous with respect to the compact topology in A(O). Hence oy n(f) is

continuous in A(D).

Theorem 6. The continuous linear functionals wim(f); I, m=
ale multiplicative in A(D) with respect to the convolution f=g,”i. e.
(30) @1, m( f = &)= wi,m( f )wr,m(L), lm=1,2,...

Proof. Using (23) and (28) we get

L'AYM (um)orm( f)onm(8) " m” = wpm( f oo m(@e'*" mse* “*¥m”)
= [fof " m ol gele™ " m” || = (frg)let" Hm®s " m)
=L'(A)M (up)( fogy= {1 "m"y= L' Q)M ()01 f+8) €4 "m®

and (30) holds.

Definition 3. If f(u, v)¢ A(D), then a formal Gromov-Leontiev's ex-

pansion of f on the exponent system {€1"""n”}ny is said to be the corre -
pondence

1, 2,...

@31) fa, O~ 5 ayu( i n

with the coefficients

(32) atm(f)=otm (f)/ L' Q)M (ttm).
From (30) now it is clear that

(33) al,m(f* g)= L'(ll)M’(/‘m)al,m(f)al.m(g)-

Remark. The functionals a;,(f) are exactly the coefficients found by V.
P. Gromoyv [l], since the functional in (28):

D: VS )} =— 4‘,1;2 i £ S(&, ) 7(&)(n)dédn.

Now we shall prove a uniqueness theorem for Gromov-Leontiev’s expan-
sion.

Theorem 7.If f¢ A(D) and aim( f)=0 forl,m=1,2,...,then f(u, v)=0.
Proof. It is clear that a;m(f) =0 iff wim(f) =0 or equivalently,
f*{ellﬂ+pmv}=o'
We shall use the following two systems of one-dimensional continuous
m @) = _ .
{inear functionals w/(f), wm(f), defined in A(U) and A(V), respectively (see
5]) by
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O C I @ o O »
B4 w(Ne =f={e"}, fe AU); on(f)e " =f={e""} gcAV).

) @)
Let a,(f) and a,(f)are the corresponding coefficients in one-dimensional Dirichlet
expansions on the systems {e’“}>  and {e“»"}=_,| in A(U)and A(V), res-
pectively. They are

(1) def(1) ) def (2)
(35) a(f)= ol f)/L'(4), am(f)= 0u(f)/M (tm), I, m=1, 2,...

def (u)
Let Fiu, v)=f(u, v)=e"", 1_1 2,.... . Then, by (27), it follows that

)
0=fs{eu" T Hm?} —{F, (u, v)} : e*m” [wrn]v IFI( u, v)le"n’, i.e. [wm]v[Fl(u9 7)]==0,
m=1, 2,...foru ¢ U and for fixed /. Then, according to A. F. Leontxevs
umqueness theorem (see [9, p. 255]) for the one-varlable case, we obtain

Fiu, v)=0,1=1,2,. ,uEUfor each v¢ V i.e. [co,],,[f(u, ?)]=0 for each v¢ V,
=1, 2, Usmg agam A. F. Leontiev’s uniqueness theorem, we conclude
that f(u, 'v)_

Definition 4. An operator T: A(D) — A(D) is said to be a coeffi-
cient multiplier of the formal Gromowv-Leontiev’'s expansion (31), iff there exists
a double numerical sequence {t;m\y,_, such that
(36) arm(Tf)=t1m@im(f) for eachf¢ AD), I, m=1, 2,...

Of course, the sequence {r;»} should not depend on the function f.

Theorem 8. An operator T :A(D)— A(D) is a coefficient multiplier
af Gromov-Leontiev’s expansion iff it is a multiplier of the corresponding

convolution f=g, i.e. T is a continuous linear operator, commuting with I, and
ly, and having representations of the form (17) or (17').

) @)
Proof. The functionals wif), ®,(f), defined by (34) have the following
property

() — =
37 @1,mf1(1) ()] —‘wl(fx)“hn(fa) for f, ¢ A(U) and fy€ A(V).
As it is shown in [5], the functionals au( f) and w,,,( f ) are m(ultlphcatlve in
A(U) and A(V) with respect to the convolutions f* gand f = g, respectively

Using (17’), (33), (35) and (37), it is not difficult to prove that if
T :A(D) — A(D) is a multiplier of the convolution fxg, then the identity

38)  @un(TS)=leo+ L' (0)ar(er) + M'(tt)an(@2) + L") M (tm)tm(@)Btom f)

holds for f(u, v)=fi(w)fA(v), f, € A(U), fa€ A(V). Then, by approximation, it fol-
lows that (38) holds for an arbitrary f¢ A(D). Hence, each multiplier of fsg is
a coefficient multiplier of Gromov-Leontiev’s expansion too.

