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A GENERALIZATION OF CHEBYSHEV POLYNOMIALS. II

BORISLAV D. BOJANOV

‘'We extend here the Chebyshev-Markov.inequality for the set of polynomials which have
fixed multiplicities vy, ... v, of their zeros 5<...<x,.

Let [a, b] be a given finite interval. Denote by |l f|| the uniform norm of
fin [a,b], | fll=max {|f(x)|: x¢[a.b]}. We proved in [1] the following
result.

Theorem A. Let v=(v,)} be a fixed system of arbitrary natural num-
bers. Given |a, b), there exists a unique system of points (x,)? such that

Hx—xD)T e (x—x)5) " = inf Ie—x) b oo (x—%,) ™ Il
agxl H n§

Moreover, a<xi<---<x,<b. The extremal polynomial T(v; x)=(x—x:)v.
---(x—x:)v" is uniquely determined by the condition that there exist n—1
points (L), a=t,<t,<---<t, <t,=b such that T (v; t,)= (1T
IT(v:-)ll, where N=v,+---+V,.

Evidently 7' (v; x) coincides with the Chebyshev polynomial of first kind
T,(x) in the case [a, b]=[—1,1}, vy=---=v,=1. So, T(v; x) could be con-
sidered as a generalization of the famous Chebyshev polynomials. It isinterest-

ing that 7 (v; x) preserves some extremal properties of these classical poly-
nomials. For example, it is well-known- that

n | PM(X)|<IT™ (X)), | x1=1, k=0,..., n,

for each polynomial P of degree n such that || Plicg—1a)=1. The inequality (1)
was proved first for A=0 by Chebyshev (see [2], p. 78) and extended for
0=<A<n by A.A. Markov.

Wa show in this note that T'(v; x) has an analogous extremal propertvy
in the set Q(v) of all algebraic polynomials f of the form fx)=c(x—x)"
(x——x,,)v", a<x, <+ <x,<b, where ¢ is a real parameter such that [ fi

=HT(v; )l :

" First we prove an auxiliary statement. Suppose that (e,);*' are given po-
sitive numbers. If follows from Theorem 1 of [1] that there exist a unique
system of points (x,)}, @=x,<X <+ <X,<Xp+1=0, and a constant c>9 such
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94 B. D. Bojanov

that the polynomial f (x)=c(x—x.)v‘ (x»~-x,,)v” satisfies the conditions
| f;’; f(x)dx|=e, k=1,..., n+1. Clearly, the above system of equations
—1

can be rewriten in the form

*k
(2) O, Xph oy X)i = [ f(x)dx—ge,=0, k=1,..., n+1,
Ye—1

where s,,=(—1)N TR N=vit eV,

Theorem 1. The solutions c, xy, ..., x, of the system (2) are differ-
entiable functions of e, ..., e,., in the domain E={(e, ..., e,+,): >0,
i=1,..., n+1} and f®(E) (A=0,..., N, E¢(a, b)) is a strictly increasing
function with respect to e; (j=1,..., n+1).

Proof. Denote by J=J(c, x,-.., x,) the Jacobian of (3). We have

J= _D._(wl’ il w"'&' l)
D(c, xy,..., x,)

_F ' W (x)o(x)dx, —v, }l cW(x)o(x)dx -+ —v, jl cW(x)o,(x)dx

_ | P W etadx, —v, [ W oyxdx - —vy [ oW (x)anle)dx

*ni1 *n+1 *nt1

[ Wxe(x)dx, —v, [ cW(x)o(x)dx ---—v, [ cW(x)o,()dx
where

W(x)= ill (x—x)T", 0(x)=(X—%1) -+ (Xx—Xp) O4(X) = AX)/(X—%x,). k=1,

It is not difficult to verify that
3) det J(¢c, x4, 6. ., X,)F0

for each ¢>0 and a<x;<-:--<x,<b. Indeed, assuming the contrary, there
is a linear dependence of the columns of J, i, e., there exist coefficients b,,

..., b, such that % [b6,/>0 and
=0

T W) 800+ () + -+ by0,()ldx = 0

for i=0,..., n. Then the polynomial g(x)=b,0(x)+ b,0,(x)+ :-- + b,0,(x) must
change its sign in the intervals (xg Xy), ..., (X, X,+1)- Thus g(x) must have
at least n+1 zeros. But g is a non-zero polynomial of degree n, a contra-
diction.

Now, applying the implicit function theorem we conclude that ¢, x,,...,x,
are differentiable functions of e,,..., e,+, in E. Moreover,
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4 df/de‘,-:e,j,—l/det.l,
) 0x,/0e;=€;J,,+/detJ, k=1,..., n,

where J,, is the cofactor of the (/m)-th element of the matrix /. Our first
observation is that dc/de;>0. Indeed, J;;+-0 since, otherwise there exists ,

polynomial g of degree n—1, such that j':::_l Wi(x)g(x)dx=0 for i=1,...,

J—1, j+1,..., n+1, which is impossible. Then ¢ is a monotone function of
e{y=1,..., n+1). But c(e,,..., e;..., e,+)>c(e,.... 1,..., e,+) for suf-
ficiently large e;. Therefore
(5) c is a strictly increasing function of e; (j=1,..., n+1)
Let us find the dependence of f® (&) on e;,. We have
o™ _-d)‘ P) B vy N v
2o ©= o o ebe )™ o (e 2 Lo
0 g 0
= {W©(@)} V7 —vied W@ (Y 532 — - —v, (W Qo &)} V522
7 ] v J

After replacing the partial derivatives by the expressions from (4) we see that

4]
S/det.l. 5;1_ f(l)(&),:

T Woeteds v [ oW (Do dx e v, [ oW (R0

T watodz, v T oW o —v, T W

L X2 Yj—2 Xj—2

= {W(E©e@)}™, Vi AW (©)0y(E)}P -+ —v, c {W (§)o,(8)}™

P W, —v W @eadx - —v, | W (R (odx
.\'i XI- Xi

T Weenan, v W oo —v, Few Gt

l.) . .
We shall show that gf; (&)=:0. It suffices to prove that the above matrix is

non-singular because of (3). Assuming the contrary, there exists a non-zero
polynomial P(x) of degree n (with a positive coefficient in front of x") which
satisfies the conditions

.\'j:"l W(x)P(x)dx‘:O’ j=0,. . ey j—‘2, j,j+1,-.., n,
(6) i

{W(©PE) }»=0.
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The first n equalities in (6) mean that P(x) must have a zero in (x, x,:+,) for
i=0,..., j—2,/,j+1,..., n. Then the polynomial ¢(x)=W (x)P(x) which is
of degree N has precisely NV real zeros and they lie in (a, b). Then, by Rol-
le’s theorem, ¢ (x) does not vanish outside (a, ). This contradicts ~the last
equality in (6). Therefore a‘:—f"" (€)#0 for each (e,,..., e,+)€E if E¢(a, b),
This implies that |f® (€)| is a strictly monotone function of e; in (0, ). Now
let us assume, for the sake of definiteness, that b=<E&. Then f®(£)>0. We
shall prove that f® (&) is actually a strictly increasing function of e; in this
case. Indeed, if b<E, then f‘”(&)%c(&——b)”—l.(lvf}') and, according to (5)’

f® (&) can be done greater than any positive number for sufficiently large e;.
This shows that f® () is anincreasing function of e; for <&, and by conti-
nuity, for 6=& too. The case §<a is treated similarly. The theorem is proved.
Next we derive as an immediate consequence of Theorem 1 an analog of
the Chebyshev-Markov inequality.
Theorem 2. Let v,,..., v, be arbitrary natural numbers. Suppose that

fEQ(v). Then

(7 [P E)=ITH(v; &)l
for each §¢(a,b) and A=0,..., N, N=v,+..-+v,. The equality is attained
if and only if f=+T(v;-).
Proof. Denote by ¢,...,¢, and z,,..., 2z,, respectively, the distinct
zeros of f'(x) and T'(v; x). Clearly ¢, has the same multiplicity as 2, i=1
.., m. Then f' and T'(v;-) are solutions of a system like (2) with para-
meters e,.=|f:‘: lf'(x)a’xl @i=1,..., m+1, t4=a, t,,=05) in the first case

and e; =1 in the second. Since | fII<| T(v;- )l we have

(8) e,<e;, i=1,..., n+1,

L

with at least one strict inequality if f+ T(v; -). By Theorem 1, (8) implies
I{l""’(é)l =T®(v; &) for A=1,..., N. It remains to prove (7) for A=0. In
this case

f@=f()+ f f(x)dx<=T(v; b)+bft T'(v; x)dx=T(v; &)

since f/(x)=T’(v; x) for each x=b, as we have already shown. The theorem
is proved.
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