Conversely, let 7: A(D)—A(D) be a coefficient multiplier, and let us form
the function k= Tfsg—fxTg with f, g A(D). Then
a,m(R) = Aum| Tf+&) — Qrm| [+ T8)= L' (A)M' (umW 1, TS (8) — @tsn( 1) A1sm( TE)}

= L'(AI)M’(.um){tbmabm( f)abm(g) — U@ty f)al!m(g)} =0
and by our uniqueness theorem 7, it follows that £#=0, q. e. d.
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4. Coefficient convolutions of Gromov-Leontiev’s expansion.

Definition 5. A binary operation =: A(D)y—A(D) is said to be a coef-
ficient convolution of Gromov-Leontiev's expansion (31), iff there exists a
sequence {04}, ., Such that

(39) abm(f:g):’ obmabm(f)ahm(g) for all f’ 8¢ A(D)
[, m=1, 2,.... The sequence {o,n};,_, should not depend on the functions
f and g.

Theorem 9. If an operation s: A(D)x A(D)—A(D) is a coefficient
convolution of Gromov-Leontiev's expansion, then it is continuous, bilinear,
commutative and associative operation in A(D) with a representation of the

form
(40) FT8= () (ref=g) with r={1jx{1} ¢ AD).

Conversely, for each r¢ A(D), the operation f=g, defined by (40), is a coef-
ficient convolution of Gromov-Leontiev’s expansion.

Proof. The proofs ot bilinearity, commutativity and associativity proceed
much in one and the same way. Let us prove e.g. the associativity. If £=(f
#g)xh —f«(g=h), then by (39), we get a,,(k)=0, [, m=1, 2,... Hence, from
theorem 7, £=0. The convolution fxg is a coefficient convolution too (see (33)).
Now, using (33) and (39), as in the proof of the associativity, we can check

easily the identity (1#1)s(f*g)=(1%1)+(feg), i. e. (L)X f+8) =rsfsg with r=1
#1. Thus, we get (40). From explicit representation (40) the continuity of
f+g in A(D) follows immediately.

Conversely, let r¢ A(D) be arbitrary. We need the following easy for
verifying properties of the convolution (10):

1) For arbitrary f, g ¢ A(D), the relations
(41) D {(fg)u, v)}=0, v¢V and Y.{(f:g) (u, v)} =0, u¢ U hold.

Indeed, if we denote shortly

def u v

h(u! § v, ﬂ)::eff f(u+f"0’ T’-f'n—f)g(ﬂ» t)dadt
7
it is clear that A(u, & v, n)=—h(s, u, v, n) and from (10) we obtain
(pﬂ{f*g(u: W)}=¢u¢5'1’,,{’l(u, 5! v, 77)}: "‘gpquu'lln {h(Ev u, v, ’7)}2 "'qj!{f*g(si ’U)}

Hence the first of identities (41) holds. The second follows in the same way.
2) In the same way as in [5] it is easy to prove the following two “ope-

rational” relations:

(42) A d‘:, f(u, 0))=Aay,(1) when &,{ flu, v)}=0, ve V

and
(43) Atym [;U f(ur 'U)] :l‘mabm (f) when .lIV{f(ul ‘U)} - 0' u 6 U’
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Hence, for each f¢ A(D) with @,{f(u, v)}=0, v€V, W {f(u, v)}=0, ucU
we have

i
(44) ALy [—0115‘07 jj;; A /‘mahm(f)-
From (18), (40) and (41), we get at once
~ 02 02
(45) J*8 =455 |+ —pae (f+8))
At last, by some elementary algebra, using (33), (44) and (45), we get
(46) @1 [5) = (L' (A1) M (1) 2@t ()} 013 )13 8)-

Hence the operation f=g, defined by (40) with an arbitrary r ¢ A(D) is a
coefficient convolution of Gromov-Leontiev’s expansion.
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